
MEDICAL GAS 
RESEARCH

Wang et al. Medical Gas Research 2014, 4:2
http://www.medicalgasresearch.com/content/4/1/2
REVIEW Open Access
Adverse effect of inhalational anesthetics on the
developing brain
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Abstract

We did a PubMed search and summarized studies on the potential adverse effect of anesthetics especially
neurotoxicity in the developing brain, so named anesthesia-induced developmental neurotoxicity. Even though
many experimental studies using animal models indicated some adverse effect of anesthetics, more evidence is
needed before a recommendation can be made to change the way those anesthetics are used in the pediatric
population. Two large clinical trials are underway and may provide insight to the potential human neurotoxic effect
of anesthetics.
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Introduction
Each year in the United States, approximately three mil-
lion infants and children receive anesthesia for surgical
procedures, with many more receiving anesthesia for im-
aging studies or dental procedures [1]. It was previously
thought that anesthetic drugs caused short term sedation
without any long term sequelae in the developing brain.
This notion has now come into question, with numerous
animal studies showing that general anesthetics have neu-
rodegenerative effects on the developing brain, causing
anesthesia-induced developmental neurotoxicity (AIDN).
In 2000, Ikonomidou et al showed that ethanol, acting

by a dual mechanism [blockade of N-methyl-D-aspar-
tate (NMDA) receptor and excessive activation of γ-
aminobutyric acid (GABAA) receptors], triggers diffuse
neuroapoptosis in the developing rat brain, with the peak
of toxicity coinciding with the period of synaptogenesis
[2]. These results raised questions of whether general
anesthesia can also cause neuroapoptosis, since like etha-
nol, most anesthetic medications work as NMDA receptor
antagonists or GABAA receptor agonists.
Subsequently in 2003, Jevtovic-Todorovic et al demon-

strated that a one time exposure to a common anesthetic
cocktail of isoflurane, midazolam, and nitrous oxide, also
caused neuroapoptosis in the developing rat brain during
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the period of synaptogenesis [3]. This one time anesthetic
exposure was also found to cause long term neurocognitive
dysfunction that continued from adolescence into adult-
hood. These results in an animal model again raised ques-
tions of whether a routine anesthetic exposure could cause
AIDN in neonates, infants, or even very young children.
These findings caused much debate within the pediatric

anesthesia community at the time they were published.
Many counter points were raised that highlighted the dif-
ferences between anesthetic exposure in rats and humans
[4]. It was argued that there is less control over environ-
mental conditions when anesthesia is performed on rats,
with hypoxemia, hypercarbia, and hypoglycemia being po-
tential confounding variables in lab experimentation.
When subsequent publications in animal models showed
evidence of AIDN despite controlling for physiological
variables [5,6], the focus of research shifted to determine
what ramifications these results might have on the clinical
practice of pediatric anesthesia. In March of 2007 the US
Food and Drug Administration held an advisory meeting
to review the data on AIDN and decide whether a change
in pediatric anesthesia practice was warranted [7].
Though the advisory meeting did not recommend mak-

ing any formal changes to current pediatric anesthesia prac-
tices, it did urge the anesthesia community to conduct
studies to determine if AIDN can occur in children. There
are currently two large prospective multi-center trials being
conducted. The Pediatric Anesthesia NeuroDevelopment
Assessment (PANDA Study) [8] is looking at children
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exposed to a single general anesthetic before age three
compared to a control sibling who has not had anesthesia.
The second trial is the GAS study (NCT00756600), com-
paring spinal or general anesthesia for inguinal hernia re-
pair in newborns. Due to the nature of these trials, it will
still be a number of years before any meaningful data on
neurodevelopmental outcomes will be published. Thus it is
prudent to continue conducting and reviewing new devel-
opments in animal research on AIDN.

Methods
A PubMed search was done in April 2013 with search
terms in Table 1. Intravenous anesthetic agents were in-
cluded as search terms to obtain a broader range of articles,
even though they are not covered in this review. In addition
to this database search, reference lists of relevant articles
were reviewed for additional publications of interest.

Review
The PubMed search resulted in 347 articles, of which 84
articles were identified as pertaining to the topic. Out of
this group of articles, a subset of 44 articles was identi-
fied as being relevant to inhalational anesthetics and
their effects on the developing animal brain.

Inhalational anesthetics
In the pediatric population, inhalational anesthetics are by
far the most common drugs used for the induction and
maintenance of general anesthesia. Among the articles
reviewed, inhalational anesthetics have been shown to be
neurotoxic in the developing brain of all animal models
tested to date, which include rats, mice, guinea pigs, pig-
lets, and rhesus monkeys [3,6,9-13]. Mechanistically
speaking, inhalational anesthetics cause general anesthesia
predominately as GABAA agonists [14] and NMDA recep-
tor antagonists [15], though there are varying degrees of
affinity for these receptors among differing anesthetic
medications. These differences might give insight into why
certain inhalational anesthetics cause more neurodegener-
ation than others.

Isoflurane
Since 2003, isoflurane has been the most extensively
studied inhalational anesthetic. In an attempt to create
Table 1 Search terms used in review article database search

Database Search terms

PubMed Brain (newborn or infa
(neurodegeneration o
impairment or develo
sevoflurane or propofo
pentobarbital or phen

In PubMed, terms are

Articles were limited t
clinically relevant animal models, a number of studies
have looked into the minimum alveolar concentration
(MAC) of isoflurane in newborn rodents. It has been
established that the MAC of 2.5 month old rats does not
change depending on the length of anesthesia if physio-
logic parameters are kept constant [16]. More recently it
was shown that the MAC of isoflurane in nine day old
rats (P9) is 2.34% [17], which was the basis for isoflurane
concentrations used in studies of developmental neuro-
toxicity. The notion of a static MAC value has now
come into question for neonatal rodents.
Stratmann et al in a study on P7 rats found that MAC

requirements decreased from 1 h to 4 h into an anesthetic
[18]. With direct sampling of brain partial pressures of
isoflurane, this decrease in MAC was found to come about
in P7 rats even after full equilibration with inspiratory gas
concentration, suggesting a pharmacodynamic process
that occurs in P7 rats but not P60 rats. In P7 rats median
MAC was 2.75% at 1 h and 1.3% at 4 h of isoflurane
anesthesia, while in P60 rats median MAC was 1.65% at
1 h and 1.5% at 4 h. Similar decreases in MAC with in-
creased duration of anesthesia have also been documented
in neonatal mice, using isoflurane, sevoflurane or desflur-
ane as a sole anesthetic agent [19]. More research is
needed to see if this phenomenon of decreasing MAC re-
quirements in neonatal animal models has any bearing on
clinical practice.
In light of this new finding, studies on AIDN in animal

models can be reexamined in regards to dosages chosen. In
P7 rats, a combination of 0.75% isoflurane with 9 mg/kg
midazolam and 75% nitrous oxide for 6 h caused wide-
spread AIDN followed by learning impairment at P32 that
lasted until adulthood at P131 [3]. However, this anesthetic
exposure did not have any effects on overall growth, sen-
sory motor ability, spontaneous locomotion, or attention.
Using a MAC of 2.21 atm for nitrous oxide in Sprague-
Dawley rats [20], the combined MAC of the anesthetic
gases at 1 h exposure totaled 0.61 MAC, and at 4 h expos-
ure totaled 0.92 MAC. These MAC levels are similar to
those used in everyday clinical practice.
The same combination of anesthetic agents exposed to

rats aged P1 to P14 for 6 h, again showed evidence of
AIDN in all age groups tested, with the height of toxicity at
age P7, coinciding with the peak of synaptogenesis [6,21].
nt or child or neonate or neonatal or animals, newborn) and
r apoptosis or toxicity or neurocognitive impairment or developmental
pmental disabilities, or learning disorders) and (isoflurane or desflurane or
l or etomidate or ketamine or lorazepam or diazepam or midazolam or
obarbital or anesthesia, IV or anesthesia, inhalation or anesthesia).
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Similar studies in guinea pigs [10], piglets [12], and rhesus
monkeys [11] all showed age dependent vulnerability to
AIDN, demonstrating that AIDN exists in animals with
longer periods of synaptogensis like humans. Rodent
in vitro studies have also shown comparable results [5,22].
A similar time period of peak synaptogenesis in humans is
thought to range from the third trimester of gestation to
several years after birth [21]. It remains to be seen whether
AIDN occurs in humans, and if it does, the exact age of
maximal vulnerability to anesthetic agents.
Other animal studies that have shown declines in neuro-

cognitive function after a single isoflurane exposure include
an experiment on P7 rats exposed to 0.75% isoflurane and
70% nitrous oxide for 6 h [23]. These rats showed long
term memory impairment at P47 when assessed with trace
fear conditioning. In the same study, pretreatment with
70% xenon for 2 h prior to isoflurane and nitrous oxide ex-
posure was able to attenuate AIDN. Xenon pretreatment
rats did not differ compared to control rats when long-
term memory was assessed at P47. In a follow up study, the
same anesthetic regimen was exposed to P7 rats, causing
AIDN and long-term memory impairment at P47 [24]. A
single 0.3 cm surgical incision made to the left hind paw at
the start of the anesthetic exposure increased neuroapopto-
sis rates by approximately 60% compared to anesthesia
alone, and statistically increased the degree of long term
memory dysfunction when compared to anesthesia alone at
P47. However, although P7 mice exposed to isoflurane had
apoptotic cell death early after exposure, no differences
in adult cell density, learning or activity was found in
isoflurane-exposed compared to controls [25].
Of interest is an article published April 2013, in which

isoflurane was shown to be neuroprotective against AIDN.
In this study, hippocampal slice cultures of P7 rats were
exposed to 1 or 2 MAC of xenon, isoflurane, or sevoflur-
ane [26]. All three anesthetics caused similar levels of
AIDN in this in vitro study. Preconditioning with 1.4% iso-
flurane (0.75% MAC) for 2 h attenuated neuroapoptosis to
control levels. More research is needed to see if this neu-
roprotective effect of isoflurane can be shown to reverse
AIDN induced neurocognitive disfunction in in vivo ani-
mal models.
Sevoflurane
Sevoflurane is the most commonly used inhalational
anesthetic in the USA for pediatric surgical cases. Due to
its minimal airway reactivity and low blood/gas partition
coefficient, sevoflurane has quickly become the inhalational
induction agent of choice in operating rooms nationwide.
Despite being so commonplace in pediatric anesthesia prac-
tice, the number of sevoflurane specific AIDN studies is
small in comparison to isoflurane. The studies that have
been published on sevoflurane and AIDN suggest a similar
neurotoxic effect when compared to isoflurane administra-
tion in animal models.
In 2008 Zhang et al published the data on sevoflurane

and AIDN. The study consisted of P7 mice exposed to 2 h
of 1.7% sevoflurane anesthesia, resulting in significant
AIDN in the sevoflurane group as compared to control
using activated capase-3 analysis [27]. Recently published
MAC data of 3.8% at 1 h and 3.3% at 3 h of sevoflurane ex-
posure [18], suggests that the concentration of 1.7% sevo-
flurane correlates to 0.45-0.52 MAC, which is a subclinical
dose. A subsequent study exposed P6 mice to 3% sevoflur-
ane for 6 h, showing wide spread AIDN, long term memory
deficit from 8 weeks to 14-17 weeks of age as assessed with
contextual/cued fear testing, and abnormal social inter-
action at age of 18 weeks of age, showing that sevoflurane
like isoflurane causes long lasting neurocognitive dysfunc-
tion after a one time exposure in an animal model [28]. In
contrast, in a study that compared isoflurane to sevoflurane
anesthesia exposure in P7 rats, although markers of apop-
tosis were greater after isoflurane, neither agent was associ-
ated with impaired learning or memory when tested 31 to
40 days after anesthesia exposure [29].
Various case reports [30] as well as several studies

[31,32] have demonstrated epileptiform electroencephalo-
gram and seizure activity during induction with sevoflur-
ane in humans, while other studies have not reported
these results [33,34]. In 2010 Edwards et al reported that
40% of rats aged P4 to P8 developed distinct episodes of
epileptic seizures during maintenance with 2.1% sevoflur-
ane [35]. These seizure-like episodes were not found in
P10 to P17 rats during maintenance of anesthesia. Emer-
gence after 3 h of sevoflurane anesthesia caused some
tonic/clonic seizures in P10 to P17 rats, but not P4 to P8
rats. Bumetanide pretreatment significantly decreased the
seizure activity in P4 to P8 rats during maintenance
anesthesia, but not P10 to P17 rats during emergence. The
same study also showed that exposure of P4 rats to 2.1%
sevoflurane for 6 h caused significant AIDN. This effect
was attenuated and reduced to control levels by pretreat-
ment with bumetanide 15 minutes prior to sevoflurane
exposure.
Two novel approaches to neuroprotection against AIDN

caused by sevoflurane were recently published. The first
study exposed P6 mice to 3% sevoflurane for 6 h with or
without 1.3% hydrogen as part of the carrier gas [36]. The
concentrations of hydrogen gas used in this study were
low enough to avoid explosion [37,38]. The mice exposed
to sevoflurane alone showed significant increases in neu-
roapoptosis. Neurocognitive testing showed no different in
general behavior or short term memory at 12 weeks of
age, but did demonstrate a deficit in long term memory at
13 weeks of age. Coadministration of hydrogen gas during
the sevoflurane anesthetic significantly reduced the extent
of neuroapoptosis, and suppressed the impairment in
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long-term memory seen in mice exposed to sevoflurane
alone. Free oxygen radical scavenging, one proposed effect
of hydrogen gas administration, prevented cognitive de-
cline in P7 rats exposed to general anesthesia [39]. The
second study tested the effect of environmental enrich-
ment on AIDN. Environmental enrichment has been
shown to increase learning and memory after traumatic
brain injury [40-42]. Pregnant mice at gestational day 14
(G14) were exposed to 2.5% sevoflurane for 2 h, which in
turn caused significant increases in neuroapoptosis in fetal
mice [43]. Offspring mice were delivered at G21 and ex-
posed to either standard environment or environmental
enrichment. Mice in the standard enrichment group were
shown to have impaired learning and memory at age P31
to P37 as assessed by the Morris water maze. Mice in the
environmental enrichment group did not have impairment
in learning or memory as compared to the control group,
demonstrating that environmental enrichment is able to
mitigate neurocognitive dysfunction caused by AIDN in
an animal model.
Desflurane
Being one of the newest inhalational anesthetics used in
clinical practice, it’s not suprising that desflurane has
the least amount of published data in regards to AIDN.
In 2011 two animal studies were published on compara-
tive neurotoxicity of desflurane, sevoflurane, and iso-
flurane, bringing into question whether inhalational
anesthetics cause similar levels of neurodegeneration at
equivalent MAC values.
The first comparison study exposed P7-8 mice to 6 h

of 7.4% desflurane, 2.9% sevoflurane, or 1.5% isoflurane,
which resulted in similar levels of AIDN as assessed
immunohistochemically and by colorimetric caspase 3
assay [44]. A second study published later in the year
had a very similar study design, where P6 mice were ex-
posed to 6 h of 8% desflurane, 3% sevoflurane, or 2%
isoflurane, showing that 8% desflurane caused more
neurodegeneration than 2% isoflurane, which caused
more toxicity than 2% sevoflurane [18]. In the same
study, behavioral testing showed that mice in the des-
flurane group had impaired working memory at week 6
of age as assessed by Y-maze, and impaired long term
memory at week 7 of age as assessed by fear condition-
ing. The mice in the sevoflurane and isoflurane groups
did not show impaired working memory, but did have
impaired long term memory, which would further sup-
port the notion of desflurane being more neurotoxic
than sevoflurane or isoflurane at equivalent MAC doses.
More studies need to be conducted to better deter-

mine if inhalational anesthetics have different neurotoxic
profiles at equivalent MAC doses in animals, as current
studies have conflicting results.
Nitrous oxide
Interestingly, nitrous oxide is the only inhalational
anesthetic that has not caused AIDN in animal models
when used as a sole anesthetic [45]. When P7 Sprague-
Dawley rats were exposed to 50%, 100%, or 150% (in a
hyperbaric chamber) nitrous oxide for 6 h, no significant
increases in neuroapoptosis were noted [3,6]. However,
75% nitrous oxide added to 0.75% isoflurane worsened
AIDN compared to isoflurane alone, suggesting that ni-
trous oxide does have an additive toxicity effect when
combined with other anesthetic agents. Unlike xenon, pre-
treatment with nitrous oxide before an anesthetic expos-
ure does not attenuate levels of neurodegeneration [22].

Xenon
Xenon is an interesting anesthetic gas in regards to animal
studies and AIDN. The earliest animal study on xenon
and AIDN showed that P7 Sprague-Dawley rats exposed
to 75% xenon for 6 h did not have any significant increase
in neurodegeneration, and that xenon when added to
0.75% isoflurane for 6 h attenuated AIDN in a dose
dependent manner [46]. A repeat study, this time in P7
mice, again showed that xenon is able to decrease levels of
AIDN when added to 0.75% isoflurane for 4 h [9]. How-
ever in the same study, 70% xenon for 4 h as a sole
anesthetic caused significant increases in neurodegenera-
tion, which raised the question of whether xenon was as
benign as suggested by the prior study in P7 rats.
A study on hippocampal slice cultures from P7 rats con-

cluded that xenon increased neuroapoptosis in a similar
fashion to sevoflurane and isoflurane at equipotent con-
centrations [24]. Xenon at 0.75 MAC (60% at 1.2 atm) for
6 h did not show any significant increase in AIDN. How-
ever, higher doses of xenon at 1 and 2 MAC (60% at 2.67
or 3.67 atm) for 6 h did show significant increases in neu-
rodegeneration. Interestingly, pretreatment with 1.4% iso-
flurane (0.75 MAC) for 2 h, followed by a 6 h exposure to
1 MAC of either xenon, isoflurane, or sevoflurane 26 h
after pretreatment, was associated with attenuation of
AIDN compared to groups without pretreatment. In vivo
studies are needed to confirm whether this pretreatment
strategy is effective in live animals.

Discussion
In 2003 the results on AIDN published by Jevtovic-
Todorovic et al [3] created much debate within the
pediatric anesthesia community. After a decade of subse-
quent research, it is evident that in multiple differing mam-
malian species, exposure to anesthetic medications during a
period of brain vulnerability (peak synaptogenesis) is associ-
ated with significant neurodegeneration and long term neu-
rocognitive dysfunction that lasts into adulthood [3,6,9-13].
Of particular interest is the recent study comparing desflur-
ane, sevoflurane, and isoflurane at equipotent MAC levels



Wang et al. Medical Gas Research 2014, 4:2 Page 5 of 7
http://www.medicalgasresearch.com/content/4/1/2
[18]. Further investigation into the specific mechanistic dif-
ferences between these inhalational anesthetics may shed
more light on AIDN and how it impairs working and long
term memory in mice.
Out of all inhalational anesthetics reviewed, nitrous

oxide was the only agent that did not cause AIDN when
used as a sole anesthetic agent [3,6]. This key difference
may be due to the fact that nitrous oxide exerts its primary
effect through NMDA receptor antagonism, instead of
GABAA receptor activation. In a similar fashion xenon
works predominantly through NMDA receptor antagon-
ism, but has been shown to cause significant increase in
neurodegeneration when used as a sole anesthetic [9,24].
Cross comparison study of these two anesthetic agents
may further our understanding of how anesthetic agents
cause differing levels of AIDN even when they exert their
function through the same primary receptor. More re-
search needs to be conducted to determine the exact ram-
ifications these findings should have on the clinical
practice of pediatric anesthesiology.
To date there have only been a few observational studies

done in humans, which have had mixed findings. A group
of studies from the Mayo Clinic have shown that multiple
anesthetic exposures in infants and children, but not a sin-
gle exposure, increases the risk of learning disabilities as
well as later development of attention-deficit/hyperactivity
disorder [47-49]. Similar studies have demonstrated that a
single exposure to general anesthesia causes increased risk
of developmental disorders and deficits in language/abstract
reasoning in children less than 3 years of age [50-52]. Other
studies do not find any association between exposure of
children to general anesthesia and the development of ab-
normal behavior or poor academic performance later on in
life [53-55]. In addition, two studies on neonates report that
exposure to prolonged sedation is not associated with in-
creased risk of abnormal neurodevelopment [56,57].
The aforementioned human observational studies all

used databases that were originally collected for purposes
other than research on AIDN. Observational studies have
significant limitations due to confounding variables, which
make interpretation of these studies extremely compli-
cated. The lack of prospective trials specifically focused on
AIDN and the developing human brain makes it difficult
to recommend if any changes should be made to the way
anesthesia is currently practiced in infants and children.

Conclusion
At this time the anesthesia community is waiting for guid-
ance from prospective trials such as the PANDA and GAS
studies to show whether present clinical practices need to
be altered. This is particularly critical, as many pediatric
patients have undergone surgery and anesthesia with no
apparent harm. Further it may be difficult to distinguish
the effects of anesthesia on the developing brain from
surgery-related effects that may follow the condition that
mandated surgery or postoperative events such as inflam-
mation, pain and any necessary drug treatments. Well-
designed prospective studies investigating AIDN in humans
may take years to reach conclusions, thus it is prudent to
continue research in animal models, particularly focusing
on determining the specific mechanistic pathways that
cause AIDN. Studies that identifiy mechanistic pathways
resulting in AIDN may then provide insight into novel
treatment modalities that can hinder or reverse causes of
neurodegeneration.
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