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Abstract

Hydrogen gas is a bioactive molecule that has a diversity of effects, including anti-apoptotic, anti-inflammatory and
anti-oxidative properties; these overlap with the process of neuroprogression in major psychiatric disorders.
Specifically, both bipolar disorder and schizophrenia are associated with increased oxidative and inflammatory
stress. Moreover, lithium which is commonly administered for treating bipolar disorder has effects on oxidative
stress and apoptotic pathways, as do valproate and some atypical antipsychotics for treating schizophrenia.
Molecular hydrogen has been studied pre-clinically in animal models for the treatment of some medical conditions
including hypoxia and neurodegenerative disorders, and there are intriguing clinical findings in neurological
disorders including Parkinson’s disease. Therefore, it is hypothesized that administration of hydrogen molecule may
have potential as a novel therapy for bipolar disorder, schizophrenia, and other concurrent disorders characterized
by oxidative, inflammatory and apoptotic dysregulation.
Introduction
Normally, there is a balance between oxidant and anti-
oxidant systems in body. When there is an imbalance
between anti-oxidative defenses and prevailing oxidative
stress, reactive oxidative species are increased leading to
inflammation and oxidative damage marked by protein
carbonylation, DNA damage [1,2] and lipid peroxidation.
These biomarkers are documented in all illness phases,
but appear more pronounced in episodes of acute illness,
particularly mania [3].
Bipolar mood disorder is a relatively common neuro-

psychiatric disorder with an estimated prevalence of 1%
to 2% [4], and a high burden of disease [4]. There is a
high rate of medical comorbidity including diabetes and
the metabolic syndrome [5], cardiovascular morbidity
[6], and obesity [7], all of which are associated with in-
flammatory changes and oxidative stress. These comor-
bidities lead to a novel hypothesis that bipolar disorder
is a part of a multi-system inflammatory process [8].
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Additionally, schizophrenia has a point prevalence of
3.59/1000 in general population [9]. The mean Canadian
rates is 25.9 (S.D. = 10.5) per 100,000 [10]. Schizophrenia
is also comorbid with medical conditions such as diabetes
(adjusted OR: 2.11 (1.36 to 3.28) [11], overweight or obes-
ity (44%) [12] and cardiovascular events [13]. Schizophre-
nia as well as bipolar disorder are part of a multisystem
inflammatory processes [14] and anti-inflammatory ther-
apy for treating schizophrenia is suggested [15].
Mitochondria and bipolar mood disorder
Mitochondria are necessary for the generation of energy
and synaptic signaling. Mitochondrial dysfunction ap-
pears to be involved in the pathophysiology of bipolar
disorder [16]. The prevalence of bipolar disorder in
patients with mitochondrial cytopathies is higher than
among healthy controls [17]. Reduction in complex one
activity of the mitochondrial electron transport chain is
documented [18], and there are intriguing preliminary
electron microscopy reports of mitochondrial ultrastruc-
tural changes in the disorder, particularly abnormal per-
ipheral clustering of mitochondrial in the cytosol [19].
Mitochondrial DNA deletions are increased [20]. Mito-
chondrial dysfunction has thus been hypothesizes as a
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molecular basis of bipolar disorder [21]. It is suggested
that novel therapeutic agents for treating bipolar mood
disorder should target mitochondrial function [16].

Bipolar disorder and oxidative stress
The generation of oxidatively generated free radicals is
core to life, and is normally tightly controlled. However,
there is now increasing data on the presence and impact
of oxidative stress among diverse psychiatric disorders
including bipolar disorder [22], schizophrenia, and au-
tism [23,24]. Reactive oxygen species (ROS) production
and metabolism appears to play an important role in the
pathophysiology of bipolar disorder [22,25,26]. Not only
are both total glutathione and reduced glutathione le-
vels, which are core parts of the intrinsic anti-oxidative
system decreased in bipolar disorder, but antioxidant en-
zyme activities are also impaired [22]. Levels of key
redox enzymes including SOD and catalase have been
reported to be lower in patients with bipolar disorder
than in matched controls [27]. Nitrous oxide (NO) is im-
plicated in the generation of psychotic symptoms such
as delusions in bipolar disorder [28]. A meta-analysis
reported that the level of NO appears to be significantly
increased in bipolar disorder [29]. Moreover, the level
of thiobarbituric acidic reactive substances (TBARS), a
marker of lipid peroxidation through reaction between
free radicals and lipid structures, is increased during
manic episodes and remission [30,31]. This finding sug-
gests that oxidative damage to lipid structures is pro-
bably continued during the course of bipolar disorder.

Mechanism of action of established therapies
Lithium is arguably the most effective medication for the
prevention of long-term relapse in bipolar mood dis-
order [32,33]. Lithium’s effects extend beyond its mode
of action of monoamine receptors [34]. Chronic treat-
ment with lithium leads to mitochondrial proteins phos-
phorylation in the rat prefrontal cortex [34]. Lithium
also has effects through its impact on inflammation and
by the prevention of oxidative stress and cytokine chan-
ges [35]. These anti-inflammatory and antioxidative ef-
fects are potentially neuroprotective [36,37]. Lithium
increases mitochondrial respiratory chain enzyme ac-
tivities, particularly complex 1, that may be linked to
its therapeutic efficacy [38]. Lithium increases mito-
chondrial energy production [38]. Decreased Na(+)-K
(+)-ATPase activity and increased lipid peroxidation in
that are seen in bipolar disorder may improve following
lithium administration [39]. Long term lithium admi-
nistration enhances anti-oxidative defenses in bipolar
disorder [40] as well as in healthy individuals [41].
N-acetyl-cysteine (NAC), a glutathione based redox mo-
dulator, anti-inflammatory agent and mitochondrial mo-
dulator [42] decreases symptoms of depression and mania
[43] in bipolar disorder [44]. However, established agents
have tolerability issues and efficacy limitations, therefore
more novel therapeutic approached are needed.

Mitochondria and schizophrenia
Mitochondrial dysfunction in schizophrenia is frequently
reported [45]. Moreover, mitochondrial disorders can
present with psychosis [46]. mtDNA plays a role in the
neurobiology of schizophrenia [47]. Mitochondrial gene
expression is changed in schizophrenia [48]. The numbers
of mitochondria in schizophrenia is reduced compared to
normal controls [49]. This change in mitochondria may
be associated with differential responsiveness to treatment
[50]. However, it is not clear whether this number is adap-
tive or an etiological link to this disorder [51]. More-
over, mitochondrial energy production is impaired in
autism [52].

Schizophrenia and oxidative stress
The role oxidative stress in the neurobiology of schizo-
phrenia is a promising target in order to provide new
therapeutic interventions [53]. This is grounded on data
that the antioxidant defense system is impaired in schi-
zophrenia [54]. In comparison to normal controls, the
activities of superoxide dismutase (SOD), glutathione
peroxidase (GSH-Px) are decreased while the levels of
MDA are increased chronic schizophrenia [55]. Reduced
cellular respiration and complex I abnormalities in schi-
zophrenia are a possible endophenotypic biomarker for
schizophrenia [56]. Furthermore, the severity of neuro-
logical soft signs in patients with schizophrenia is asso-
ciated with the level of decreased superoxide dismutase
activity [57]. Treatment refractory schizophrenia is asso-
ciated with higher lipid peroxidation [58].

Mechanism of action of antipsychotics
The increase of plasma lipid peroxidation in schizophre-
nia is not due to second-generation antipsychotics [59].
But both typical and atypical antipsychotic medication
partially normalize abnormal free radical metabolism in
schizophrenia [60]. Long term treatments with both ty-
pical and atypical antipsychotics have effects on antioxi-
dant enzymes and lipid peroxidation in schizophrenia
[55]. Supplementation of vitamin C with atypical decrea-
ses oxidative stress in schizophrenia [61]. N actylcys-
teine, a redox modulator and glutamate modulator,
reduces core symptoms and akathisia in schizophrenia,
providing a preliminary proof of concept for the role of
oxidative pathways [62].

Pharmacokinetics of Hydrogen
Molecular hydrogen is an odourless and tasteless gas
that has the ability to rapidly diffuse through lipid mem-
branes and enter the cell, where it easily penetrates
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organelles such as mitochondria as well as the nucleus.
It is inert at room temperature and in the absence of
catalysts. It additionally easily crosses the blood brain
barrier, which facilitates access to the target organs and
subcellular components. Its adverse event profile is re-
portedly benign [2,63]. Physiologically, hydrogen is pro-
duced by intestinal microbiota from fermentation of
complex carbohydrates. Arterial blood contains higher
levels of hydrogen that tissue, suggesting some uptake
and utilization of hydrogen in tissues. Hydrogen reacts
with free hyrodoxyl radicals but does not appear to react
to other reactive oxygen species. This is a theoretical
advantage, as low levels of these radicals have physio-
logically relevant signaling effects. It protects against
secondary oxidative damage to the brain in a variety of
models by reacting with hydroxyl radicals [64]. Hydro-
gen is potentially available as a medical gas, hydrogen
enriched water, taking a hydrogen bath, injecting hydro-
gen saline, hydrogen saline eye drops, and augmenting
bacterial production of intestinal hydrogen. It penetrates
glass but not aluminum containers.
Hydrogen and oxidative stress and inflammation
Anti-inflammatory effects of hydrogen molecule have
been reported in both animal and human models. Hy-
drogen-rich saline decreases the levels of cytokines IL-4,
IL-5, IL-13 and TNF-α in bronchoalveolar lavage fluid
[65]. Its effects on tumor necrosis factor alpha, interleu-
kin (IL)-1β and IL-6 levels is hypothesized as the reason
for its protective role against UVB radiation [66]. Hydro-
gen molecule also stops TNFα-induced activation of the
NFκB pathway [67]. Hydrogen released by intestinal
microbiota, such a hydrogen producing strain of E. coli
can suppress inflammation [68]. Taken together, these
findings are germane to bipolar disorder as current evi-
dences implicates many interleukins in the neurobiology
of bipolar disorder [69].
Preclinical findings
Inhalation of hydrogen decreased acute lung inflam-
mation in an animal model of acute lung injury [70,71].
Hydrogen enriched water decreased the production of
reactive oxygen species in the rat kidney [72]. It protects
mitochondria and nuclear DNA from hydroxyl radicals,
preventing the decline in mitochondrial membrane
potential after antimycin treatment. It has potential in
preventing ionizing radiation induced damage, as hy-
droxyl radicals are the major vehicle for secondary da-
mage. Hydrogen reduces infarction size in a model of
middle cerebral artery occlusion and reduced oxidative
stress markers [73]. In asphyxiated newborn piglets, it is
similarly neuroprotective and preserves cerebrovascular
reactivity [74].
Clinical findings
Hydrogen is hypothesized as a potential therapy for differ-
ent oxidative stress related diseases such as Parkinson's
disease; ischemia/reperfusion of spinal cord, heart, lung,
liver, kidney, and intestine; transplantation of lung, heart,
kidney, and intestine [75], and autism [76,77]. Adequate
hydration with hydrogen-rich water decreases blood
lactate levels and improved function of muscle in ath-
letes [78].
Among participants with type 2 diabetes, hydrogen re-

duced levels of oxidative stress markers [68], and similar
findings are reported in the metabolic syndrome [79]. In
Parkinson’s disease, increased oxidative stress indexed by
elevated lipid peroxidation and decreased reduced glu-
tathione levels in the substantia nigra are part of the
known pathogenesis of PD. Hydrogen water also pre-
vents a rat model of Parkinson’s disease [80] and increa-
ses survival after cerebral ischemia/reperfusion [81,82].
It down-regulates 4-hydroxy-2-nonenal, a marker of oxi-
dative stress in dopaminergic neurons within the subs-
tantia nigra of animal models of Parkinson’s disease. A
preclinical study failed to find any association between
response to hydrogen and dose [37]. In a pilot placebo
controlled, randomized, double-blind, parallel-group de-
sign (N = 18), the efficacy of 1000ml molecular hydrogen
daily was investigated in patients taking levodopa. In the
hydrogen group, there was a reduction in Total Unified
Parkinson’s Disease Rating Scale scores, whereas the pla-
cebo group deteriorated [83]. Signal modulating activi-
ties of hydrogen may play a role in exerting a protective
effect against Parkinson’s [79].
It is not fully understood how hydrogen plays its puta-

tive antioxidative or anti-inflammatory role. However, it
may regulate particular metalloproteins [84]. Moreover,
hydrogen reduces the production of peroxynitrite de-
rived from nitric oxide [85]. In patients with rheumatoid
arthritis, drinking of water enriched with hydrogen was
shown to decreases oxidative stress through scavenging
hydroxyl radical and also decreases clinical symptoms
after 4 weeks [86]. Moreover, hydrogen-enriched water
improves quality of life of patients with liver cancer after
radiation exposure [87].
Intravenous administration of 500 ml of H2 enriched

fluid has also been examined and it decreased the symp-
toms of 4 patients with acute erythematous skin diseases
with fever and/or pain [88]. A randomized controlled
trial indicated that hydrogen-enriched water decreased
mitochondrial dysfunction and inflammation in patients
with mitochondrial myopathies [89].
Caveats are however necessary, inasmuch as orally ad-

ministered hydrogen-enriched water may not have enough
molecular hydrogen to adequately scavenge hydroxyl radi-
cals. Secondly, the dwell time of hydrogen in the body
may be too short to scavenge substantial quantities of
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continuously generated hydroxyl radicals [90]. In addition,
the optimal frequency, dosage, and its method of adminis-
tration for different diseases are not studied [75].

Conclusions
Hydrogen gas has a number of biological properties that
make it an appealing candidate agent for a diversity of
disorders sharing inflammatory, oxidative and apoptotic
mechanisms. However, a number of caveats are neces-
sary. Administration is complex, aggravated by its very
short biological half-life and low saturation point of
0,8 mM. Furthermore, the low dose used in many stu-
dies (0.04-0.08 mM) is shadowed by the fact that intes-
tinal microbiota produce up to 1L a day of hydrogen
[91]. There is currently very a limited understanding of
the pathways and processes impacted by hydrogen.
Greater preclinical data is required to elucidate the bio-
logical mechanisms of hydrogen. It however is true that
many agents are in widespread use despite poor under-
standing of their mechanisms of action, particularly in
the neurosciences. This therefore does not preclude use,
which is therefore far more contingent on safety issues.
Given that hydrogen does seem to have a benign safety
profile, albeit based on very limited data, moving to cli-
nical studies appears warranted. We additionally need
a more complete understanding of hydrogen’s dosage,
mode of administration, pharmacokinetics, biology and
toxicity of hydrogen to facilitate clinical application. Ne-
vertheless, there is much that is appealing about this
avenue, and it merits greater investment given the pau-
city of therapeutic options and their limitations.
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