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Abstract

Despite enormous advances in CNS research, CNS disorders remain the world's leading cause of disability. This
accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a
high unmet need for good CNS drugs and drug therapies.

Following dosing, not only the chemical properties of the drug and blood-brain barrier (BBB) transport, but also
many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. The rate
and extent of all these processes are regulated dynamically, and thus condition dependent. Therefore,
heterogenious conditions such as species, gender, genetic background, tissue, age, diet, disease, drug treatment
etc, result in considerable inter-individual and intra-individual variation, often encountered in CNS drug therapy.
For effective therapy, drugs should access the CNS “at the right place, at the right time, and at the right
concentration”. To improve CNS therapies and drug development, details of inter-species and inter-condition
variations are needed to enable target site pharmacokinetics and associated CNS effects to be translated between
species and between disease states. Specifically, such studies need to include information about unbound drug
concentrations which drive the effects. To date the only technique that can obtain unbound drug concentrations in
brain is microdialysis. This (minimally) invasive technique cannot be readily applied to humans, and we need to rely
on translational approaches to predict human brain distribution, target site kinetics, and therapeutic effects of CNS
drugs.

In this review the term “Mastermind approach” is introduced, for strategic and systematic CNS drug research using
advanced preclinical experimental designs and mathematical modeling. In this way, knowledge can be obtained
about the contributions and variability of individual processes on the causal path between drug dosing and CNS
effect in animals that can be translated to the human situation. On the basis of a few advanced preclinical
microdialysis based investigations it will be shown that the “Mastermind approach” has a high potential for the
prediction of human CNS drug effects.
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Introduction

Central nervous system (CNS) disorders are currently
estimated to affect hundreds of millions of people world-
wide [1]. While established treatments are currently
available for most CNS disorders, significant unmet med-
ical needs still remain. This is partly because currently
available drugs merely treat symptoms rather than cure
the disease, and may also elicit unwanted side effects.
The attrition rate in CNS drug development is high and
there is a need for revised approaches to improve CNS
drug development and therapies.

It is often thought that the blood—brain barrier (BBB)
hampers the adequate distribution of CNS drugs into
the brain resulting in a lack of effects [2-4]. However,
this cannot be the sole reason because other factors be-
sides BBB transport determine the concentration-time
profile (pharmacokinetics, PK) of the unbound drug at
the brain target site [5]. Other important factors are
plasma pharmacokinetics, plasma protein binding, cere-
bral blood flow, effective brain capillary surface area,
blood-cerebrospinal  fluid-barrier (BCSFB) transport,
intracerebral distribution, CSF turnover, extracellular fluid
(ECEF) bulk flow, extra-intracellular exchange, brain tissue
binding, and drug metabolism [5]. These factors are con-
trolled by many processes, each of which has a specific in-
fluence [6], thereby playing a more or less important role
in delivering the CNS drug to the right place, at the right
time, and at the right concentration.

Apart from the multiple processes on the causal path be-
tween drug dosing and response, inter- and intra-individual
variability in the contribution of each process to the ultim-
ate CNS effect (pharmacodynamics, PD) need to be identi-
fied. This variability is caused by dissimilarities in genetic
background, species, tissue, age, diet, disease, and drug
treatment (heterogeneity) and associated differences in rate
and extent of the individual processes on the causal chain
between drug dosing and CNS effects. This explains why
the same dose in different conditions may result in different
CNS effects.

Investigations of the PK-PD relationship of a CNS drug
should therefore be designed such that the contribution of
a particular process is identified (for example by systematic-
ally influencing the process), and that information is
obtained on time-dependency and on the unbound plasma
and target tissue drug concentrations that drive the effect.
To that end, advanced mathematical modeling is a pre-
requisite to learn about the contributions of individual
processes in drug PK-PD relationships. This approach is
here introduced as the “Mastermind approach”.

Noninvasive imaging techniques like positron emission
tomography (PET), nuclear magnetic resonance (NMR) or
(functional) magnetic resonance imaging ((f)MRI) are
powerful methods to obtain information on transporter
functionality [7,8], and target occupation [9,10]. These
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techniques may improve understanding of the influence of
drug action on brain functionality in health and disease
[11,12]. However, additional information is also needed
about the unbound drug concentrations in the brain. In
humans, at best, cerebrospinal fluid (CSF) concentrations
can be obtained as a surrogate for brain target site
concentrations [13-16], but the value of this surrogate is
questionable [17]. To date, brain microdialysis is the only
technique to obtain quantitative and time-resolution data
on unbound extracellular drug concentrations in the
brain (brain ECF) [18]. Although minimally invasive,
microdialysis is a technique that can be applied in human
brain only under highly restricted conditions [18-20]. Thus,
we should pursue preclinical studies to learn about CNS
target site distribution of drugs. This review will discuss the
physiological factors involved in brain distribution and
CNS effects, and the variability in these factors caused by
heterogeneity. Furthermore it will provide examples of
Mastermind approaches using microdialysis for quantitative
assessment of 1) intracerebral distribution for drugs with
different physico-chemical properties, 2) preclinical CNS
target site concentrations following different routes of ad-
ministration, 3) prediction of human CNS target site
concentrations and CNS effects.

Physiological factors in intracerebral distribution, drug
target site kinetics, and CNS drug effects

The anatomy of the CNS is complex and can grossly be
divided into four main compartments [21-25]: the brain
extracellular fluid (brain ECF) compartment, brain intra-
cellular compartment, and the ventricular and lumbar
CSF compartments. Transport of drugs into, within and
out of the brain is governed by the blood—brain barriers,
the anatomy of the brain parenchyma and fluid spaces,
physiological processes, and drug-specific properties
[26-32]. In combination, they determine the concentrations
of a drug within a specific region of the CNS, including the
unbound concentration at the target site that drives the ef-
fect (Figure 1). The players in drug exchange are briefly
presented here.

Unbound concentrations in plasma
Only the unbound (free) drug is able to pass through
membranes, and it is the unbound concentration in plasma
that drives transport into the brain. Then, the unbound con-
centration at the CNS target site drives the interaction with
the target and therewith the CNS effect (unbound drug
hypothesis) [33-35]. In specific cases when the brain acts as
a sink, total plasma concentrations may be relevant. Also, if
a BBB transporter affinity and capacity is significantly larger
than that for plasma proteins, “stripping” occurs and clear-
ance can be based on the total plasma concentration.
Unbound drug concentration is crucial for our
understanding of drug transport and target interaction
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Figure 1 Schematic presentation of the major compartments of the mammalian brain and routes for drug exchange; extracellular fluid
(ECF), brain cells, lateral ventricular CSF, cisterna magna CSF and lumbar CSF, passive transport (black arrows) and active transport
(white arrows), as well as metabolism and CSF turnover. Drug targets may be present at different sites within the brain.
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[36]. Often, the “unbound fraction” and “unbound con-
centration” are used interchangeably which leads to
confusion: the “unbound fraction” is calculated from
the ratio of unbound to total concentration [37-39].
So, it is the unbound concentration profile (kinetics)
of the drug that should ultimately be taken into ac-
count to understand drug effects.

Transport across the brain barriers

The blood-brain barrier (BBB) and the blood-CSF-bar-
rier (BCSEB) govern drug transfer into and out of the
brain [40-44]. These barriers are comparable in many
ways, but also have their specific characteristics [45-47].
The BBB consists of cerebrovascular endothelial cells
while the BCSFB consists of choroid plexus epithelial
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Figure 2 Factors affecting the pharmacokinetics and pharmacodynamics of a drug. The effects of a drug are determined on one hand by
its physico-chemical/molecular characteristics and on the other hand by the properties of the biological systems involved.
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cells. Together with the BBB and BCSFB transport
characteristics and surface areas, the drug characteristics
(lipophilicity, size, shape, charge, affinity for a transporter
etc.,, Figure 2) determine the actual transport rate and ex-
tent. Recent investigations have indicated that the basal and
apical membranes of the BCSEB have extensive infoldings
and microvilli, respectively, suggesting that the BCSFB sur-
face area, maybe the same order of magnitude as for the
BBB [48].

There are a number of basic modes for compounds to
move across brain barrier membranes [5,49,50]:

¢ Simple diffusion is a passive process driven by the
concentration gradient, from high to low
concentrations. The rate of diffusion is proportional
to the concentration difference between
compartments of the diffusing molecule. At
equilibrium the concentration of the diffusing
molecules are equal at both sides of the membrane.
This mode of transport is size-dependent and
permeability limited [51]. For hydrophilic drugs, not
able to diffuse through lipophilic membranes,
movement through the space between neighbouring
barrier cells (paracellular transport) is restricted by
the presence of tight junctions. [28,50].

e Facilitated diffusion is also a passive process from
high to low concentrations but requires a helper
molecule [52-54]. The rate of diffusion is limited by
the availability of the helper molecules and at
equilibrium the concentration of the diffusing
molecules are equal on both sides of the membrane.
Once all the helper molecules are saturated,
increasing the concentration of diffusing molecules
will only increase a waiting line for the helper
molecules and will not increase rate of transport
further. Facilitated transport is subject to
competitive inhibition by substrate analogs and
contributes to transport at the BBB of substances
such as monocarboxyates, hexoses, amines, amino
acids, nucleosides, glutathione, and small peptides.

e Fluid phase (vesicular) transport [55,56] includes
bulk flow endocytosis (pinocytosis), adsorptive-
mediated endocytosis, and receptor-mediated
endocytosis [57,58]. Pinocytosis is the non-specific
uptake of extracellular fluids. It is temperature and
energy dependent, non-competitive, and non-
saturable. Under physiological conditions, it occurs
to a very limited degree in cerebral endothelial cells.
Adsorptive-mediated endocytosis involves
endocytosis in vesicles of charged substances by a
non-specific mechanism [59,60]. Receptor-mediated
transcytosis uses vesicles formed upon binding of
large macromolecules to specific receptors [61]. At
the BBB, transport of vesicles occurs only in
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direction from blood to brain. Vesicles may be
subject to degradation within the cell, otherwise
they are able to deliver their content to the
abluminal side and into the brain.

e Active transport occurs by the action of membrane
transport proteins for which transported molecules
have a specific binding site. It requires energy and
can transport substrates against a concentration
gradient. Active transport is temperature sensitive
and can become saturated. It can also be influenced
by competitive and noncompetitive inhibitors and
by interference with transporter protein
phosphorylation by protein kinases. Transport
proteins may have an important impact on drug
development [62]. Transport systems [63] are
directional (influx and/or efflux), and serve to
maintain brain homeostasis for endogenous
compounds. However, in numerous cases drugs may
also be ligands for these transporters [64-70]. As a
consequence, efflux transporters at the BBB have
gained enormous attention over the last decade.
Their presence accounts for the fact that many
drugs, despite their lipophilic character favorable for
passive transport, have a relatively poor brain
distribution because they are substrates. The best
known efflux transporters are P-glycoprotein (P-gp,
or officially ABCB1 [71,72]), the multidrug
resistance-related proteins (MRP’s, or officially
ABCC’s [73]) and the breast cancer resistance
protein (BCRP, or officially ABCG2 [74]), which all
belong to the ABC transporter family [75].

Cerebral blood flow and effective capillary surface area

For drugs with high BBB permeation such that entry to
the brain via the BBB capillaries is rapid, cerebral blood
flow becomes rate-limiting. Cerebral blood flow can be
influenced by changes in linear flow rate or by changes
in the number of perfused capillaries. When the linear
velocity of blood flow is increased, influx of highly per-
meable drugs across the BBB will increase (and vice
versa), while BBB transport of slightly-to-virtually imper-
meable drugs will essentially be unchanged. Variations in
the total number of the perfused capillaries in the brain
(“effective perfusion”) will in theory affect BBB transport
of all drugs [76,77].

CSF turnover and ECF bulk flow

CSF is produced by the choroid plexus [78] in the
ventricles and leaves the CNS by re-absorption back into
blood via the arachnoid villi in the subarachnoid space.
CSF turnover [79] may reduce CSF drug concentrations
[80]. The slower the permeation of a drug into the CSF,
the more influence CSF turnover will have on the CSF
concentration relative to its plasma concentration. Also,
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because of the relatively slow rate of CSF turnover in rela-
tion to trans-capillary transport, brain ECF concentrations
will equilibrate more rapidly with plasma concentrations
than with CSF. Furthermore, there is bulk flow of extracel-
lular fluid into the CSF [42,81] that could counteract any
molecular diffusion that might occur from the CSF into
brain tissue through the ependymal linings of the ventricles
[82].

Extra-intracellular exchange and brain tissue binding

Drugs may have their preference for extracellular or
intracellular space, and may be subjected to nonspecific
binding to brain tissue components [83]. Drug distribu-
tion between brain cells and extracellular space does not
only occur by simple diffusion: active transport may also
occur at brain cell membranes [68,84]. Distribution be-
tween extra- and intracellular compartments is very im-
portant for exposure of unbound drug concentrations at
the target site (Figure 1) [85]. It can be seen that it is im-
portant to know the location of the target in order to
optimize concentration profiles and drug effects.

Drug metabolism

Brain distribution may also be influenced by metabolism of
the drug. This may occur at the level of the BBB and
BCSFB, serving as “enzymatic barriers” to drug influx
into brain, and also in the ependymal cells lining the
CSF ventricles potentially influencing intracerebral
distribution [86-89]. In brain blood vessels and
closely-surrounding cell types, enzymes like cytochrome
P450 haemoproteins, several cytochrome P450-dependent
monooxygenases, NADPH-cytochrome P450 reductase, ep-
oxide hydrolase, and also conjugating enzymes such as
UDP-glucuronosyltransferase and a-class glutathione S-
transferase have been detected. Several enzymes involved
in hepatic drug metabolism have been found in brain
microvessels and the choroid plexus. In the choroid
plexus, very high activities (similar to those in the liver)
have been found for UDP-glucuronosyltransferase and ep-
oxide hydrolase, and several cytochrome P450 isoenzymes
are also relatively high. Relatively high values of a and p
classes of glutathione S-transferase and glutathione perox-
idase have been found in both the BBB and BCSFB.

Target interaction

The association and dissociation kinetics of a drug at the
target (target interaction) is another factor to be taken into
account for the relationship between drug concentration
and CNS effect. Such interaction is not always instantan-
eous. For example, the opioid buprenorphine has slow
kinetics for both receptor association and receptor dissoci-
ation. Such information was crucial to predict that rever-
sal of respiratory depression caused by opioids could be
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achieved by the antagonist naloxone if naloxone is
administered as a continuous infusion [90].

Signal transduction and homeostatic processes

It is frequently assumed that pharmacological responses
depend solely on the extent of drug binding to its recep-
tor (occupational theory). However, when observing tol-
erance, sensitization, dependence, and abstinence, it is
clear that pharmacological responses in vivo can be
subjected to modulation by homeostatic mechanisms.
Thus, an integrative physiological approach is needed to
understand concentration-effect relationships [91].

Conclusion

Transport of drugs into the brain, within the brain and
to the brain target site, and the resulting CNS effect are
determined by many factors. Having information on just
one of these factors in isolation is insufficient to predict
target site distribution, let alone CNS drug effects.

Heterogeneity as a source of variability in brain
distribution and CNS effects

Heterogeneity

Mammals mostly share the same biological processes,
which form the basis for interspecies extrapolation in
drug development. However, problems arise with vari-
able rates and extents in the processes on the causal
path between drug administration and CNS effects.
Below, examples of the impact of heterogeneity are
addressed.

Genetic background

Genetic polymorphisms exist in the human MDR1 (P-gp)
gene and may have clinical consequences [92,93]. In the
clinical response to antidepressants, genetic factors in
particular, are considered to contribute to variability.
Variants affect the function of genes involved in both
drug concentrations and CNS effects. Genetic variants
affecting the metabolism of antidepressants may change
pharmacokinetic factors, polymorphisms can affect re-
ceptor function, while signal transduction molecules
may alter the pharmacodynamics [94]. A specific ex-
ample is the effect of nicotine on heart rate. As much
as 30% of the variance in the acceleration of heart rate
was due to additive genetic sources, as determined in a
study using a monozygotic and dizygotic twin popula-
tion [95].

Species differences

Species differences occur in P-gp functionalities, also at
the level of the BBB [7]. It was found that rhesus mon-
key P-gp is much closer to human P-gp than to beagle
dog P-gp [96]. Also, the effects of inhibitors on P-gp
functionality appear to be species dependent [97]. In vivo
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studies using PET imaging have also reported species
differences in P-gp functionality [7].

Effect of gender

Sex hormones all influence the function and pathophysi-
ology of the cerebral circulation [98]. Estrogen has nu-
merous effects on dopamine neurotransmission, and
because the incidence of Parkinson’s disease is lower in
women than in men its possible use to either slow the
progression or reduce the risk of Parkinson’s disease has
been considered [99]. In schizophrenic patients, gender
differences have been found in the pituitary secretion of
prolactin, growth hormone, and thyroid-stimulating hor-
mone in response to neuroleptic drug treatment [100].
Also, differences exist between female and male sensitiv-
ities to anesthesia and opioids [101].

Effect of age

Many studies indicate the importance of age in PK and/or
PD. Age seems to affect P-gp functionality at the BBB
[102], which may have consequences for brain efflux of
P-gp substrates. Some of the properties of glucocorticoid
receptors change with age [103]. Binding to the NMDA
binding site by L-glutamate and/or antagonists, decreases
with increasing age in the cerebral cortex and hippocam-
pus, regions that are important for memory processing
[104]. Important changes starting at mid-life in neuro-
anatomy, neurochemistry and endogenous pain inhibition
may be associated with alterations in pain sensitivity
[105]. Another example is impaired neurotransmission
that may be responsible for at least some of the behav-
ioral abnormalities associated with aging [106].

Effect of diet

Mulder et al. [107] have shown that the combination of
a high-fat diet and APOe4 knockout conditions in mice
resulted in a loss of BBB functionality. This leads to an
increase BBB permeability, resulting in increased IgG
staining and increased fluorescein distribution in the
brain. Also, red wine polyphenolic contents influence
Alzheimer’s disease-type neuropathology and cognitive
deterioration, in a component-specific manner [108].

Disease states

In the rat pilocarpine model of epilepsy, increased brain
concentration of the active metabolite of oxcarbazepine
was observed following seizures together with inhibition of
BBB efflux transport, but without changes in plasma
concentrations. This indicated that a distributional process
is changed at the level of the BBB in epileptic conditions
[109]. Changes in BBB permeability during electrically-
induced seizures in human have also been observed [110].
A change in P-gp expression at the BBB has been reported
in humans with the human immunodeficiency virus [111].
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Tunblad et al. reported the impact of meningitis on mor-
phine distribution in piglet brain, indicating decreased BBB
functionality [112]. Also, after subcutaneous infusion of
rotenone in rats, changes in BBB permeability for fluores-
cein occur as a result of induced peripheral inflammation
but without any biomarkers for Parkinson’s disease [113].
In contrast, the unilateral brain infusion of rotenone did in-
duce biomarkers for Parkinson’s disease, but no changes
in BBB permeability for fluorescein and the large neu-
tral amino acid transporter-mediated BBB transport of
L-DOPA [114].

Drug treatment

Cleton et al. [115] found changes in the relationship be-
tween long-term treatment effects of midazolam and its
concentration-EEG effect which, however, were unre-
lated to changes in benzodiazepine receptor function.
Other examples are the alterations in striatal neuropep-
tide mRNA produced by repeated administration of
L-DOPA, ropinirole or bromocriptine which appeared to
correlate with dyskinesia induction in MPTP-treated
marmosets [116], the tolerance to diazepam after chronic
use [117], and the onset of hyperalgesia by opioid treatment
[118].

Heterogeneity results in variability

Heterogeneity in genetic background, species, gender,
tissue, age, diet, (pathologic) conditions, drug treatment,
are underlying the variability in rate and extent of indi-
vidual processes. This explains why the same dose in dif-
ferent subjects may result in different effects. It is
therefore surprising that, in most cases, the dose-effect
or at best the plasma-effect relationships continue to be
used for extrapolation.

Need for quantitative and integral [“mastermind”]
approaches

Heterogeneity

As has been shown, there are many factors that play a
role in the PK-PD relationships of CNS drugs. The rates
and extents of the multiple processes on the causal path
between drug dosing and CNS can be highly diverse.
Therefore, data obtained in a particular condition are
not necessarily predictive of that in another condition.
But, as living mammals mostly share the same biological
processes, knowledge of rate and extent of individual
processes provide the foundation for interspecies ex-
trapolation in drug development [119-122].

Translation from animal to human, the mastermind
approach

Because in the body (biological system) multiple processes
as are working concurrently, there is a need for integrated
in vivo experiments. This means that the experiments
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should obtain data on multiple processes as much as pos-
sible from the same subject, in a time-dependent and
quantitative manner. This also means that we have to ad-
dress heterogeneity of the rates and extents of physio-
logical processes on the causal path between drug
administration and CNS effects and have to use study
designs in which individual processes can be challenged.
This can be done, for example, by changing plasma pro-
tein binding [123,124], inhibition of a particular efflux
transporter [125], blocking particular receptors [126,127],
or by induction of a pathological state [113,128] and enab-
ling us to learn about the contribution of individual
processes in CNS target site kinetics [17] and dynamics
[129,130].

Here is the place to introduce the term “Mastermind
approach” as an allegory. In the game “Mastermind”
there are pins with different colors, and different positions
in which part of the colors can be positioned. By systemat-
ically and strategically varying the position and colors of the
pins the “code” can be ultimately deciphered. With each
colors representing a particular mechanism, the code
represents a particular PK-PD relationship. Of course, the
dose-effect relationship of CNS drugs includes many more
variables than the number of differently colored pins in the
Mastermind game, and this is the reason that we just can-
not interpret the data solely by “eye-ball analysis” and need
to use advanced mathematical modeling [30,31,129-132]. In
doing so, we need to make a strict distinction between the
properties of drugs and the properties of biological systems
to predict drug behavior under different conditions.

The physiologically-based pharmacokinetic (PBPK) mod-
eling approach has provided the basis for interspecies ex-
trapolation, has focused on quantitative modeling of mass
transport into and out of physiological compartments, and
has made highly significant contributions to knowledge of
systems and the fates of drugs [133]. It has not, however,
specifically taken into account the distinction between the
bound and unbound drug. With the introduction of the
microdialysis technique, information on unbound drug
concentrations has become available and is providing the
next step in physiologically-based modeling. Below, stud-
ies are presented that explicitly show the value of know-
ledge of unbound drug concentrations, as obtained by
intracerebral microdialysis.

Applications of the mastermind approach

Impact of drug properties on intracerebral distribution

For prediction of CNS drug action, it is important to
have information of unbound drug concentrations at its
CNS target site in humans. However, this is limited by
the inaccessibility of the human brain for sampling.
Moreover, it is often difficult to quantify human CNS
drug effects indicating that effects in humans should be
predicted by other approaches. As a surrogate for the
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concentrations of unbound drug at target sites, CSF
concentrations are often used and considered appropri-
ate [16,83], however, a generally applicable relationship
between CSF and brain ECF concentrations is question-
able [5,15,17,134]. Therefore, it is of interest to investi-
gate the relationship between the two, for different
drugs and under different conditions, to discover what
general principles exist. In our laboratory such studies
were performed for acetaminophen [135] and quinidine
whose physico-chemical properties are shown in Table 1.
Experiments in rats were performed using intravenous
drug administration and concurrent sampling of blood
and collection of microdialysis fluid from probes located
in brain striatum ECF, lateral ventricle CSF, and cisterna
magna CSF (Figure 3).

e Acetaminophen:

For acetaminophen the resulting unbound concentration-
time profiles in plasma, brain ECF and CSF in lateral
ventricle and cisterna magna are presented in Figure 4
[135], and indicate rapid equilibration with plasma concen-
tration. However, brain ECF concentrations are on average
4-fold higher than CSF concentrations, with average brain-
to-plasma [AUC ,40] ratios of 1.2, 0.30 and 0.35 for brain
ECE lateral ventricle CSF and cisterna magna CSF, respect-
ively. This shows that even for a compound with only pas-
sive transport into, within and out of the brain, differences
exist between brain ECF and the CSF pharmacokin-
etics. A physiologically-based pharmacokinetic model
was developed [135]. This model included the cen-
tral (plasma) and peripheral tissue compartments
and, for the brain, the brain intracellular space
(brain ICS), brain extracellular fluid (brain ECF), lat-
eral ventricle CSF, cisterna magna CSF and also sub-
arachnoid space CSF (CSF SAS) was included. The
latter is important with regard to prediction of lum-
bar CSF concentrations in human, as lumbar CSF is
part of the SAS CSF that can be distinctively different
from ventricular or cisterna magna CSF (as predicted for
acetaminophen by this model [135]). This physiologically-
based pharmacokinetic model was turned into a human
model, by replacing the rat physiological parameters by
those in human (Table 2). The resulting model was used
to predict plasma and CSF concentrations in human,
and the plasma and SAS CSF concentrations of acet-
aminophen predicted by the model could be compared
to actual data obtained in human by Bannwarth et al.
[137]. The model successfully predicted the available
human plasma and SAS CSF data (Figure 5). This gives
us confidence in the method for prediction of human
brain ECF concentrations, as best possible reflection of
target site concentrations.
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Table 1 Physico-chemical properties of acetaminophen and quinidine

Compound MW PSA logP logD pKa1 pKa2 pKa1 pKa1 lonized at physiological Substrate
[7.4] [Acid] [Acid] [Base] [Base] pH for

Acetaminophen 151 493 025 023 10,2 0% [neutral] -

Quinidine 324 456 229 14 42 8 99.8% [positive] Pagp

MW = molecular weight, PSA = polar surface area, Log P = measure of lipophilicity determined as log of partition of un-ionised compound over octanol/water, Log
D[7.4] = measure of lipophilicity at physiological pH, determined as log of distribution of the compound over octanol/ buffer pH =7.4.

e Quinidine:

The same experimental setup was used for quinidine,
a paradigm lipophilic compound and P-gp substrate.
To investigate the specific contribution of P-gp-mediated
transport, quinidine was administered at two different
intravenous dosages, both with and without co-administration
of tariquidar as P-gp transport inhibitor [Westerhout J,
Smeets ], Danhof M, De Lange ECM: The impact of P-gp
functionality on non-steady state relationships between CSF
and brain extracellular fluid. ] Pharmacokin Pharmacodyn,
submitted]. Figure 6 shows the resulting kinetics of un-
bound quinidine in plasma, brain ECFE, lateral ventricle
CSF and cisterna magna CSF. Apart from the unexpected

finding that brain ECF concentrations of quinidine were
higher than the unbound quinidine concentrations in
plasma (indicating an active influx that has not been iden-
tified before), substantial Jower concentrations in brain
ECF (striatum) compared to lateral ventricle and cisterna
magna CSF were found for both the 10 and 20 mg/kg dose
(Figure 6 a,b). Upon co-administration of tariquidar, plasma
concentrations remained similar, while brain concentrations
for all compartments were substantially increased. Interest-
ingly, now the brain ECF (striatum) concentrations were
higher than those in the CSF compartments (Figure 6 c¢,d).
These data clearly show that the relationship between brain
ECF and CSF concentrations is influenced by P-gp-mediated
transport. It underscores the importance for more
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Figure 4 Brain distribution of acetaminophen in the rat. a) Data obtained for acetaminophen in the rat following an intravenous dose of
15 mg/kg, administered by constant-rate infusion for 10 minutes. The data are presented as the average (geometric mean + SEM) of the observed
unbound acetaminophen concentration-time profiles in plasma (black, n=10), striatum ECF (ST, blue, n = 10), CSF in lateral ventricle (LV, green,
n=14), and CSF in cisterna magna (CM, red, n = 8). The data show that brain ECF (striatum) concentrations are comparable to those in plasma
and significantly higher than those in both the lateral ventricle and the cisterna magna CSF compartments. b) The physiologically-based
pharmacokinetic model for the rat developed on the basis of the data obtained for acetaminophen as shown in a). This model describes the
obtained data adequately, and predicts the CSF acetaminophen concentrations in the third and fourth ventricle (lumped as TFV) as well as in the
subarachnoid space (SAS), the latter being most representative of the lumbar CSF concentrations [135]. Denotations: In the model clearance
(CL, volume/time), and ECF bulk or CSF flow (Q, volume/time) are indicated. Numbering indicates exchange between different compartments: 12
from plasma to peripheral compartment; 21 from peripheral to plasma compartment; 13 from plasma to brain ECF compartment; 31 from brain
ECF to plasma compartment; 14 from plasma to CSF., compartment; 41 from CSFy, to plasma compartment; 15 from plasma to CSFrry
compartment; 51 from CSFrpy to plasma compartment; 16 from plasma to CSF¢y, compartment; and 61 from CSF¢y to plasma compartment.

mechanistic insights into the processes that govern
CNS drug concentrations at different sites in the brain.

Impact of route of administration on brain target site
kinetics and CNS effects

The effects of therapeutic agents following oral administra-
tion are often limited due to active first-pass clearance by
the liver and restricted BBB transport. Apart from rapid

Table 2 Values of rat and human physiological
parameters

Physiological parameter Rat value Human value
Brain ECF volume 290 pl 240 ml

Total CSF volume 300 140 ml

Brain ECF flow 0.2 pl/min 0.2 ml/min
CSF flow 2.2 pl/min 0.4 ml/min
Lateral ventricle volume 50 ul 25 ml

Cisterna magna volume 17yl 7.5 ml
Subarachnoid space volume 180 pl 90 ml

uptake of compounds from the systemic circulation,
intranasal administration may provide the only direct route
for non-invasive delivery of therapeutics into the CNS
[138-140]. Intranasal administration could enhance the
CN target site bioavailability and therewith provide a more
selective effect of CNS drugs [49,141,142]. However, the
immediate need is for quantitative information on both the
rate and extent of delivery in relation to the action of
nasally-administered drugs.

e Advanced mathematical PK model on remoxipride
distribution in brain:

The recently-developed minimum-stress and freely-
moving rat model for intranasal drug administration
[143], was used together with serial sampling of plasma
and brain microdialysate. The dopamine D2 receptor an-
tagonist, remoxipride, was administered at three differ-
ent doses via the intranasal or intravenous route. An
advanced pharmacokinetic model was developed using
the data obtained after intravenous dosing. For good
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Figure 5 Observed and predicted distribution of acetaminophen in human brain. a) The human physiologically-based pharmacokinetic
model which equals the rat physiologically-based pharmacokinetic model, but includes human instead of rat physiological parameters. (For the
denotations in the model see Figure 4b). b) Acetaminophen concentrations in human plasma and brain. Data points represent observed data in
human for plasma (black diamonds) and lumbar CSF (orange circles) by Bannwarth et al. [137]. Lines represent predictions of human plasma
concentrations (black line), human lumbar CSF concentrations (orange line, and human brain ECF concentrations (blue line) by the “humanized”
preclinical physiologically-based PK model [135].

prediction of the intranasal data, the model had to be
extended with two absorption compartments, one for
absorption from the nose into the systemic circulation,
and one for absorption from the nose direct to the brain.
The final model gave a good prediction on all observed
data [144]. Figure 7 shows the actual observed data
points for plasma and brain ECF concentrations in the
rat following intranasal and intravenous administration
of remoxipride (open circles). In addition, in Figure 7
the results of the so called “visual predictive check
(VPC)” are displayed, as the prediction of the median
concentration predictions of the model (black line), and
the 90% prediction intervals (grey area). The VPC
indicated that the model well described the observed
data.

The absorption process could be described in terms
of rates and extent (bioavailability). About 75% of the
intranasal dose was directly absorbed into the brain.
Unexpectedly, the direct nose-to-brain absorption did
not turn out to be a rapid route per se. For
remoxipride, the rate was slow, explaining prolonged
brain ECF exposure after intranasal compared to
intravenous administration. This is the first time that
both rate and extent of delivery have been identified
quantitatively and is of utmost importance for opti-
mizing direct nose-to-brain delivery, by varying drug
properties and formulation [144].

e Advanced mathematical PK-PD model on
remoxipride brain distribution and effects:

The advanced pharmacokinetic model on remoxipride
brain distribution following intranasal and intravenous
dosing was further developed to a PK-PD model. To that
end, the plasma levels of the pituitary hormone prolac-
tin, obtained in the same rats, were used as a biomarker
of D2 receptor antagonism [145-147]. Furthermore, base-
line variations in plasma prolactin concentrations were
investigated [148]. Also, the prolactin response was
measured following double low dosing of remoxipride at
different time intervals to get information on the synthesis
of prolactin in the pituitary lactotrophs [149,150]. The final
PK-PD model consisted of 1) a pharmacokinetic model for
plasma and unbound brain remoxipride concentrations, 2)
a pool model for prolactin synthesis and storage, and its re-
lease into- and elimination from plasma, 3) a positive feed-
back of prolactin plasma concentrations on prolactin
synthesis, and 4) the brain unbound concentrations of
remoxipride for the inhibition of the D2 receptor, and
resulting stimulation of prolactin release into plasma.

In conclusion, this mastermind approach allowed the
explicit separation and quantitation of systemic and dir-
ect nose-to-brain transport after intranasal administra-
tion of remoxipride in the rat, and showed that the brain
unbound concentrations could be directly linked to the



de Lange Fluids and Barriers of the CNS 2013, 10:12
http://www fluidsbarrierscns.com/content/10/1/12

Page 11 of 16

10000
—O—plasma (10-)
a —O—ST (10-)
—o—LV (10-)
—A—CM (10-)
1000

-

o

o
i

Quinidine concentration (ng/ml)
>

0 60 120 180 240 300 360
Time (min)

10000

Quinidine concentration (ng/ml)

0 60 120 180 240 300 360
Time (min)

by P-gp-mediated transport.

Figure 6 Brain distribution of quinidine in the rat [Westerhout J, Smeets J, Danhof M, De Lange ECM: The impact of P-gp functionality
on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokin Pharmacodyn, submitted]. Average
(geometric mean +SEM) unbound quinidine concentration-time profiles following: a) 10 mg/kg, with co-administration of vehicle (-); b) 20 mg/
kg, with co-administration of vehicle (-); ¢) 10 mg/kg with co-administration of 15 mg/kg tariquidar (+), and d) 20 mg/kg with co-administration
of 15 mg/kg tariquidar (+). Black, blue, green and red symbols represent plasma, brain ECF, lateral ventricle CSF and cisterna magna CSF,
respectively. Open symbols indicate data obtained without (-) and closed symbols represent data obtained with (+) the P-gp blocker tariquidar,
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higher than those in the CSF compartments (¢, d). These data show that the relationship between brain ECF and CSF concentrations is influenced
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effect. The model included parameters for the under-
lying processes of synthesis, storage and release of the
pituitary hormone, and the positive feedback of its syn-
thesis by prolactin plasma levels. The latter was in
contradiction to a previous report [148]. An important
finding was that indeed the brain unbound remoxipride
concentrations were indistinguishable from target site
concentrations to drive the release of prolactin into
plasma. Such mechanistic information should be useful to
extrapolate/predict the effects of remoxipride in humans.

Prediction of human target site kinetics and associated
drug effects

Quantification of drug- and biological system specific
parameters in translational mathematical models provides
the opportunity to re-scale the animal model up to humans
[129-131,151-153]. Allometric scaling of drug pharma-
cokinetic properties and the biological system-specific
parameters have been used in previous translational

investigations to predict drug effects in humans with a
reasonable degree of success, [154,155]. Compared to
pharmacokinetic properties, pharmacodynamic properties
are more difficult to scale [156], since they are not often
related to bodyweight (e.g. receptor occupancy, transduc-
tion, maximal effect, etc.). However, this information can
be obtained from in vitro bioassays [157]. For many drugs
and endogenous compounds, clinical information is readily
available in literature [158-161]. This provides the oppor-
tunity to replace rat biological system parameters by
human values, and to provide an extrapolation step from
rat to human. At an early stage in drug development, such
information can be used for simulation and to provide pre-
liminary insight on the clinical applicability of a drug.

To test the predictive value of the preclinical PK-PD
model of remoxipride [144,147], allometric scaling and
literature data [162] were used to tune the preclinical
PK-PD model, from rat systems to that of human [147].
Human data on remoxipride and prolactin plasma
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Figure 7 Brain distribution of remoxipride (REM) in the rat
following intravenous (IV) and intranasal (IN) administration.
Observed data points for plasma and brain ECF concentrations in
the rat following intranasal and intravenous administration of
remoxipride (open circles), and the “visual predictive check (VPQ)" of
the median concentration predictions of the model (black line), and
the 90% prediction intervals (grey area). The VPC indicated that the
model adequately described the observed data (from [147]

with permission).

concentrations were used, being obtained following
double intravenous administration of remoxipride at dif-
ferent time intervals [149]. The translational PK-PD
model successfully predicted the remoxipride plasma
kinetics in humans (Figure 8) as well as system prolactin
response in humans, indicating that positive feedback on
prolactin synthesis and allometric scaling thereof could
be a new feature in describing complex homeostatic
processes [147].

Conclusions

Drug properties and biological system properties to-
gether determine intracerebral distribution of drugs and
subsequent CNS effects. The fact that rate as well as
extent of the biological processes are dynamically
regulated and therefore may be condition dependent,
explains the high intra and inter-individual variability
encountered in CNS drug effects. We also need to
understand the sources of variability in CNS drug
effects to be able to improve drug development and
therapies. Moreover, as these processes are working
concurrently, and together determine the final CNS ef-
fect, they cannot only be studied in isolation, indicat-
ing the need for integrated in vivo experiments.

In these experiments data on plasma PK, brain distri-
bution and CNS effects of a drug should be obtained
from the same setting as much as possible. In addition,
time-dependency should be explicitly included, and in-
formation should be obtained on the unbound drug.
Then, the contribution of a certain process in the PK-PD
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Figure 8 Observed and model prediction of remoxipride
concentrations in human plasma (from [148,151,165] with
permission). Human data on remoxipride and prolactin plasma
concentrations were obtained following double intravenous
administration of remoxipride at different time intervals. Data points
on remoxipride concentrations in plasma (y-axis, concentration of
remoxipride in umol/L) as a function of time (x-axis, time in hours)
are presented for each individual human subject (open symbols,
DV). Using allometric scaling the preclinical PK model of remoxipride
was tuned to the human PK model. The human PK model
successfully predicted the remoxipride plasma kinetics in humans:
the individual prediction of the median remoxipride concentrations
is indicated (IPRE, ) as well as the population prediction

relationship can be deduced, either by changing experi-
mental conditions in a controlled manner (e.g. blocking
of an active transport process, or irreversible binding of
part of particular receptors), or by performing the same
experiment for a different drug, and the use of advanced
mathematical modeling. This approach is here introduced
as the “Mastermind approach”. Examples given of this
approach show that data from preclinical translational
models in principle are able to predict human CNS
drug distribution, target site kinetics, and CNS drug
effects.
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