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Abstract

to clinical and demographic measures.

Although several psychological and pharmacological treatment options are available for anxiety disorders, not all
patients respond well to each option. Furthermore, given the relatively long duration of adequate treatment trials,
finding a good treatment fit can take many months or longer. Thus, both clinicians and patients would benefit
from the identification of objective pre-treatment measures that predict which patients will best respond to a given
treatment. Recent studies have begun to use biological measures to help predict symptomatic change after
treatment in anxiety disorders. In this review, we summarize studies that have used structural and functional
neuroimaging measures to predict treatment response in obsessive-compulsive disorder (OCD), posttraumatic stress
disorder (PTSD), generalized anxiety disorder (GAD), and social anxiety disorder (SAD). We note the limitations of
the current studies and offer suggestions for future research. Although the literature is currently small, we conclude
that pre-treatment neuroimaging measures do appear to predict treatment response in anxiety disorders, and
future research will be needed to determine the relative predictive power of neuroimaging measures as compared
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Review

Anxiety disorders are highly prevalent [1] and are associ-
ated with occupational disability and increased family
burden [2-4]. Although psychological and pharma-
cological treatments are available, they are not always
effective. For example, a recent naturalistic study of
obsessive-compulsive disorder (OCD) revealed that only
approximately two-thirds of individuals taking serotonin
reuptake inhibitors (SRIs) considered their symptoms
very much or much improved [5]. The percentage of in-
dividuals responding to pharmacotherapy appears to be
even lower in posttraumatic stress disorder (PTSD) [6].
Although cognitive-behavioral therapies are moderately
effective in the treatment of anxiety disorders, there ap-
pears to be room for improvement [7-9], perhaps espe-
cially in the case of panic disorder and generalized
anxiety disorder (GAD) [8].
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Given the variability in treatment response, it would
be beneficial to determine whether measures obtained
before treatment could help clinicians predict symptom-
atic change in response to a given treatment. Several
clinical measures have been useful in this regard. For ex-
ample, greater pre-treatment symptom severity has been
associated with less favorable response to treatment in
OCD [10], PTSD [11,12], social anxiety disorder (SAD)
[13,14], and in youth with anxiety disorders [15]. Other
clinical variables have predicted a less favorable response
to treatment, such as the presence of hoarding obsessions
and compulsions [16] and comorbid personality disorders
in OCD [17] and greater depression and avoidant person-
ality traits in SAD [18].

Recent studies have begun to use biological measures
to predict symptomatic change after treatment in anxiety
disorders (e.g., [19-22]). Such measures are more object-
ive and arguably more proximal to the neurobiological
substrates of these disorders as compared to symptom
severity measures. Structural and functional neuroimag-
ing techniques yield such biological measures (e.g., re-
gional cerebral metabolic rate for glucose [rCMRglu] in
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the anterior cingulate cortex [ACC]) that can be exam-
ined for possible associations with treatment response.
Here, we will review the findings of longitudinal studies
that used pre-treatment structural and functional neuro-
imaging measures to predict treatment-related symp-
tomatic change in anxiety disorders.

Methodological considerations

The studies reviewed below implemented a variety of
different imaging techniques and data analytic ap-
proaches. Early studies tended to use positron emission
tomography (PET) and fluorodeoxyglucose (FDG) to
measure rCMRglu while patients rested with eyes open.
Although such resting state studies are relatively easy to
administer because they require no explicit cognitive
task, they are also limited by a lack of control over the
mental processes in which subjects engage during the
radiotracer uptake period. This can lead to greater vari-
ability in the data, perhaps increasing the risk of type II
errors (depending on the kinds of analyses used), as well
as some difficulty interpreting the meaning of the
rCMRglu findings. In general, PET-FDG imaging is also
limited by relatively poor temporal resolution as rCMRglu
data are typically averaged across long periods of time
(~30-45 minutes).

Many older PET-FDG studies also used region-
of-interest (ROI) based analyses in which researchers
draw boundaries around brain regions based on struc-
tural anatomy, “extract” functional imaging data from
those drawn regions, and submit the extracted data to
external statistical software. One disadvantage of this
technique is that it involves averaging functional imaging
data across very large brain structures, increasing the risk
of type II error if only a small portion of that large brain
structure is actually important in the prediction of treat-
ment response. More recent neuroimaging studies employ
voxelwise analyses that can assess the relationship be-
tween brain activation (or gray matter volume) and treat-
ment response at every voxel (e.g., 3 mm x 3 mm x 3 mm
cube) in the brain. However, in order to complete such
analyses, one must “normalize” or morph the functional
(and/or structural) brain images to a standard brain tem-
plate, which introduces some amount of error. In addition,
voxelwise analyses involve conducting thousands of ana-
lyses (one per voxel) across the brain, so correction for
multiple comparisons must be applied.

More recent studies have implemented functional
magnetic resonance imaging (fMRI) to measure brain
activation in response to cognitive and/or affective tasks.
These types of studies afford more control over the cog-
nitive state of the participant during scanning and, if
well designed, allow for a more clear interpretation of
the meaning of the imaging findings.
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The methodological considerations described above
apply to most functional neuroimaging studies, not just
those assessing the prediction of treatment response.
With regard to the latter specifically, researchers have
used two different data analytic approaches. The first ap-
proach involves comparing treatment responders to
non-responders on a pre-treatment neuroimaging meas-
ure (e.g., amygdala activation). For example, if treatment
responders as a group were found to have lower pre-
treatment amygdala activation than non-responders,
then lower amygdala activation would be considered to
be predictive of a better response to treatment. This type
of between-group analysis typically involves analysis of
variance (ANOVA) or analysis of covariance (ANCOVA),
and requires (1) a very clear and well-accepted definition
of treatment response and (2) sufficiently large numbers
of participants per group (responders and non-responders).
Because the relative size of these post-treatment groups
cannot be completely planned a priori, these studies
should begin with a very large number of participants.

The second approach is to run a correlation (or a re-
gression) between a continuous pre-treatment neuroimag-
ing measure and a continuous measure of symptomatic
improvement (e.g., symptom change score, percent im-
provement, or clinical global impression (CGI) improve-
ment score). This type of analysis takes advantage of the
inherent variability in both the imaging and treatment re-
sponse data and is therefore likely to be more powerful
than the between-group approach. Regression analyses
also obviate the need to form responder and non-
responder groups and permit the investigation of multiple
pre-treatment imaging (and non-imaging) variables in the
prediction of treatment response. For example, baseline
symptom severity and comorbidity measures (either cat-
egorical or continuous) can be entered into the regression
along with pre-treatment imaging measures to predict
symptom change scores. Several studies reviewed below
included both types of approaches.

In the following text, we review studies that have
assessed whether pre-treatment structural or functional
neuroimaging measures can predict treatment response
in OCD, PTSD, GAD, and SAD (See Table 1). (We were
able to find no such studies of panic disorder or specific
phobia). We did not include studies that assessed the
change in neuroimaging measures with treatment as
those studies address a different question.

Obsessive-compulsive disorder (OCD)

In contrast to other anxiety disorders, OCD appears to
be marked by structural and functional abnormalities in
thalamo-cortico-striatal loops. One neurocircuitry model
of OCD [23,24] posits that the striatum (caudate nu-
cleus) functions abnormally, leading to inefficient gating
in the thalamus. This leads to hyperactivity in the orbito-
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Table 1 Summary of Neuroimaging studies predicting treatment response in anxiety disorders

Article Disorder Imaging Treatment type Sample Outcome measure Findings
sizes
Swedo et al. OCD PET-FDG: resting ~ Clomipramine (dose and OCD: 18 OCR Responders: = 40% Pre-treatment rCMRglu in the
[32] state duration not specified) Healthy: 18 reduction in OCR (11 R, 6 NR) ' right ACC and right OFC was
lower in clomipramine R vs.
NR.
Saxena et al. OCD PET-FDG: resting ~ Paroxetine (8-12 weeks;  OCD: 20 YBOCS and CGl Responders:  Lower pre-treatment rCMRglu
[33] state 40 mg/d max) 2> 25% reduction in YBOCS in bilateral OFC predicted

and CGl of much improved  better response to paroxetine.
or very much improved

(1T R 9NR)
Saxena et al. OCD, PET-FDG: resting Paroxetine (8-12 weeks;  OCD: 27 YBOCS, HAM-D Greater pre-treatment rCMRglu
[34] MDD, state 30-60 mg/d) MDD: 27 in the caudate predicted
OCD + OCD + MDD: greater improvement in OCD
MDD 17 symptoms in the OCD groups.
Lower rCMRglu in the
amygdala predicted more
improvement in MDD
symptoms in MDD group and
in all Ss combined. Greater
pre-treatment rCMRglu in the
medial frontal gyrus predicted
improvement in MDD
symptoms in all Ss.
Hendler OoCD SPECT: symptom  Sertraline (6 months; OCD: 26 YBOCS Responders: 2 30% R had lower pre-treatment
et al. [35] provocation vs. 200 mg/d max) reduction in YBOCS perfusion during symptom
relax (13 R, 13 NR) provocation in dorsal/caudal
ACC and higher perfusion in
right caudate vs. NR.
Rauch et al.  OCD PET-015: symptom  Fluvoxamine (12 weeks;  OCD: 9 YBOCS Lower rCBF in OFC and higher
[36] provocation vs. 300 mg/d max) rCBF in PCC predicted better
neutral response.
Sanematsu  OCD fMRI: symptom Fluvoxamine (12 weeks;  OCD: 17 YBOCS Pretreatment activation of
et al. [37] provocation vs. 200 mg/d max) right cerebellum and left
neutral superior temporal gyrus was
positively correlated with
YBOCS improvement.
Ho Pian OCD SPECT: resting Fluvoxamine (12 weeks;  OCD: 15 YBOCS Responders: 225% Pre-treatment cerebellar and
et al. [38] state 300 mg/d max) reduction in YBOCS whole brain rCBF was
(7R 8 NR) significantly higher in R vs. NR.
Buchsbaum  OCD PET-FDG: resting  Risperidone or placebo ~ OCD: 15 YBOCS Responders: = 25%  Pre-treatment rCMRglu was
et al. [39] state augmentation (8 weeks;  Risperidone:  reduction in YBOCS and/or  lower in the striatum and
3 mg/d max) 9 Placebo: 6 CGl Improvement rating of  higher in the ventral ACC in R
very much improved or vs. NR.
much improved (4 R, 5 NR)
Brody etal.  OCD PET-FDG: resting ~ Fluoxetine (10 weeks; OCD: 27 YBOCS Greater pre-treatment rCMRglu
[40] state 60 mg/d) or group BT Fluoxetine: 9 in the left OFC was associated
(10 weeks) CBT: 18 with a better response to BT.
In this same region, lower
rCMRglu was associated with
better response to fluoxetine.
Hoexter oCh mMRI Fluoxetine (12 weeks; OCD: 29 YBOCS Lower pre-treatment gray
et al. [41] 80 mg/d max) or group  Fluoxetine: matter density in ventrolateral
CBT (12 weekly sessions) 14 CBT: 15 prefrontal cortex predicted
better response to fluoxetine.
Greater gray matter density in
subgenual ACC predicted
better response to CBT.
Rauch etal.  OCD PET-FDG: resting  Anterior cingulotomy OCD: 11 YBOCS Greater pre-operative rCMRglu
[44] state in posterior cingulate

predicted greater
improvement.
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Table 1 Summary of Neuroimaging studies predicting treatment response in anxiety disorders (Continued)

Stimulation of anterior
capsule

Van Laere oCcD PET-FDG: resting
et al. [45] state

Bryant et al. PTSD mMmMRI CBT (8 weekly sessions)
[68]
Bryant etal. PTSD fMRI: masked CBT (8 weekly sessions)
[19] fearful vs. neutral

faces
Nardo et al.  PTSD mMMRI EMDR (5 sessions)
[69]
Whalen GAD fMRI: fearful vs. Venlafaxine (8 weeks;
et al. [75] neutral/happy 225 mg/d max)

faces

Nitschke GAD
et al. [73]

Venlafaxine (8 weeks;
225 mg/d max)

fMRI: anticipation
of aversive vs.
neutral images

fMRI: fearful vs.
happy faces

McClure GAD
et al. [76]

Fluoxetine (8 weeks;
40 mg/d max) or CBT (8
weekly sessions)

Evansetal.  SAD PET-FDG: resting
[87] state

Tiagabine (6 weeks;
16 mg/d max)

Doehrmann  SAD
etal. [13]

fMRI: 1-back task,
angry vs. neutral
faces

CBT (12 weekly sessions)

OCD: 6 YBOCS Greater pre-operative rCMRglu

Controls: 20 in the subgenual ACC
predicted greater
improvement.

PTSD: 13 CAPS Responders: no Greater pre-treatment gray

TENP: 13 longer met diagnostic matter density in the rACC

Healthy: 13 criteria (7 R, 6 NR) predicted greater
improvement.

PTSD: 14 CAPS Responders: 2 50% Lower pre-treatment amygdala

Healthy: 14 reduction in CAPS (7 R, 7 NR) and rACC activation predicted
greater improvement.

PTSD: 21 Responders: no longer met R had greater gray matter

TENP: 22 diagnostic criteria (10 R, 5 NR)  density in the insula,
amygdala/parahippocampal
gyrus, posterior cingulate, and
middle, precentral, and dorsal
medial frontal gyri.

GAD: 15 HAM-A Lower pre-treatment amygdala

Healthy: 15 activation and greater rACC
activation predicted greater
improvement in anxiety.

GAD: 14 HAM-A and Penn State Greater pre-treatment rACC

Healthy: 12 Worry Questionnaire activation predicted greater
improvement in anxiety.

GAD: 12 cal Greater pre-treatment

Fluoxetine: 5 amygdala activation predicted

CBT: 7 greater improvement.

SAD: 12 LSAS Responders: = 50% Voxelwise correlations were

Healthy: 10 reduction in LSAS scores not significant. Pre-treatment

(7R, 5NR) rCMRglu was lower in

subcallosal ACC in R compared
to healthy controls.

SAD: 39 LSAS Greater pre-treatment

activation in dorsal and ventral
occipitotemporal cortex
predicted greater
improvement.

ACC anterior cingulate cortex, BT behavioral therapy, CAPS Clinician Administered PTSD Scale, CBT cognitive-behavioral therapy, CG/ Clinical Global Impression
scale, EMDR eye movement desensitization and reprocessing, fMRI functional magnetic resonance imaging, GAD generalized anxiety disorder, HAM-A Hamilton
Rating Scale for Anxiety, HAM-D Hamilton Rating Scale for Depression, LSAS Liebowitz Social Anxiety Scale, MDD major depressive disorder, mg/d milligrams per
day, mMRI morphometric magnetic resonance imaging, NR non-responders, OCD obsessive-compulsive disorder, OCR Obsessive Compulsive Rating scale,

OFC orbitofrontal cortex, PET-FDG positron emission tomography with fluorodeoxyglucose, PET-015 positron emission tomography with oxygen-15, PTSD
posttraumatic stress disorder, R responders, rACC rostral anterior cingulate cortex, rCBF regional cerebral blood flow, rCMRglu regional cerebral metabolic rate for
glucose, SAD social anxiety disorder, SPECT single photon emission computed tomography, Ss subjects, TENP trauma-exposed non-PTSD, YBOCS Yale-Brown

Obsessive-Compulsive Scale.

frontal cortex and the ACC, which may mediate intru-
sive thoughts and anxiety, respectively. Compulsions re-
cruit the striatum to achieve thalamic gating, thereby
neutralizing the obsessions and reducing anxiety. Indeed,
several resting state and symptom provocation func-
tional neuroimaging studies have revealed greater activa-
tion of the caudate, thalamus, orbitofrontal cortex, and/
or ACC in OCD (e.g., [25-28], although the direction of
the abnormalities is not entirely uniform across studies).
Pre-treatment functional abnormalities in these struc-
tures appear to resolve with successful treatment (e.g.,
[29-31]). Several studies have examined pre-treatment
neuroimaging predictors of response to medication and/

or behavioral therapy (BT) or cognitive-behavioral ther-
apy (CBT) in OCD.

Medication

In a very early PET study of OCD, Swedo and colleagues
[32] found that pre-treatment rCMRglu in the right ACC
and right orbitofrontal cortex was lower in clomipramine
responders vs. non-responders. They also reported a posi-
tive correlation between pre-treatment symptom severity
and pre-treatment rCMRglu in the orbitofrontal cortex,
suggesting that treatment response is likely better in those
participants with less severe symptoms. Saxena and col-
leagues [33] reported similar findings in a PET study of
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paroxetine. Specifically, lower pre-treatment rCMRglu in
bilateral orbitofrontal cortex was associated with better
improvement.

Another PET study of response to paroxetine [34]
examined the more complicated question of whether
pre-treatment rCMRglu could differentially predict im-
provement in OCD symptoms vs. depression symptoms
in patients with OCD alone, comorbid OCD and MDD,
and MDD alone. This study was unique in that it uti-
lized both ROI-based and voxelwise analyses, the results
of which were partially but not completely convergent.
ROI-based analyses showed that greater pre-treatment
rCMRglu in the caudate predicted greater improvement
in OCD symptoms in the groups with OCD, but did not
predict improvement in depression symptoms in any
group. These findings were not replicated in the vo-
xelwise analyses. ROI-based analyses also showed that
lower pre-treatment rCMRglu in the amygdala predicted
greater improvement in depression symptoms in the
MDD group and in all subjects combined. Voxelwise
analyses confirmed this finding in all subjects and fur-
ther showed that greater pre-treatment rCMRglu in the
medial frontal gyrus (just anterior to the rostral ACC
[rACC]) predicted improvement in depression symp-
toms in all subjects regardless of diagnostic group. These
findings are important because they suggest that (1)
rCMRglu predictors of improvement differ for different
types of symptoms even in the same subjects, and (2)
rCMRglu predictors of improvement can cut across
diagnostic lines.

Hendler et al. [35] used single photon emission com-
puted tomography (SPECT) to determine whether pre-
treatment regional cerebral perfusion during symptom
provocation could predict response to sertraline in indi-
viduals with OCD. Treatment responders showed lower
pre-treatment perfusion in dorsal/caudal ACC and
higher pre-treatment perfusion in right caudate com-
pared to non-responders. These findings were not ob-
served when the SPECT measures were obtained during
the relaxed (unprovoked) state. Thus, these findings sug-
gest that functional imaging-based measures obtained in
one state (e.g., symptomatic) may predict treatment re-
sponse in only that state and not others.

In contrast, Rauch and colleagues [36] found that state
of the participants did not affect the prediction of re-
sponse to fluvoxamine in OCD. In a PET study, these
authors found that pre-treatment regional cerebral blood
flow (rCBF) measured in neutral and symptomatic states
similarly predicted treatment response: lower pre-treatment
rCBF in orbitofrontal cortex and greater pre-treatment
rCBF in the posterior cingulate cortex predicted better re-
sponse to fluvoxamine.

Unlike previous studies of treatment response in OCD,
Sanematsu and colleagues [37] used fMRI to examine
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neural predictors of improvement. Functional MRI data
were collected while participants generated either words
related to their OCD symptoms or control words (relating
to flowers and vegetables). Greater pre-treatment activa-
tion in the right cerebellum and left superior temporal
gyrus was associated with better response to fluvoxamine.
Similarly, Ho Pian and colleagues [38] found that pre-
treatment activity (as measured by 99mTc-HMPAO tracer
uptake) in the cerebellum was greater in responders vs.
non-responders to fluvoxamine.

In a study of OCD patients who were non-responders to
SRIs, Buchsbaum and colleagues [39] found that responders
to risperidone augmentation had lower pre-treatment
rCMRglu in the striatum and higher pre-treatment
rCMRglu in the ventral ACC. These findings differ from
those of previous studies of OCD most likely because of the
nature of both the patient group (SRI non-responders) and
the treatment (antipsychotic augmentation).

Medication and BT/CBT

In what appears to be the first study to examine the neu-
roimaging predictors of response to two different treat-
ments for OCD, Brody et al. [40] studied pre-treatment
rCMRglu in patient groups who chose to receive either
BT or fluoxetine. They found that greater pre-treatment
rCMRglu in the left orbitofrontal cortex was significantly
associated with greater symptomatic improvement after
BT. Interestingly, within this same ROI, lower pre-
treatment rCMRglu was associated with greater im-
provement after treatment with fluoxetine.

In a similar study, Hoexter and colleagues [41] exam-
ined structural imaging predictors of treatment response
in treatment-naive patients randomly assigned to receive
either fluoxetine or group CBT. Using voxel-based
morphometry, they found that lower pre-treatment gray
matter density in ventrolateral frontal cortex predicted
greater improvement in OCD symptoms after treatment
with fluoxetine. In contrast, greater pre-treatment gray
matter density in subgenual ACC predicted greater im-
provement in OCD symptoms after CBT. When the two
treatment groups were combined, there were no signifi-
cant effects. Given that CBT involves extinction-like
processes and that ventral medial prefrontal cortex
(mPFC) is critical for the retention of extinction memory
[42,43], it makes sense that patients with greater pre-
treatment gray matter volume in ventral mPFC would
show greater symptomatic improvement with CBT.
Along with Brody et al. [40], this study suggests different
imaging predictors of response to medication vs. CBT in
OCD.

Neurosurgery
Identifying reliable and valid predictors of treatment
response is even more critical when the treatment is
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invasive and associated with elevated risk, such as the
case with neurosurgery. Rauch and colleagues [44] eval-
uated the PET predictors of response to anterior
cingulotomy and found that relatively greater pre-
treatment rCMRglu in the posterior cingulate cortex
predicted greater improvement in OCD symptom sever-
ity after surgery. These findings were consistent with
those of Rauch et al. [36] in the prediction of response
to fluvoxamine. In a study of anterior capsule stimula-
tion, Van Laere and colleagues [45] found that greater
pre-operative rCMRglu in the subgenual ACC predicted
greater improvement in OCD symptom severity.

In summary, lower pre-treatment activity in the
orbitofrontal cortex and greater activity in the caudate
and posterior cingulate cortex predict a more favorable
response to SRIs or neurosurgery in OCD. In contrast,
greater pre-treatment activity or gray matter volume in
ventral mPFC appears to predict better response to BT/
CBT. This latter finding has also been reported in
PTSD.

Posttraumatic stress disorder (PTSD)

Some neurocircuitry models [46,47] posit that the amyg-
dala is hyperresponsive in PTSD, perhaps accounting for
hypervigilance, increased arousal, and the persistence of
trauma-related memories. In addition, the mPFC (in-
cluding the rACC) is thought to be hyporesponsive, with
diminished inhibition over the amygdala, and this may
underlie extinction memory deficits and difficulty ignor-
ing trauma-related reminders. Neuroimaging studies of
PTSD have generally reported increased activation in the
amygdala, insular cortex, and dorsal anterior cingulate
cortex (dACC), and decreased activation in the mPFC
[48-51]. In addition, structural neuroimaging studies
have reported decreased volume or gray matter density
in the amygdala, mPFC, and hippocampus in this disorder
(e.g., [62-55]). Furthermore, PTSD symptom severity mea-
sures are often correlated positively with amygdala acti-
vation (e.g. [56,57]) and negatively with mPFC activation
(e.g., [68-61]). A few studies have suggested that amygdala
activation decreases and mPFC activation increases with
successful treatment [62-65].

The use of exposure-based techniques to treat PTSD
is well supported in the literature (e.g., [66,67]) and most
studies that have examined neuroimaging predictors of
treatment response have implemented such techniques.
Bryant et al. [68] used structural MRI and voxel-based
morphometry to determine whether pre-treatment gray
matter density predicted response to CBT in participants
with PTSD. Correlational analyses revealed that pre-
treatment gray matter density in the rACC was positively
correlated with symptomatic improvement, even after
controlling for depression and baseline PTSD symptom
severity. Indeed, treatment responders, trauma-exposed
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comparison subjects without PTSD, and healthy compari-
son subjects had higher pre-treatment gray matter density
in the rACC than did treatment non-responders.

In an fMRI study, Bryant and colleagues [19] presented
backwardly-masked fearful vs. neutral facial expressions to
participants with PTSD before they completed eight ses-
sions of CBT. Treatment response was assessed 6 months
after treatment completion. Voxelwise correlational ana-
lyses revealed that lower pre-treatment activation in the
amygdala and rACC predicted better symptomatic im-
provement after CBT. Between-group comparisons (non-
responders vs. responders) confirmed these findings. Of
note, the finding in the rACC was opposite of prediction.

In a voxel-based morphometry study of railway workers
with PTSD, Nardo et al. [69] found that compared to non-
responders, responders to eye-movement desensitization
and reprocessing (EMDR) treatment had greater pre-
treatment gray matter density in large territories of the
brain including the insula, amygdala/parahippocampal
gyrus, posterior cingulate, and middle, precentral, and
dorsal medial frontal gyri.

In summary, pre-treatment neuroimaging measures of
the amygdala and mPFC (specifically, the rACC) predict
response to BT/CBT in PTSD, although additional stud-
ies are needed to specify the direction of the findings.
Interestingly, mPFC activation also appears to predict
treatment response in GAD, as shown below.

Generalized anxiety disorder (GAD)

Although relatively few functional neuroimaging studies
of GAD exist in the literature, there has been some sup-
port for increased activation in the amygdala and mPFC
in GAD relative to comparison groups ([70-73], but see
also [74,75]). One study reported a positive correlation
between amygdala activation and GAD symptom sever-
ity [72]. Three fMRI studies have examined neuroimag-
ing predictors of treatment response in GAD.

Whalen and colleagues [75] found that pre-treatment
activation in the amygdala in response to fearful (vs. neu-
tral or happy) facial expressions was negatively correlated
with symptomatic change after treatment with venlafaxine
in GAD. Specifically, relatively lower pre-treatment amyg-
dala responses were associated with relatively greater im-
provement. Interestingly, the opposite relationship was
found in the rACC: the greater the pre-treatment rACC
activation, the greater the improvement.

Using a different fMRI paradigm, Nitschke and col-
leagues [73] found that pre-treatment rACC activation
during the anticipation of aversive and neutral pictures
was inversely correlated with post-treatment symptoms of
anxiety and worry (controlling for pre-treatment symp-
toms) in participants treated with venlafaxine. Thus, con-
sistent with the findings of Whalen et al. [75], relatively
greater pre-treatment rACC activation predicted relatively
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greater improvement. The authors found no significant
association between pre-treatment amygdala responses
and symptomatic change.

In contrast to the findings of Whalen et al. [75],
McClure and colleagues [76] examined amygdala activa-
tion in twelve adolescents with anxiety disorders (nine
had primary GAD) before treatment with either CBT or
fluoxetine. Participants viewed fearful and happy faces in
the scanner and responded to the question “How afraid
are you?” Pre-treatment amygdala activation to fearful
vs. happy faces was inversely associated with post-
treatment symptom severity, even after controlling for
pre-treatment symptom severity. That is, the greater the
pretreatment amygdala activation, the better the treat-
ment response. The discrepancy between this finding
and that of Whalen et al. [75] could have been due to
the younger age and/or the diagnostic heterogeneity in
the McClure et al. sample (not all of the participants had
GAD).

In summary, the amygdala and mPFC appear to predict
treatment response in GAD, although the direction of the
findings remains to be confirmed. Two of the three stud-
ies, however, suggest that greater pre-treatment mPFC
(specifically, rACC) activation is related to better response
to venlafaxine.

Social anxiety disorder (SAD)

Functional neuroimaging studies of SAD have revealed
exaggerated amygdala activation (e.g. [77-79]), which is
positively correlated with symptom severity (e.g., [80,81])
and appears to decrease after successful treatment
[82,83]. Insular cortex also appears to be hyperres-
ponsive in SAD relative to comparison groups (e.g.,
[84-86]). The direction of functional abnormalities in the
mPFC in this disorder is less clear, with some studies
reporting increased activation and others reporting de-
creased activation [51]. Only two studies have used neu-
roimaging measures to predict treatment response in
SAD.

In a PET-FDG study, Evans and colleagues [87] found
no significant voxelwise correlations between pre-
treatment rCMRglu in their regions of interest (which
included mPFC/ACC, amygdala, hippocampus, parahip-
pocampal gyrus, insula) and symptomatic improvement
after treatment with tiagabine. However, categorical
group comparisons revealed that treatment responders
had lower pre-treatment rCMRglu in subcallosal gyrus
compared to healthy control subjects. Furthermore,
rCMRglu within this region was inversely correlated
with symptomatic improvement across all treated partic-
ipants (i.e., relatively lower pre-treatment rCMRglu was
associated with relatively greater improvement). Treat-
ment non-responders had lower baseline rCMRglu in
the dACC than control subjects, but rCMRglu in the
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dACC was not correlated with symptomatic improve-
ment. It should be noted that the type of categorical
group comparisons used in this study (i.e., responder vs.
healthy controls and non-responder vs. healthy controls)
differed from that of other studies (i.e., responder vs.
non-responder) reviewed herein. This data analytic dif-
ference could very well account for discrepancies be-
tween the findings of this and other studies.

Doehrmann and colleagues [13] used fMRI to examine
pre-treatment predictors of response to CBT in a rela-
tively large sample (n=39) of individuals with SAD.
During scanning, participants performed a 1-back task
on sets of visual stimuli that contained facial expressions
(angry and neutral) and scenes without people (emo-
tional and neutral). Correlational analyses showed that
higher pre-treatment activation in dorsal and ventral re-
gions of occipitotemporal cortex in response to angry vs.
neutral faces was associated with greater symptomatic
improvement. In multiple regression analyses predicting
symptomatic improvement, the variance explained by
the model was significantly greater when activation data
from the dorsal and ventral occipitotemporal cortex
were added over and above clinical measures such as
pre-treatment symptom severity. Unlike previous findings
reported in PTSD and GAD [19,75], amygdala activation
did not significantly predict symptomatic improvement.
This study appears to be the first to demonstrate the
added benefit of neuroimaging measures over and above
clinical measures in predicting treatment response in anx-
iety disorders. However, occipitotemporal cortex is not
typically among the brain regions found to function ab-
normally in anxiety disorders.

In summary, only two studies have examined neuroim-
aging predictors of treatment response in SAD, and
those two studies differed quite dramatically in terms of
imaging methods, sample sizes, treatment type, and find-
ings. This variability and paucity of data prevent us from
drawing general conclusions about the neuroimaging
predictors of treatment response in SAD at the present
time.

Conclusions

In summary, although this literature is currently small,
pre-treatment neuroimaging measures do appear to pre-
dict treatment response in anxiety disorders. Despite the
variability in the findings within disorder categories,
some consistent patterns have emerged. For example, in
OCD, lower pre-treatment activity in the orbitofrontal
cortex and greater activity in the caudate and posterior
cingulate cortex appear to predict a more favorable re-
sponse to treatment with SRIs or neurosurgery. In OCD,
PTSD, and GAD, greater pre-treatment activity or gray
matter density in the mPFC predicts better response to
treatment (BT/CBT in OCD and PTSD, and venlafaxine
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in GAD). In PTSD and GAD, lower pre-treatment amyg-
dala activation predicts a more favorable response to
treatment (with CBT in PTSD and venlafaxine in GAD).

Consistent with neurocircuitry models of OCD (e.g., [23]),
caudate activity predicted treatment response only in
OCD and not in the other anxiety disorders examined
herein. In contrast, mPFC neuroimaging measures pre-
dicted treatment response in all of the anxiety disorders
examined, except for SAD (of which there are too few
studies).

Confidence in these findings is tempered, however, by
several limitations and caveats. First, as mentioned pre-
viously, the present literature is small and includes stud-
ies with relatively small numbers of subjects. Second,
data analytic methods varied across studies and this
alone could account for much of the variability in find-
ings. Third, some studies did not appear to control for
pre-treatment symptom severity, leaving open the ques-
tion of whether neuroimaging measures are merely act-
ing as proxies for baseline symptom severity in the
prediction of treatment response. In order for neuroim-
aging measures to be practical in the prediction of treat-
ment response, they would need to predict treatment
response over and above the common clinical predictors,
which are easier and less expensive to obtain. The find-
ings of Doehrmann and colleagues [13] are especially en-
couraging in this regard. In our view, future studies
should include regression analyses in which pre-treatment
neuroimaging measures, baseline symptom severity, and
other clinical (e.g., severity of comorbid disorders), psy-
chophysiologic (e.g., heart rate responses), cognitive (e.g.,
response times on an interference task) and/or genotype
measures are entered as predictors of treatment response
(also measured continuously). These types of analyses
benefit from the variability inherent in both the predictor
and treatment response data and are potentially more
powerful than comparisons between responders and non-
responders. Furthermore, the most accurate predictions of
treatment response will likely result from the consider-
ation of multiple types of predictors.

Fourth, because most studies did not use placebo con-
trol groups, it is possible that neuroimaging measures
predict improvement in general rather than treatment
response per se (as improvement could be due to ex-
pectancy effects). This may be less of a problem in stud-
ies that compared responders to non-responders if both
groups had similar expectancies.

Fifth, most of the studies reviewed above predicted re-
sponse to one type of treatment. While this is a neces-
sary first step, future studies will need to include more
than one treatment type [40,41] in order to truly inform
clinical decision-making.

Sixth, future studies will need to assess whether neuro-
imaging predictors of treatment response are specific to
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diagnostic categories. Furthermore, given the substantial
comorbidity between anxiety disorders and depression,
whether neuroimaging predictors of treatment response
differ between these two diagnostic categories (and be-
tween comorbid and non-comorbid groups) will also need
to be evaluated. A brief examination of the separate litera-
tures reveals that some neuroimaging predictors of treat-
ment response appear to be similar between anxiety
disorders and depression (amygdala and rACC activation)
[88,89], but only one research group has actually exam-
ined these different diagnostic groups (OCD, depression,
and comorbid OCD/depression) in the same study [34].

Finally, arguably the most important big-picture ques-
tion for future research to consider is whether the infor-
mation gleaned from group studies (such as the ones
described herein) can eventually be applied to clinical
decision making in individual patients. Group studies
could yield, for example, logistical regression equations
or more complex classification schemes in which future
individual patient data could be entered to predict a di-
chotomous treatment response outcome. This approach
has been used in other areas of clinical research [90,91],
but not yet in the current one. In the near future, ma-
chine learning data analytic techniques, which detect
patterns in complex datasets in a bottom-up fashion,
could potentially help discriminate between treatment
responders and non-responders. Indeed, such techniques
are already being used on neuroimaging data to discrim-
inate between individuals with and without psychiatric
disorder [92-95]. More generally, studies of neuroimag-
ing predictors of treatment response could contribute to
future clinical decision making in individual patients by
identifying both (1) impaired neural circuits that could
become targets of more directed (or adjunctive) treat-
ments, and (2) other related biomarkers (e.g., skin con-
ductance responses to conditioned stimuli or heart rate
responses to loud tones) that may equally predict treat-
ment response and are less expensive and/or more
widely available than neuroimaging.
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