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Regulation of Wnt/β-catenin signaling by
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Abstract

The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development
and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human
diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin
pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications
(PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly
dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a
platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing
alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated
regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin.
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Introduction
Wnt proteins belong to an evolutionarily conserved family
of secreted cystein-rich glycoproteins. Wnts can activate
β-catenin-dependent canonical Wnt pathway and β-
catenin-independent non-canonical Wnt pathways,
including planar cell polarity pathway and calcium
pathway [1-3]. Interdisciplinary studies in the past three
decades have yielded a comprehensive understanding of
Wnt molecules and their downstream effects. While sig-
naling by Wnt proteins plays pivotal roles in a wide range
of developmental and physiological processes [4-8], dys-
regulation of Wnt pathway is linked to many human
diseases including cancers [7,9,10].
A key feature of the canonical Wnt pathway is the

regulated degradation of transcription coactivator β-
catenin by the β-catenin destruction complex, consist-
ing of Glycogen Synthase Kinase 3α and 3β (GSK3α and
GSK3β), Casein Kinase 1 (CK1), Adenomatous Polyposis
Coli (APC), scaffold protein Axin and transcription co-
factor β-catenin [11]. In the absence of Wnt, β-catenin
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is phosphorylated by GSK3 on serine 33 and 37 and threo-
nine 41 (which requires priming phosphorylation by CK1)
[12]. Phosphorylation triggers β-catenin recruitment of
ubiquitin E3 β-TrCP (β-transducin repeats-containing
proteins), causing its ubiquitination and proteasomal
degradation, resulting in a low level of cytoplasmic β-
catenin [13,14]. Upon Wnt stimulation, Wnt ligand
forms a complex with the cell-surface receptor Frizzled (Fz)
and low-density lipoprotein receptor-related protein (LRP)
5/6 [4,15], and initiates a series of molecular events
ultimately causing stabilization of β-catenin by sup-
pressing phosphorylation of β-catenin [16,17] as well
as β-TrCP-mediated ubiquitination and proteasomal
degradation of β-catenin [18] (summarized in Figure 1).
Newly synthesized β-catenin then accumulates and en-
ters the nucleus to interact with transcription factors
TCF (T-cell factor)/LEF (lymphoid enhancing factor)
to activate transcription of the Wnt target genes [18].
In addition to core components of the Wnt pathway

(for review, see [19,20]), non-Wnt pathway proteins also
participate in the activation of Wnt signaling as regula-
tors through modulating posttranslational modifications
(PTMs) of the Wnt pathway components. By covalently
adding functional groups or proteins to the target pro-
teins, most often through enzymatic reactions, PTMs
. This is an Open Access article distributed under the terms of the Creative
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iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:huj3@upmc.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Figure 1 Schematic diagram of the simplified Wnt/β-catenin pathway. Left panel: in the absence of Wnt ligand, β-catenin is sequentially
phosphorylated by CK1 and GSK3 in the cytoplasmic β-catenin destruction complex. Ubiquitin E3 ligase β-TrCP recognizes phosphorylated β-catenin
and promotes its ubiquitination and proteasome degradation. Right panel: Wnt/β-catenin signaling is activated by the binding of Wnt ligand to Fz
receptor and LRP5/6 coreceptors, resulting in the recruitment of Dvl and destruction complex to the membrane, which inactivates destruction
complex, leading to stabilization of β-catenin. Accumulated β-catenin enters nucleus and activates target gene transcription.

Gao et al. Cell & Bioscience 2014, 4:13 Page 2 of 20
http://www.cellandbioscience.com/content/4/1/13
quickly change target protein’s property, relaying rapid
messages in the cell, and resulting in further concerted
activation of signaling cascades in response to stimuli
[21]. Until now, more than 200 different types of PTM
have been identified including phosphorylation, acetyl-
ation, glycosylation, methylation, ADP-ribosylation, ubi-
quitination and ubiquitin-like modification [22]. Besides
single modifications, proteins are often modified through
a combination of PTMS; different signaling pathways
can be linked by PTM of shared “integrator” protein to
achieve the efficient and proper cellular response. Being
key mechanisms to increase proteomic diversity, PTMs
are highly dynamic and largely reversible.
Most components in the Wnt/β-catenin pathway in-

cluding Wnt proteins undergo one or more covalent
modifications. For PTMs of Wnt proteins including gly-
cosylation and palmitoylation, we refer the reader to two
excellent reviews [23,24]. In this review, we summarize
recent advances in PTM-mediated regulation of Wnt
signaling with a focus on factors involved in Wnt-
mediated stabilization of β-catenin and activation of β-
catenin–dependent transcription (Table 1).

Phosphorylation
Addition of a phosphate group to amino acid residues
on serine, threonine or tyrosine residues, is one of the
most important and well-studied post-translational
modifications in eukaryotes. As one of the first PTMs
to be described, phosphorylation plays critical roles in
the regulation of many cellular processes; abnormal
phosphorylation results in a variety of human diseases
[121]. Many components of the Wnt/β-catenin pathway,
including a G protein-coupled receptor proteins frizzled,
Wnt co-receptor LRP6 (low density lipoprotein receptor-
related protein-6), β-catenin destruction complex mem-
bers (CK1, GSK3, Axin, APC, β-catenin) and disheveled
(Dvl), are regulated by phosphorylation. Phosphorylation
represents a key mechanism responsible for the tight
control of β-catenin levels within normal cells and the
activation of the Wnt/β-catenin pathway (Figure 2).

Phosphorylation-dependent degradation of β-catenin by
the β-catenin destruction complex
In the absence of Wnt, CK1α phosphorylates β-catenin
at Ser45, which precedes and is required for subsequent
phosphorylation of β-catenin at Ser33, Ser37 and Thr41
by GSK3 [12]. Phosphorylation of β-catenin by CK1 and
GSK3 causes β-TrCP-mediated proteolysis of β-catenin,
keeping the cytosolic and nuclear levels of β-catenin very
low [122,123]. Upon Wnt stimulation, phosphorylation
of β-catenin by GSK3 undergoes “two-phase” dynamic
change: GSK3 phosphorylation of β-catenin is sharply
inhibited within 30 min, phosphorylation then returns to
its initial level in 2 hours [16,17] or achieve even higher
level in 6 hours [17]. When normalized with respect to
total β-catenin, it appears that GSK3-mediated phos-
phorylation of β-catenin is continuously suppressed
by Wnt [12,16,17]. No significant change in CK1α-
mediated phosphorylation of β-catenin is observed in
0.5-1 hour, but remarkable induction of β-catenin



Table 1 Summary of PTMs of Wnt/β-catenin pathway components

Protein PTM Sites Domains Involved enzymes Function References

Frizzled Phosphorylation S576 (Xenopus Fz3) - - Reduces Fz3 activity [25]

S554/S560
(Drosophila Fz1)

KTxxxW motif aPKC Inhibits Fz1 activity [26]

Ubiquitination - - ZNRF3/RNF43 Targets for degradation [27,28]

- - UBPY/USP8
(deubiquitinase)

Targets for degradation [29]

Glycosylation - - - Important for Fz maturation [30]

LRP6 Phosphorylation T1479 Intracellular
domain (ICD)

CK1γ Recruits Axin and promotes
Wnt/β-catenin signaling

[31]

S1490 ICD GSK3/Grk5/6/MAPKs Recruits Axin and promotes
Wnt/β-catenin signaling

[32-35]

T1493 ICD CK1α,γ,ε,δ Recruits Axin and promotes
Wnt/β-catenin signaling

[31,32]

S1420/S1430 ICD CK1ε Suppresses LRP6-Axin interaction
and β-catenin accumulation

[36]

S1490 ICD PKA Essential for PT-induced
β-catenin stabilization

[37]

S1490 ICD PFTK1/Cyclin Y Promots Wnt/β-catenin
signaling

[38]

Palmitoylation C1394/C1399 ICD - ER exit [39]

Ubiquitination K1403 ICD - ER retention [39]

- - ZNRF3/RNF43 Targets for degradation [28]

LRP5 Phosphorylation PPPSPxS motifs ICD GSK3/CK1 Required for Axin binding [40]

Axin Phosphorylation S322/S326/S330/S333/T337/
S339/T341/S343 (Rat Axin)

- GSK3 - [41]

S322/S326/S330 (Rat Axin) - GSK3 Increases stability [42]

T609/S614 (Mouse Axin) β-catenin
binding domain

GSK3 Required for Axin binding
to β-catenin

[43]

S497/S500 (Mouse
Axin1 isoform 2)

β-catenin
binding domain

GSK3/PP1cγ
(phosphatase)

Essential for Axin-β-catenin
interaction

[17]

Ubiquitination - (K48-linked chain) - RNF146 Targets for degradation [44,45]

K789/K821 (K29-linked chain) DIX domain Smurf1 Disrupts Axin interaction
with LRP5/6

[46]

K505 (Mouse Axin1
isoform 1)

- Smurf2 Targets for degradation [47]

Sumoylation C-terminal KVEKVD
(Mouse Axin)

DIX domain Likely PIAS family No effect on Wnt pathway [48]

ADP-
ribosylation

- - TNKS1/TNKS2 Facilitates ubiquitin E3 binding;
Promotes Wnt/β-catenin signaling

[49]

GSK3 Phosphorylation S27 (GSK3α)/S9 (GSK3β) - AKT/S6K1/RSK/
PKA/PKC

Suppresses kinase activity
towards certain substrates

[50-54]

Y279 (GSK3α)/Y216
(GSK3β)

Kinase domain PYK2/GSK3 May have impact on
GSK3 activity

[55-57]

T43 (GSK3β) - ERK Required for phosphorylation at
Ser9 which inactivates GSK3β

[58]

T390 (GSK3β) - P38 MAPK Inactivates GSK3β [59]

Ubiquitination - - - Targets for degradation [60]

Sumoylation K292 Kinase domain - Critical for kinase activity, protein
stability and nuclear localization

[61]

ADP-
ribosylation

- - ARTD10 Inhibits activity [62]
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Table 1 Summary of PTMs of Wnt/β-catenin pathway components (Continued)

APC Phosphorylation - - GSK3 Increases APC binding to
β-catenin

[63-65]

S1279/S1392 - CK1ε Essential for the regulatory
activity of APC towards

β-catenin

[66]

Ubiquitination - - USP15
(deubiquitinase)

Targets for degradation [67,68]

- (K63-linked chain) Trabid
(deubiquitinase)

- [69]

- (K63-linked chain) - HectD1 Enhances APC-Axin
interaction

[70]

Dvl Phosphorylation S139/S142 (mouse Dvl1) - CK1ε Promotes Wnt signaling [71]

- - CK1ε May enhance interaction
between Dvl1 and Frat-1

[72]

S298/S480 (Dvl2) PDZ domain
(S298)/DEP

domain (S480)

RIPK4 Essential for Wnt-induced
β-catenin accumulation;

promotes Dvl2
signalosome assembly

[73]

S236 (Drosophila DSH) - CK1ε - [74]

- - PAR-1/CK2 - [75,76]

- - DDX3 May promote signalosome
formation

[77]

Ubiquitination K413/K444/K451/K461 (Dvl1) DEP domain USP14
(deubiquitinase)

Suppresses Fz-Dvl interaction [78]

K5/K20/K34/K46/K50/K60/K69
(K63-linked chain) (Dvl1)

DIX domain CYLD
(deubiquitinase)

May enhance DVL
signaling activity

[79]

- - KLHL12-Cullin-3/
ITCH/NEDD4L/

pVHL/Malin/NEDL1

Targets for degradation [80-85]

β-
catenin

Phosphorylation S45 - CK1 Primes phosphorylation
by GSK3

[12]

S33/S37/T41 - GSK3 Required for β-TrCP
recognition

[12,86,87]

S675 - PKA Increases stability [88]

S552 Armadillo (ARM)
repeats domain

AKT Promotes β-catenin
disassociation from cell-cell
contact and accumulation in
both the cytosol and nucleus

[89]

S191/S605 ARM repeats
domain

JNK2 Critical for β-catenin
nuclear localization

[90]

T120 - PKD1 May suppress β-catenin
transcription activity

[91]

Ubiquitination K19/K49 (K48-linked chain) - β-TrCP Targets for degradation [14,92-96]

- (K11/K29-linked chain) - EDD Increases stability [97]

K394 (K63-linked chain) - Rad6B (ubiquitin
conjugating enzyme)

Increases stability [98,99]

- (K11/K63-linked chain) - FANCL May increase β-catenin
expression and activity

[100]

- - Jade-1 Targets for degradation [101]

Acetylation K49 - CBP Inhibits β-catenin ability
to activate c-myc gene

[102]

K345 ARM repeats
domain

P300 Enhances β-catenin
interaction with TCF-4

[103]

K19/K49 - PCAF Increases stability [104]
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Table 1 Summary of PTMs of Wnt/β-catenin pathway components (Continued)

TCF/LEF Phosphorylation T155/S166 (LEF-1) - Nemo-like kinase Inhibits DNA binding of
TCF/β-catenin complex

[105,106]

T178/T189 (TCF4)

S154 (TCF4) - TNIK Required for TCF4
transcriptional activity

[107,108]

- - GSK3/CK1ε Inhibits/enhances TCF3
interaction with β-catenin

[109]

S42/S61 (LEF-1) β-catenin
binding domain

CK2 Enhances LEF-1 binding to
β-catenin and transactivation

[110]

S40 (murine LEF-1) β-catenin
binding domain

CKIδ Disrupts LEF-1/β-catenin
complex

[111]

S147/S149/T170/S181/ T184/
S190 (Xenopus TCF3)

- HIPK2 Promotes dissociation of
TCF/LEF from promoter DNA

[112,113]

S130/T153/S164
(mouse LEF-1)

Acetylation K25 (Drosophila TCF) β-catenin
binding domain

CBP Decreases the affinity of
β-catenin to TCF

[114]

K185/K187/K188 (POP1) - CBP/p300 Required for POP1 nuclear
localization and biological

activity

[115]

Lys150 (TCF4E2) - CBP Releases inhibition by
HBP1 repressor

[116]

- - CBP/p300 - [116]

Sumoylation K25/K267 (Mouse LEF-1) β-catenin binding
domain (K25)

PIASy May repress LEF-1 activity by
targeting LEF-1 to nuclear bodies

[117]

K297 (TCF4) - PIASy, Axam Activates β-catenin-dependent
transcriptional activity of TCF4

[118]

Ubiquitination - - NARF Targets for degradation [119,120]

Figure 2 Schematic diagram of the simplified phosphorylation-mediated regulation of the core Wnt/β-catenin pathway components.
Phosphorylation of LRP6 at T1479 by CK1γ and at S1490 by GSK3 and Grk5/6 promotes Wnt signaling. Dvl phosphorylation mediated by RIPK4
and CK1ε is essential for Wnt signaling. Phosphorylation of Axin at S497/S500 by GSK3 is suppressed by Wnt ligand, resulting in reduced association
with LRP6 and β-catenin. C-terminal phosphorylation of β-catenin by PKA inhibits its ubiquitination and thus promotes β-catenin signaling activity. TNIK
phosphorylates TCF4 to activate its transcriptional activity. NLK and HIPK2 phosphorylate TCF/LEF factors to inhibit their interaction with DNA.
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phosphorylation by CK1α at Ser45 is detected thereafter
in different cell lines [16]. These results clearly indicate
that inhibition of GSK3-medited phosphorylation of β-
catenin is responsible for Wnt-induced acute stabilization
of β-catenin and may contribute to Wnt-induced chronic
accumulation of β-catenin. Regarding Wnt-induced long-
term stabilization of β-catenin, a prior study has demon-
strated that without attenuating overall GSK3-mediated
β-catenin phosphorylation, Wnt abrogates β-TrCP recruit-
ment to phosphorylated β-catenin and blocks β-catenin
ubiquitination and degradation [18]. This study clearly sug-
gests that other mechanisms are also involved in the regula-
tion of Wnt-induced chronic stabilization of β-catenin.
Several models have been proposed to explain Wnt-

mediated inhibition of β-catenin phosphorylation by
GSK3: (i) Disruption of the destruction complex. Wnt
induces rapid disruption of Axin/GSK3 interactions,
which separates GSK3 from its substrate β-catenin,
thus inhibiting β-catenin phosphorylation and causing
initial stabilization of β-catenin [124]. (ii) Inhibition of
GSK3 activity by LRP6. Compelling evidence indicates
that Wnt-activated LRP6 can inhibit GSK3 function
directly [125-128]. Results of in vitro and in vivo stud-
ies show that dually phosphorylated PPPSPxS peptides
are sufficient to inhibit GSK3 kinase activity towards
β-catenin and other physiological GSK3 target sites
including tau and glycogen synthase [126,127]. (iii) Axin
dephosphorylation. As a scaffold protein that directly in-
teracts with other core components of the destruction
complex [12,129], the scaffolding function of Axin is
essential in the process of β-catenin phosphorylation by
GSK3 because the interaction of GSK3β with the Axin can
enhance phosphorylation of β-catenin by several orders of
magnitude [130]. Axin is phosphorylated by GSK3 at
Ser497/500 [17]. Upon Wnt stimulation, GSK3-mediated
phosphorylation of Axin declines rapidly [17]. Dephos-
phorylation of Axin at Ser497/500 is carried out by PP1cγ,
an isoform of PP1 catalytic subunit (PP1c) within the
LRP6 signaling complex. Dephosphorylated Axin dissoci-
ates with LRP6 and β-catenin, thereby inhibiting β-catenin
phosphorylation [17]. This notion is also supported by an
earlier observation that phosphorylation of Axin by GSK3
increases its affinity for β-catenin [131]. Similar with this
mechanism, PP1 was reported to dephosphorylates Axin
at CK1-phosphorylated serine residues to reduce Axin-
GSK3 interaction, contributing to β-catenin stabilization
[132]. Of note, in addition to its role in β-catenin phos-
phorylation, phosphorylation also regulates Axin abun-
dance: while direct phosphorylation of rat Axin on S322/
S326/S330 by GSK3 stabilizes Axin [42], dephosphoryla-
tion of Axin by protein phosphatase 2C decreases the
half-life of Axin [133].
GSK3β interaction with another scaffold protein

APC also promotes GSK3-mediated phosphorylation
of β-catenin [134]. Phosphorylation of APC by GSK3,
facilitated by Axin and β-catenin and counter balanced by
PP2A [63], increases APC binding affinity for β-catenin
[64,65]. In addition to GSK3, APC was also reported to be
phosphorylated by CK1ε in an Axin-dependent manner,
which, in turn, confers APC’s ability to down-regulate
β-catenin [66].

Propagation of Wnt signaling through LRP6
phosphorylation
The binding of Wnt ligands to the transmembrane re-
ceptors Frizzled (Fz) and co-receptor LRP5/6 initiates a
signaling cascade resulting in stabilization of β-catenin
and the activation of β-catenin-dependent transcription
[4,135,136]. A key step in the cascade is phosphorylation
of the intracellular domain (ICD) of LRP6 at five reiterated
PPPSPxS motifs and adjacent Ser/Thr cluster [31-33,137].
For a detailed summary of regulation of LRP6 by phos-
phorylation, we refer readers to an earlier review [138].
The enzymes catalyzing LRP6 phosphorylation have
been identified: PPPSPxS motifs are sequentially phos-
phorylated by GSK3 (e.g., at Ser1490) and CK1 (e.g., at
Thr1493) [31,32], whereas the Ser/Thr cluster (e.g., at
Thr1479) is phosphorylated by casein kinase 1γ (CK1γ)
[31]. Wnt-induced generation of phosphatidylinositol
4,5-bisphosphate (PtdIns(4,5)P2) at the plasma mem-
brane is required for LRP6 phosphorylation by GSK3
and CK1γ [139]. Other key players involved in LRP6
phosphorylation have also been identified (Fz, Dvl,
Axin, and PtdIns(4,5)P2) [139,140]. However, the sequence
of the molecular events leading to LRP6 phosphorylation
and the assembly of the LRP6 coreceptor complex
remains unclear.
Different models have been proposed to depict the

process: (i) Initiation and amplification of LRP6 phosphor-
ylation [140]. In the presence of Wnt, Fz forms a complex
with LRP6 and Wnt, which in turn recruits Dvl through
Fz intracellular domain. Dvl directly binds to Axin
[141-143], resulting in relocation of Axin and associated
GSK3 to the plasma membrane to initiate LRP6 phosphor-
ylation. The phosphorylated PPPSPxS motifs on LRP6
provide docking sites for Axin [31,137,144], leading to re-
cruitment of additional Axin/GSK3β to form LRP6-Axin
signaling complex and phosphorylate LRP6 on Ser1490 to
propagate Wnt signaling [140]. (ii) LRP6 signalosome as-
sembly [145]. Wnt induces the formation of membrane
LRP6 aggregates containing Wnt pathway components,
such as Fz, Dvl, Axin and GSK3 (called LRP6 signalo-
somes), to trigger the phosphorylation of LRP6 by GSK3
and CK1. The highly dynamic polymerization property of
Dvl DIX domain, which enables Dvl self-association and
co-polymerization with Axin, is important for receptor
aggregation and Axin recruitment [145-147]. (iii) Wnt3a-
induced PtdIns (4,5)P2 formation [139]. Upon Wnt
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stimulation, Fz transduces signal to Dvl, Dvl then dir-
ectly interacts with and activates phosphatidylinositol-4-
phosphate 5-kinase type I (PIP5KI). PIP5KI in turn
induces PtdIns(4,5)P2 formation, which promotes LRP6
aggregation, LRP6 phosphorylation and Axin recruitment
by unclear mechanism.
As discussed above, Dvl plays a critical role in the

assembly LRP6 coreceptor complex and LRP6 phos-
phorylation. Dvl itself is a phosphorylation substrate:
phosphorylation of Dvl can be catalyzed by RIPK4
(receptor-interacting serine/threonine-protein kinase 4),
PAR-1 (Partitioning-defective 1), CK2 and CK1 [73-77]. It
is known that Wnt stimulation induces Dvl phosphoryl-
ation [73,148,149], which is believed to be a critical step in
Wnt signaling, however, whether Dvl phosphorylation is
required for LRP6 phosphorylation or assembly of LRP6
coreceptor complex and how phosphorylation activates
Dvl remain to be determined. Identification of phosphor-
ylation sites on Dvl will help to address these questions.
The mysterious roles of GSK3 phosphorylation in Wnt
signaling
Gsk3α and Gsk3β have redundant function in the Wnt/
β-catenin pathway [150]. How canonical Wnt signaling
regulates Gsk3 to inhibit β-catenin proteolysis remains
largely elusive. The serine/threonine protein kinase
GSK3 itself is a phosphoprotein, but whether and how
GSK3 phosphorylation is involved in Wnt signaling re-
mains an open question, and evidently, contradictions
exist. Catalyzed by the serine/threonine protein kinase
Akt or other kinases [50-54], the N-terminus of GSK3
can be phosphorylated at Ser21 on GSK3α and Ser9 on
GSK3β. Structural studies indicate that the phosphory-
lated N-terminus competes with the priming phosphate
of GSK3 substrate for the same binding sites as a “pseu-
dosubstrate” inhibitor, resulting in GSK3 inactivation
[151]. Inhibition of GSK3 activity by Ser9/Ser21pho-
sphorylation has been well established in the insulin
pathway [53,151-153]. A prior study has shown that
Wnt signaling stimulates Akt, which in turn, in associ-
ation with Dvl, enhances GSK3β phosphorylation at
Ser9, causing increased β-catenin level [154]. Consistent
with this result, overexpression of GSK3β-Ser9A (serine
mutated to alanine) abolishes insulin and IGF-1 (Insu-
lin-like growth factor-1)-induced activation of β-catenin-
dependent transcription [155]. However, the observations
that GSK3β-Ser9A mutant, GSK3α-Ser21A and wild
type GSK3β are regulated by Wnt signaling similarly
[150,156] and that the Wnt pathway is intact in
GSK3α/β21A/21A/9A/9A knockin embryonic stem (ES)
cells [157] appear to exclude the involvement of phos-
phorylation of GSK3α/β at Ser21 and Ser9 respectively
in Wnt signaling.
There are several additional phosphorylation sites on
GSK3 that have been reported to be associated with the
regulation of β-catenin level in various biological con-
texts, but their role in Wnt signaling remains un-
determined and elusive. Phosphorylation of GSK3β at
threonine 43 by Erk (extracellular-signal-regulated
kinase), primes GSK3β for phosphorylation at Ser9 by
p90RSK, and mediates HBV-X protein (HBX)-induced
upregulates β-catenin in human hepatocellular carcinoma
cells [58]. Phosphorylation of GSK3β at threonine 390 by
p38 mitogen-activated protein kinase (MAPK), which oc-
curs primarily in the brain and thymocytes, inactivates
GSK3β, leading to an accumulation of β-catenin [59].
Interestingly, Thr390 of GSK3β is not conserved in
GSK3α, suggesting different regulatory mechanisms of
GSK3 isoforms by phosphorylation. Consistent with the
notion that p38 and phosphorylation of GSK3β at Ser9
may play a role in Wnt signaling, a prior study shows that
p38 MAPK is activated upon Wnt3a stimulation and is
crucial for Wnt3a-induced accumulation of β-catenin
through inhibiting GSK3β a activity by inducing its
phosphorylation at Ser9 [158]. Phosphorylation at tyrosine
216 in GSK3β or tyrosine 279 in GSK3α has been shown
to be required for GSK3 full kinase activity using tran-
scription factor c-Jun as an in vitro substrate [55,159]. In
GSK3α/3β double knockout ES cells, expression wild type
GSK3α reduces GSK3α/3β deficient-mediated elevation
of β-catenin level, expression of GSK3α-Y279F (tyrosine
replaced with phenylalanine) only partially reduces
β-catenin level with respect to wild type level, likely due
to impaired GSK3 kinase activity [156]. However, others
have also shown that the C-terminal Tyr216 phosphor-
ylation has no or minimal impact on GSK3 activity in
in vitro kinase assay using myelin basic protein (MBP)
or tau as substrates [160,161]. Consistent with this,
it has been shown that overexpression of kinase-dead
GSK3α-K148R or GSK3β–K85R remarkably enhances
β-catenin-dependent transcription in the presence and
absence of Wnt, whereas overexpression of GSK3α-
Y279F or GSK3β–Y216F inhibits Wnt-induced activa-
tion of β-catenin-dependent transcription to a level
comparable to that of WT GSK3α or GSK3β [161].
Similar to the case of kinase activity, while it has been
shown that phosphorylation of GSK3β at Tyr216 impacts
its binding to Axin [130,162], other evidence indicates that
GSK3β with tyrosine to phenylalanine mutation at Tyr216
still retains strong binding capacity to Axin [161,163].

Activation of β-catenin-dependent gene transcription by
phosphorylation of β-catenin and TCF/LEF
In contract to the N-terminus phosphorylation by CK1
and GSK3 that triggers β-catenin ubiquitination and
degradation, phosphorylation of several sites on β-catenin
C-terminus (e.g., Ser675 by protein kinase A, Ser552 by
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AKT, and Ser191/605 by JNK2) appears to stabilize β-
catenin and affect its nuclear accumulation [88-90], lead-
ing to the activation of β-catenin-dependent transcription.
The TCF/LEF family proteins function as transcription
repressors or activators of Wnt-responsive genes by bind-
ing to different nuclear partners, Groucho and β-catenin
[164-167]. Phosphorylation of TCF/LEF family by multiple
kinases has been suggested to be important for the activa-
tion of the Wnt/β-catenin pathway. The Nemo-like kinase
(Nlk) family of protein kinases phosphorylates human
TCF4 on two threonine residues in its central domain,
Thr178 and Thr189 (and the corresponding sites Thr155
and Ser166 of human LEF-1), and inhibits the DNA
binding ability of the TCF/β-catenin complex [105,106].
The kinase TNIK (Traf2 and Nck-interacting kinase,)
interacts directly with both TCF4 and β-catenin and
phosphorylates TCF4 to activate Wnt target gene
[107,108]. Phosphorylation of human LEF-1 by CK2 at
Ser42 and Ser61 increases its affinity for β-catenin and
enhances gene transcription [110]. Surprisingly, however,
phosphorylation of murine Ser40 residue (corresponding
to human Ser42) by CKIδ disrupts the β-catenin/LEF-1
complex [111]. Both GSK3 and CK1ε are kinases re-
sponsible for TCF3 phosphorylation [109]. Phospho
rylation of TCF3 by CK1ε enhances, while by GSK in-
hibits, TCF3 binding to β-catenin [109]. Phosphoryl-
ation of multiple members of TCF family, including
LEF-1, TCF3 and TCF4, is catalyzed by homeodomain-
interacting protein kinase 2 (HIPK2) [112,113]. This
phosphorylation causes TCF proteins dissociation from
a target promoter. Notably, HIPK2-dependent phos-
phorylation of transcriptional repressor TCF3 is in-
duced by Wnt8, resulting in target gene derepression
and ventroposterior development [113].

Ubiquitination
Ubiquitin is an 8.5 kDa regulatory protein found in almost
all tissues of eukaryotic organisms. Ubiquitination is a
PTM in which an ubiquitin protein is attached to a sub-
strate protein through an enzymatic process requiring
three types of enzymes: ubiquitin-activating enzymes
(E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin
ligases (E3s) [168,169]. As an important PTM, ubiquitina-
tion is involved in the regulation of many basic cellular
processes by regulating the degradation of proteins (via
the proteasome and lysosome); coordinating the cellu-
lar localization of proteins; activating and inactivating
proteins; and modulating protein-protein interactions
[170-173]. These effects are mediated by different types
of substrate ubiquitination: adding one ubiquitin molecule
to one substrate lysine residue (monoubiquitination) or
several lysine residues (multi-monoubiquitination); adding
an ubiquitin chain on a single lysine residue on the sub-
strate protein (polyubiquitination) [174]. Polyubiquitin
chains are built by the formation of an isopeptide bond
between Gly76 of one ubiquitin to the epsilon-NH2
group of one of the seven potential lysines (K6, K11,
K27, K29, K33, K48 or K63) of the preceding ubiquitin
[175,176]. A special polyubiquitination chain, the head-
to-tail linear polyubiquitin chain, is formed by linking
the N-terminal amino group of methionine on the
ubiquitin conjugated with a substrate protein and the
C-terminal carboxyl group of the incoming ubiquitin
[177,178]. The various types of ubiquitination are linked
to distinct physiological functions in cells. While lysine
48-linked chains target proteins for degradation [173];
other types of ubiquitin linkages mediates proteolytic as
well as non-proteolytic functions including endocytic traf-
ficking, lysosomal turnover and DNA repair [175,179,180].
Like phosphorylation, ubiquitin modification of Wnt path-
way proteins has emerged as a key mechanism that deter-
mines the pathway activity (Figure 3).

Regulation of turnover (proteasomal and lysosomal
degradation) of β-catenin, Axin, APC and Dvl by ubiquitin
Modulation of the abundance of the Wnt pathway compo-
nents through ubiquitination-mediated proteasomal and
lysosomal degradation plays a critical role in the regulation
of Wnt signaling. A characteristic feature of the canonical
Wnt pathway is tight regulation of the level of β-catenin
controlled by CK1- and GSK3β-mediated phosphorylation
and subsequent proteolytic degradation. In the absence of
Wnt, phosphorylation of the N-terminus of β-catenin—
Ser45 by CK1α, followed by GSK3-mediated phosphoryl-
ation of Ser33, Ser37 and Thr41— triggers the recruitment
of the β-TrCP [12,14,86,123], the substrate-recognition
subunit of a multi-protein Skp1-Cullin-F-box (SCF)
RING-type E3 ligase [181]. The SCFβ-TrCP-ubiquitin
ligase complex subsequently attaches K48-linked poly-
ubiquitin chains onto lysine residues 19 and 49 at the
N-terminus of β-catenin [92,93], causing its proteaso-
mal degradation. β-TrCP recruitment to and ubiquiti-
nation of β-catenin is inhibited upon Wnt stimulation
despite of phosphorylation of β-catenin by CK1 and
GSK3 [18]. How this regulation is achieved remains an
open question. The plant homeodomain protein (PHD)
Jade-1 is also found to mediate β-catenin ubiquiti-
nation and degradation [101]. Like β-TrCP, Jade-1 dir-
ectly interacts with the N-terminus of β-catenin in a
phosphorylation-dependent manner. However, unlike
β-TrCP which only ubiquitylates phosphorylated β-catenin,
Jade-1 ubiquitylates both phosphorylated and non-
phosphorylated β-catenin and therefore regulates ca-
nonical Wnt signaling in both Wnt-off and Wnt-on
phases. Since Jade-1 is primarily localized in the nucleus
[182,183], it may mainly regulate the nuclear pool of
β-catenin, whereas β-TrCP is responsible to degrade
cytoplasmic β-catenin [94]. This may explain why Jade-1



Figure 3 Ubiquitination-mediated regulation of the core Wnt/β-catenin pathway components. Cell-surface transmembrane ubiquitin E3
ligases ZNRF3 and RNF43 target frizzled for lysosome degradation. UBPY deubiquitinates frizzled to recycle it to the plasma membrane. Palmitolylation
and monoubiquitylation regulate LRP6 exit from the endoplasmic reticulum (ER). Multiple ubiquitin E3 ligases target Dvl for degradation, thus
negatively regulate Wnt signaling. CYLD and USP14 are deubiquitinases responsible for removing K63-linked polyubiquitin chain of Dvl. RNF146 and
Smurf2-mediated ubuiqitination targets Axin for degradation, whereas Smurf1-mediated ubuiqitination of Axin regulates its interaction with LRP5/6.
USP15 protects APC from degradative ubuiqitnation. HectD1 modifies APC with K63-linked polyubiquitin chain to promote interaction between APC
and Axin. Apart from the β-TrCP-mediated degradative ubiquitination of β-catenin, ubiquitination-mediated by ubiquitin-conjugating enzyme Rad6B
increases β-catenin stability. Ubiquitin ligase Jade-1, which is primarily localized in the nucleus, may regulate abundance of the nucleus pool of β-catenin.
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silencing cannot be completely compensated for by β-
TrCP [101]. The stability of Jade-1 is dependent on the
presence of a functional von Hippel-Lindau (VHL) pro-
tein [183], downregulation of Jade-1by VHL mutations
is thought to be responsible for the hyperactivation of
the Wnt pathway in renal cell carcinoma. In contrast to
ubiquitination by β-TrCP and Jade-1, ubiquitination of
β-catenin by the E2 ubiquitin conjugating enzyme Rad6B
and the E3 ubiquitin ligase EDD stabilizes β-catenin
[97-99]. Both Rad6B and EDD interact with β-catenin
and promote its ubiquitination, leading to increased
level and enhanced activity of β-catenin. EDD promotes
the attachment of K29-linked and/or K11-linked polyu-
biquitin chains to β-catenin [97], whereas Rad6B adds
K63-linked polyubiquitin chain to Lys 394 of β-catenin
[98,99], suggesting that Rad6B (E2) may not couple with
EDD (E3) to attach polyubiquitin chain to β-catenin. To-
gether, it appears that different ubiquitin E2 or E3 may
attach different types of ubiquitin chain to different lysine
residues on β-catenin, causing context-specific functional
consequences.
Axin (Axin1 and Axin2) is a scaffold protein that directly

interacts with other core components of the destruction
complex [129,184,185]. Being the rate-limiting factor of the
destruction complex, Axin abundance is a determinant
factor for the assembly of the multi-protein destruction
complex [186,187], and the cellular level of Axin is tightly
controlled. Wnt induces polyubiquitination-mediated
proteasome degradation of Axin, an event that is believed
to impair the formation of sufficient destruction complex,
facilitating Wnt-induced β-catenin stabilization. A recent
study has revealed that the poly-ADP-ribosylation of Axin
catalyzed by poly-ADP-ribosylating enzymes tankyrase
(TNKS) 1 and tankyrase 2 is a prerequisite for Axin ubi-
quitination [49]. Until now, two ubiquitin E3 ligases have
been implicated in Axin ubiquitination and degradation:
the smad ubiquitination regulatory factor 2 (Smurf2) [47]
and the RNF146 RING-type ubiquitin E3 ligase [44,45].
Smurf2 directly interacts with Axin and specifically ubi-
quitylates lysine 505 on Axin [47]. RNF146 binds to and
ubiquitinates poly-ADP-ribosylated Axin for degradation
to promote Wnt signaling [44,45]. The ubiquitination-
mediated degradation of Axin is counterbalanced by the
ubiquitin protease USP34 [188]. Whether and how the ac-
tivities of these E3 ubiquitin ligases (Smurf2 and RNF146)
and the deubiquitinating enzyme USP34 are regulated
upon Wnt simulation is currently unknown. Furthermore,
how these ubiquitin ligases cooperate to share their re-
sponsibility for ubiquilating Axin remains to be deter-
mined. For example, do Smurf2 and RNF146 ubiquitinate
Axin in different pools or different complexes? Do they
couple with different E2 ubiquitin conjugating enzymes to
ubiquitinate different lysine residues on Axin? Answers to
these questions will help to elucidate molecular mechan-
ism underlying Axin regulation. Nevertheless, given that
small-molecule inhibitor of TNKS1 and TNKS2 exerts
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anti-tumor effect through downregulating Wnt signal-
ing by function as an Axin stabilizer [49], Poly-ADP-
ribosylation -dependent ubiquitination of Axin provides
an alternative and promising opportunity for targeting
Wnt pathway for cancer therapy.
Considered as a Wnt pathway negative regulator, the

scaffold protein APC facilitates GSK3-mediated phos-
phorylation of β-catenin [134]. APC is also an ubiquitin
substrate. Ubiquitination of APC, which targets APC
for proteasome degradation, is facilitated by Axin and
is suppressed by Wnt3a [67]. The responsible E3 ubi-
quitin ligase is currently unknown. The deubiquitinase
USP15 (Ub-specific protease 15) has been implicated in
the ubiquitination-mediated degradation of APC [68].
USP15 is a key component of the COP9 signalosome
(CSN), which regulates the ubiquitin proteasome sys-
tem (UPS) by controlling cullin-RING Ub ligases [189].
The CSN complex associates with the SCFβ-TrCP E3
complex to form a supercomplex. The CSN supercom-
plex regulates the balance between β-catenin and APC:
while it stimulates β-catenin degradation, USP15 associ-
ated with the CSN stabilizes APC. Upon Wnt stimulation,
the CSN complex dissociates from SCFβ-TrCP and the
APC-Axin complexes, rendering APC susceptible for
proteolysis. This model suggests that Wnt-induced deg-
radation of APC promotes β-catenin stabilization, which
is not consistent with earlier studies showing stabilization
of APC upon Wnt signaling [67,190].
Dvl (three vertebrate isoforms: Dvl1, Dvl2 and Dvl3) is

the decision point for downstream canonical and non-
canonical Wnt signaling branches and plays a critical
role in the relay of signals from the LRP6 receptor com-
plex to downstream effectors in the Wnt/β-catenin path-
way [191-194]. The level of Dvl is tightly regulated by
ubiquitination-mediated degradation. Several ubiquitin
ligases have been identified as negative regulator of Wnt
signaling by physically interacting with Dvl to enhance
its ubiquitination and subsequent degradation through
proteasome or lysosome under different physiological con-
ditions [80-84]. In a Wnt-dependent manner, the BTB-
protein Kelch-like 12 (KLHL12) binds to Dvl, promoting
its poly-ubiquitination and degradation and antagonizing
the Wnt–β-catenin pathway in cultured cells, Xenopus
and zebrafish embryos [80]. Wnt stimulation is known
to hyperphosphorylates Dvl, which is required for the full
activation of the Wnt pathway [71,73]. The HECT-
containing Nedd4-like ubiquitin E3 ligase ITCH inter-
acts with Dvl, the interaction requires both the PPXY
motif and the DEP domain of Dvl. ITCH ubiquitinates
and degrades phosphorylated Dvl and but does not appear
to influence the function of nuclear Dvl in the Wnt signal-
ing pathway [81].
NEDD4L (neural precursor cell expressed, develop-

mentally down-regulated 4-like) is a member of the
NEDD4 family ubiquitin ligases, directly binds to Dvl2
through the WW3 domain of NEDD4L and the PY
motif of Dvl2, and targets Dvl2 for proteasomal deg-
radation through K6-, K27-, and K29-linked atypical
ubiquitination [82]. By promoting Dvl2 degradation,
NEDD4L negatively regulates the Wnt/β-catenin pathway
and antagonized Dvl2-induced axis duplication in Xen-
opus embryos. In a recent study autophagy was shown to
negatively regulate Wnt signaling by promoting Dvl deg-
radation through Von Hippel–Lindau protein (VHL)-me-
diated polyubiquitination [83]. VHL, a component
of an SCF (Skp1–Cdc53–F-box)-like ubiquitin E3 ligase
complex, binds to Dvl through Dvl’s DEP domain and
ubiquitinates Dvl, ultimately causing Dvl degradation
through the autophagy–lysosome pathway. The negative
association of Dvl protein with autophagy in human
colon cancer suggests a clinical relevance of this finding
[83]. The RING finger domain containing ubiquitin E3
ligase Malin is also found to interact with Dvl2 and pro-
mote polyubiquitination of Dvl through K48- and K63-
linked ubiquitin chains, leading to its degradation through
both proteasome and autophagy [84].
The involvement of multiple ligases highlights the im-

portance of tight control of Dvl level in cells. But how
these E3 ubiquitin ligases—KLHL12, ITCH, NEDD4L,
VHL and Malin—distinguish themselves from each other
as an ubiquitin ligase for Dvls remains unclear. It is pos-
sible that they act on Dvl in a different format or different
isoform of Dvl. For example, ITCH only ubiquitinates
phosphorylated Dvl, whereas pVHL and KLHL12 ubiquiti-
nates both phosphorylated and unphosphorylated Dvl, and
KLHL12 seemed to prefer targeting Dvl3 over Dvl2 [80]. It
is also possible that these ligases are regulated differently in
response to stimuli including Wnt in a tissue-specific man-
ner or within specific subcellular compartments.

Regulation of Wnt receptor LRP6 and Fz trafficking by
ubiquitin
The levels of Wnt receptor LRP6 and Fz, not surprisingly,
greatly impact the activation of the pathway [195,196].
The membrane level of LRP6 is largely regulated by the
interplay between PTMs: palmitoylation, a covalent at-
tachment of fatty acids to cysteine and less frequently to
serine and threonine residues of proteins, and ubiquitina-
tion [39]. LRP6 is palmitoylated shortly after synthesis and
remains palmitoylated, which is required for LRP6 exits
from endoplasmic reticulum (ER). Without palmitoyla-
tion, LRP6 is retained in the ER due to monoubiquiti-
nation on lysine 1403. Mutation of this site leads to a
full recovery of membrane targeting of palmitoylation-
deficient LRP6. Notably, the responsible ubiquitin E3
ligase and deubiquitinating enzyme for LRP6 ubiquiti-
nation, and the types of ubiquitin chains have not been
revealed.
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Ubiquitination commonly drives cell-surface receptor in-
ternalization and lysosomal degradation [197]. The ubiqui-
tination of Fz is mediated by cell-surface transmembrane
E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its
homologue ring finger 43 (RNF43) [27,28]. As a negative
regulator of the Wnt pathway, RNF43 interacts with FZD5,
promotes its ubiquitin-mediated endocytosis, thereby nega-
tively regulating Wnt/β-catenin signaling [27]. ZNRF3, an-
other ubiquitin E3 ligase for Fz, forms a receptor complex
with R-spondin proteins [28]. Without R-spondin, ZNRF3
ubiquitylates frizzled and promotes its degradation, there-
fore inhibiting Wnt signaling. When R-spondin is present,
it clears out ZNRF3 from the membrane by inducing the
interaction between ZNRF3 and the stem-cell marker
LGR4, resulting in accumulation of frizzled and LRP6
on the plasma membrane and enhancing Wnt signal-
ing. In contrast to ubiquitination-mediated lysosomal
trafficking and degradation, de-ubiquitination controls
the recycling of receptors, including frizzled receptors
[29]. Fz is stabilized by UBPY/Ub-specific protease
8 (USP8)-mediated deubiquitination, which leads to
led to recycling of Frizzled to the plasma membrane,
thereby upregulating Wnt signaling [29].

The nonproteolytic roles of K63-linked polyubiquitination
of APC and Dvl and K29-linked polyubiquitination of Axin
The most studied function of ubiquitination in the Wnt
pathway relates to protein turnover. However, emerging
evidence indicates that nonproteolytic function of poly-
ubiquitination of core Wnt pathways proteins through
lysine 63 plays an important role in the regulation of the
pathway [69,70,79,198]. In 2008, Tran et al. reported the
first direct evidence indicating a role of K63-linked ubi-
quitin chain during Wnt-induced transcription [69]. Tra-
bid, a DUB enzyme, is found to preferentially binds to
K63-linked ubiquitin chains with its three tandem NZF
fingers (Npl4 zinc finger), and to cleaves these chains
with its OTU (ovarian tumor) domain. Trabid binds to
and deubiquitylates APC. Although Trabid targets APC
ubiquitination and function as a positive regulator of Wnt
signaling in mammalian and Drosophila cells, surprisingly,
it acts below the stabilization of β-catenin. How Trabid-
mediated deubiquitination of APC links to the activity of
the TCF–β-catenin transcription complex remains un-
solved. Two later studies shed more light on the molecular
mechanisms underlying K63-linked ubiquitination of APC
in Wnt signaling [70,198]. APC is modified predominantly
with K63-linked ubiquitin chains when it is bound to Axin
in unstimulated HEK293 cells, which requires a fully as-
sembled APC/Axin/GSK3β/phospho-β-catenin complex
[198]. Wnt3a stimulation inhibits K63-linked ubiquitina-
tion of APC in a time-dependent manner, an event coin-
cides with the disassociation of Axin from APC and the
stabilization of cytosolic β-catenin, indicating that K63-
linked polyubiquitination of APC impacts the assembly
and/or efficiency of the β-catenin destruction complex.
This finding was further confirmed by the observation
that the E3 ubiquitin ligase HectD1 modifies APC with
K63-lined polyubiquitination and promotes the APC/
Axin interaction to negatively regulate Wnt signaling
[70]. Together, these studies have established a negative
correlation between K63-linked ubiquitination of APC
and activation of the Wnt pathway. Future identification
of the ubiquitination site(s) in APC will enable mutational
analysis and more conclusive determination of the import-
ance of K63-lined ubiquitination of APC in Wnt signaling
and other APC-regulated cellular processes.
Both positive and negative roles of K63-lined ubiquiti-

nation of Dvl in the Wnt regulation have been reported
[78,79]. A prior study shows that the N-terminus of Dvl1
(K5, 20, 34, 46, 50, 60 and 69 on the DIX domain) is modi-
fied by K63-linked polyubiquitination, which requires
DIX-domain- mediated polymerization of Dvl [79]. The
deubiquitinating enzyme CYLD binds to and deubiqui-
nates Dvl, inhibiting the signaling activity of Dvl and the
activation of the Wnt pathway. CYLD is a familial cylin-
dromatosis tumor suppressor gene, mutations in the
CYLD gene cause human familial cylindromatosis [199].
The finding that hyperactive Wnt signaling in human
cylindroma skin tumors arises from mutations in CYLD
validates the clinical significance of CYLD-mediated
deubiquitination of Dvl [79]. In contrast to the positive
role of K63-linked ubiquitination of Dvl in Wnt signal-
ing [79], a recent study shows that K63-linked ubiquiti-
nation of Dvl on four lysines at the C-terminus within
the DEP domain (K413, 444, 451 and 461) plays a nega-
tive role in the regulation of Wnt signaling [78]. Usp14,
identified as a deubiquitinase for Dvl, transiently inter-
acts with Usp14 upon Wnt stimulation, disassembles
K63-linked polyubiquitin chains attached to Dvl, an
event that is required for Wnt signaling. Tissue micro-
array analysis of colon cancer has revealed a strong cor-
relation between the levels of Usp14 and β-catenin,
providing further support for the negative of K63-linked
ubiquitination of Dvl in Wnt signaling. Together, these
two studies suggest that ubiquitination of Dvl on lysines
clustered in different domains (i.e., the N-terminal DIX
domain vs. the C-terminal DEP domain) through K63-
lined ubiquitin chains involves different deubiquitinase and
plays seemingly contradictory roles (positive and negative)
in Wnt signaling. Since both studies used HEK293 cells as
a cellular model for most of the mechanistic experiments
[78,79], the different outcome of Dvl ubiquitination appears
not to result from cell-type-specific or cellular context-
specific effects. The contradictory roles of K63-linked
ubiquitination of Dvl add further complexity to the un-
derstanding of the molecular mechanisms underlying
the still perplexing role of Dvl in Wnt signaling.



Gao et al. Cell & Bioscience 2014, 4:13 Page 12 of 20
http://www.cellandbioscience.com/content/4/1/13
Ubiquitination of Axin by ubiquitin ligases Smurf2
and RNF146 mediates Axin degradation [44,45,47].
Smurf1 is recently identified as an additional ubiquitin
E3 ligase for Axin ubiquitination [46]. Unexpectedly,
smurf1-mediated Axin polyubiquitination at Lys789/
821 with K29-linked polyubiquitin chain does not cause
its degradation, but instead disrupts its association
with LRP5/6, resulting in suppression of LRP6 phos-
phorylation at Ser1490. Consistent with its negative
role in Wnt signaling, Axin ubiquitination with K29-
linked polyubiquitin chain is significantly suppressed
by Wnt3a stimulation.

Sumoylation
In addition to ubiquitin, there is a growing family of
ubiquitin-like proteins (UBLs) that modify cellular tar-
gets in a pathway parallel to, but distinct from, that of
ubiquitin. SUMO (Small Ubiquitin-like Modifier) pro-
teins are a family of small proteins that are around 100
amino acids in length and 12 kDa in mass. Mammalian
SUMO has four isoforms: SUMO1, SUMO2, SUMO3,
and SUMO4. SUMO2 and SUMO3 share 95% sequence
homology and are distinct from SUMO-1(often collect-
ively referred to as SUMO2/3). Sumoylation refers to the
process that small ubiquitin-related modifier (SUMO)
is covalently attached to the target proteins through
sequential enzymatic reactions involving the activity
of SUMO activating enzyme (E1), SUMO conjugating
enzyme (E2) and SUMO ligase (E3) [200,201]. Sumoy-
lation is a reversible process. Removal of SUMO from
its target proteins is carried out by members of
SUMO-specific proteases (SENP) family [202]. SUMO
was identified as a post-translational modifier almost
two decades ago [203], and our knowledge of sumoylation
has been greatly expanded since then. We now know that
at any given time, only a small portion of a particular sub-
strate is modified by SUMO, but the very small amount of
sumoylated proteins play an important role in the regula-
tion of diverse signaling pathways and is critical to main-
tain normal cell function [204,205].
The identification of Axam (Axin Associating Molecule)

as a novel Axin-binding protein and a negative regulator
of Wnt/β-catenin pathway provides the first evidence that
sumoylation is involved in the regulation of Wnt signaling
[206]. Axam belongs to the SENP family, and downregula-
tion of β-catenin by Axam requires its DeSUMOylation
activity [207]. Later, sumoylation of LEF1 is found to nega-
tively regulate LEF1 transcriptional activity by sequestra-
tion into nuclear bodies [117]. The protein inhibitor of
activated gamma (PIASy) is identified as a LEF1 SUMO
E3 ligase [117]. In contrast, PIASy-dependent sumoylation
of TCF4, another member of TCF/LEF family, appears
to activate β-catenin-dependent transcriptional activity
of TCF4, whereas Axam has opposing effect [118].
Sumoylation of the scaffold protein Axin at its C-terminal
six amino acids stretch (C6 motif ), a motif that is
critical for Axin interaction with three SUMO-1 E3s,
PIAS1, PIASxβ and PIASy, prevents its polyubiquitina-
tion, thus increasing its stability [48,208]. Given the
fact that Axin is the concentration-limiting component
in the β-catenin destruction complex [49,186], it is rea-
sonable to expect that sumoylation of Axin is involved
in the regulation of Wnt signaling by controlling Axin
steady-state level. Surprisingly, it appears not to be the
case because wt Axin and Axin sumoylation-defective
mutants destabilize β-catenin and inhibit LEF1 tran-
scriptional activity at similar level [48]. GSK3β is found
to be sumoylated at lysine 292 [61]. Mutation of the
lysine 292 inhibits GSK3β activity toward tau and
reduces GSK3β stability. However, whether sumoylation
of K292 on GSK3β plays a role in Wnt signaling re-
mains unexplored. Transducin β-like protein 1 (TBL1)
and TBL1-related protein (TBLR1) function as tran-
scriptional coactivators in canonical Wnt pathway by
recruiting β-catenin to the Wnt target gene promoters
[209]. A prior study indicates that Wnt-dependent sumoy-
lation of TBL1 and TBLR1 releases them from SMRT/N-
CoR corepressor complex and enhances the formation
of the TBLR1-TBL1-β-catenin complex and their re-
cruitment to Wnt target gene promoters [210]. Sumoy-
lation or ubiquitination fusion protein methodology is a
powerful complementary strategy for mutant approach
that is used to discriminate between the consequence
of lacking substrate sumoylation and conformational
change-related artifacts [211-215]. The observation that
fusion SUMO1 to sumoylation mutants of TBL1 and
TBLR1 restores the activity of TBL1 and TBLR1 thus
validates the functional role of sumoylation in the regu-
lation of TBL1 and TBLR1and Wnt target genes [210].

Acetylation
Protein acetylation is a process that an acetyl group is
transferred to the ε-amino group of an lysine residue of
target protein [216]. Acetylation is catalyzed by acetyl-
transferase and the reverse process known as deacetyla-
tion is catalyzed by deacetylase [217,218]. Acetylation is
well known to occur on N-terminal tail of histone pro-
tein to weaken DNA-histone interaction by neutralizing
its positive charge, thereby activate gene expression
[219-221]. Site-specific acetylation of a growing num-
ber of non-histone proteins involved in the regulation
of diverse cell functions has been shown to regulate
their activity, localization, specific interactions, and
stability/degradation [222,223]. Using high-resolution
mass spectrometry approach, an earlier study has iden-
tified 3600 lysine acetylation sites on 1750 proteins,
suggesting that this modification is one of the most abun-
dant chemical modifications in nature [224]. Nevertheless,
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to date, only a few components of the Wnt/β-catenin
pathway including β-catenin and TCF are found regulated
by acetylation. β-catenin is acetylated by the CREB-
binding protein (CBP) acetyltransferase at lysine 49, a ly-
sine site that is frequently found mutated in cancer [102].
Mutation of K49 activates transcription of Wnt pathway
target in a promoter-specific fashion, implying a negative
role of acetylation of β-catenin at K49 in Wnt signaling. In
contrast, a later study shows that the transcriptional coac-
tivator p300 upregulates β-catenin-dependent gene tran-
scription by acetylating β-catenin at lysine 345, which
increases the affinity of β-catenin for Tcf4 [103]. Con-
sistent with this, a more recent study indicates that
acetylation of β-catenin at lysine 19 and 49 by p300/
CBP-associated factor (PCAF) stabilizes β-catenin, in-
duces β-catenin nuclear translocation and increases its
transcriptional activity, thereby upregulating Wnt sig-
naling [104]. The positive role of β-catenin acetylation
is further supported by a study showing that the NAD-
dependent deacetylase sirt1 deacetylates β-catenin,
leading to inhibition of β-catenin transcriptional activity
and cell proliferation [225]. Identification of sirt1 deace-
tylation sites on β-catenin will help to elucidate the
underlying mechanism by which acetylation of particular
sites on β-catenin regulates Wnt signaling. Nonetheless,
the observation that sirt1expression inversely correlates
with nuclear β-catenin in human colon tumor specimens
suggest the importance of balanced acetylation status of
β-catenin in human disease.
Members of the TCF/LEF family are also substrates of

acetylation [114-116]. It has been shown that drosophila
CREB-binding protein (dCBP) binds to dTCF, acetylates
lysine 25 in the Armadillo (β-catenin in drosophila)-bind-
ing domain of dTCF, which in turn lowers the affinity of
Armadillo binding to dTCF, thereby repressing TCF [114].
In contrast, acetylation of the Caenorhabditis elegans LEF/
TCF homolog POP-1 by CBP/p300 at lysines 185, 187 and
188 is required for POP-1 nuclear localization and bio-
logical activity during C. elegans embryogenesis [115],
thus validating the physiological relevance of acetylation
of POP-1, though POP-1 is considered to participate in
the non-canonical Wnt pathway. The positive role of
TCF acetylation in Wnt signaling is further supported
by a recent study showing that human TCF4E2 can be
acetylated at lysine 150 by CBP, leading to relief of tran-
scriptional repression by transcription repressor pre-
sumably by inducing conformational change of TCF::
DNA complex [116].

ADP-ribosylation
ADP-ribosylation, which refers to the enzymatic transfer
of one or more ADP-ribose from NAD + to the acceptor
proteins [226], has been recognized as an important
regulator in a wide range of biological processes, including
DNA damage responses, transcriptional regulation, cell
death as well as energy metabolism [227,228]. The im-
portance of ADP-ribosylation in Wnt pathway is illus-
trated by the study in which TNKS1 and TNKS2 are
identified to interact with Axin through its tankyrase-
binding domain (a small amino-terminal region of axin 1,
amino acids 19–30) and catalyze its poly-ADP-ribosylation,
which in turn facilitates poly-ubiquitination and subse-
quent proteasome degradation of Axin [49]. Targeting
TNKS by small molecule inhibitors including XAV939
[49] and WIKI4 [229] inhibits Wnt signaling and sup-
presses the malignant phenotypes including anchorage-
independent growth in colorectal cancer cells, suggest-
ing that TNKS is a potential target for treatment of
Wnt-dependent cancers. More recently, in a screen to
identify targets of ADP-ribosyltransferases ARTD10 and
ARTD8, GSK3β is found to be modified by mono-ADP-
ribosylation [62]. Further analysis indicates that this mo-
dification inhibits GSK3β activity in vitro. It is of great
interest to understand the role of ADP-ribosylation of
GSK3β in Wnt signaling in the future.

Cross-talk between posttranslational
modifications
PTMs often interplay to work in concert [21]. The inter-
connected modifications create multiple layer of regula-
tion to fine tune the function of target protein and to
determine the functional read-out. Crosstalk between
PTMs has been classified as positive type or negative
type [230]. Examples of positive crosstalk include prim-
ing phosphorylation, phosphorylation-dependent ubi-
quitination or sumoylation, and sumoylation-dependent
ubiquitination. In these events, one PTM is believed to
promote the addition of the second PTM through creat-
ing a binding site or recognition motif for the protein
that is essential for the second PTM. The well-known
example of negative crosstalk between PTMs is the
competitive modification of different modifiers on a sin-
gle residue.
Although crosstalk between PTMs has emerging as an

important regulatory mechanism in signal transduction
[21,231-233], most studies on the regulation of Wnt
pathway by PTMs have focused on signal modifications.
The best studied PTM crosstalk in Wnt/β-catenin path-
way is the positive and negative interplay between PTMs
on β-catenin: the sequential phosphorylation and ubi-
quitination of β-catenin [12,14,123] and competition
between acetylation and ubiquitination of overlapping
lysine residues on β-catenin [104]. In the case of posi-
tive interplay, β-catenin is phosphorylated at Ser45 by
CK1α, which primes β-catenin for subsequent phos-
phorylation at Ser33, Ser37 and Thr41 by GSK3 and
then triggers the recruitment of β-TrCP to β-catenin,
resulting in poly-ubiquitination and degradation of
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β-catenin [12,14,123]. Lysines 19 and 49 on β-catenin
are β-TrCP-dependent ubiquitination sites [93]. In the
negative interplay case, acetylation of β-catenin at K19
and 49 by PCAF blocks β-catenin ubiquitination thereby
stabilizing β-catenin [104]. How these three modifications
are coordinated to control β-catenin protein level and the
activation of the Wnt pathway in biological and patho-
logical processes remains to be determined.
Another example of PTM crosstalk in the Wnt/β-ca-

tenin pathway is the poly-ADP-ribosylation-mediated
polyubiquitination of Axin [49]. A recent study combining
crystallographic and biochemical analysis sheds light on
the mechanism of interplay between the two PTMs of
Axin [234]. RNF146, The ubiquitin E3 ligase for Axin,
contains a WWE domain and a RING domain, and is
the only known E3 ubiquitin ligase to date that requires
poly-ADP-ribosylation of the substrate for subsequent
polyubiquitination [44,45,234,235]. The WWE domain of
RNF146 specifically binds to iso-ADP-ribose (iso-ADPR),
the smallest internal PAR structural unit containing the
characteristic ribose–ribose glycosidic bond formed during
poly-ADP-ribosylation rather than mono (ADP-ribose),
leading to ubiquitination of poly-ADP-ribosylated Axin
[234]. Several residues in RNF146 WWE domain are
identified to be critical for iso-ADPR binding; sequence
alignment further indicates these residues are conserved
among WWE domains. Given that many ubiquitin E3
ligases contain WWE domain, it highly possible that
poly-ADP-ribosylation is a general mechanisms to tar-
get protein for ubiquitination [234].

Conclusions
Biological and clinical study over the past few years has
greatly expanded our understanding of the complex
Wnt signaling network, but there are still many fun-
damental aspects of the Wnt-related biology to be discov-
ered and understood. Characterization, dynamic detection
and quantification of chemical modifications of the path-
way components are essential for us to gain deeper insight
into biological control of the pathway. Although identifica-
tion of PTMs involved in the Wnt/β-catenin pathway and
validation of their function are far from completion—in
fact a large number of PTMs are not all validated as
physiological relevant, the concept that relaying Wnt sig-
nal requires dynamic changes in PTM states of the path-
way components has been emerged. We now know that
instead of relying solely on one particular modification,
the Wnt pathway is controlled by the coordinated actions
of phosphorylation, ubiquitination and other PTMs. How-
ever, little is known as to how PTM coordination is effect-
ively achieved at the molecular and cellular level. For
example, systematic analysis of PTM changes with respect
to space and time remains an important future goal for
PTM research in the Wnt field, and how signaling
pathways or upstream enzymes that catalyze these
PTMs interact combinatorially, hierarchically or recip-
rocally to ensure the sequence of the occurrence of the
PTMs and kinetics of their durations during both “Wnt
on and Wnt off” situations remains largely unexplored.
As the importance of PTMs has increasingly been ap-

preciated, there is an increasing need for improved tech-
nologies that enable researchers to measure the state
and function of PTMs in physiological situations. Char-
acterizing the function of PTM is technically challenging
due to the dynamic and reversible nature of PTM, and
the complicated interplays between PTMs. A research
trend in the field of PTM is the mouse knockin technol-
ogy. Knockin methodology, coupled with gene knockouts
and specific pharmacological inhibitors, is a powerful ap-
proach to dissect the physiological roles of individual
modification at given sties on a given protein. However, it
is an imperfect model because it knocks the protein per-
manently in one form—the protein with mimicked modifi-
cation or the protein lacking modification, therefore it
cannot recapitulate the dynamic and reversible nature of
the PTMs.
Aberrant activation of Wnt/beta-catenin pathway con-

tributes to development of different human cancers,
especially colorectal cancers. As pointed by Nusse and
Varmus [236], “among the most significant challenges in
future research in the Wnt field is the identification of
effective and specific Wnt pathway inhibitors for use in
cancer and other diseases”. Unfortunately, Wnt signaling
pathway is difficult to target [237,238]. The success of
tankyrases inhibitors –XAV939 [49] and WIKI4 [229]—
as Wnt pathway inhibitors by inhibiting poly-ADP-
ribosylation of Axin suggests that modulating PTMs of
the Wnt pathway components represents a promising
alternative approach for targeting the Wnt pathway. To
this end, we believe that a better understanding of the
regulation of the Wnt/β-catenin pathway by PTMs
could have far-reaching implications for identifying
novel approaches for targeting Wnt signaling.
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