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The KCTD family of proteins: structure, function,
disease relevance
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Abstract

The family of potassium channel tetramerizationdomain (KCTD) proteins consists of 26 members with mostly
unknown functions. The name of the protein family is due to the sequence similarity between the conserved
N-terminal region of KCTD proteins and the tetramerization domain in some voltage-gated potassium channels.
Dozens of publications suggest that KCTD proteins have roles in various biological processes and diseases. In this
review, we summarize the character of Bric-a-brack,Tram-track, Broad complex(BTB) of KCTD proteins, their roles in
the ubiquitination pathway, and the roles of KCTD mutants in diseases. Furthermore, we review potential downstream
signaling pathways and discuss future studies that should be performed.
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Introduction
The human potassium (K+) channel tetramerization
domain (KCTD)family of proteins consists of 26 mem-
bers that share sequence similarity with the cytoplasmic
domain of voltage-gated K+ channels(Kv channels) [1-3].
The KCTD proteins have relatively conserved N-terminal
domains and variable C-termini. Comparative analyses of
the conserved N-terminal sequence suggest the presence
of a common Bric-a-brack,Tram-track, Broad complex
(BTB) domain, which is also known as the POZ domain.
The BTB domain is a versatile protein-protein interaction
motif that facilitates homodimerization or heterodimeriza-
tion. A variety of functions have been identified for the
BTB domain-containing KCTD proteins. These functions
include transcriptional repression [4,5], cytoskeleton regu-
lation [6], tetramerization and gating of ion channels [7,8],
and interaction with the cullin E3 (Cul3) ubiquitin ligase
complex [9,10]. In this review, we will summarize the
homology between KCTD family members and some of
the key features of KCTD proteins. We will also discuss
the roles of mutant KCTDs in disease.
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BTB domain and homology between KCTD family members
The human genome includes approximately 400 BTB
domain-containing proteins. The BTB domain is a highly
conserved motif of about 100 amino acids and can be
found at the N-terminusof C2H2-type zinc-finger tran-
scription factors and in some actin-binding proteins [11].
BTB domain-containing proteins include transcription
factors, oncogenic proteins, ion channel proteins, and
KCTD proteins [2,12-14]. Many BTB domain-containing
proteins contain one or two additional domains, such as
kelch repeats, zinc-finger domains, FYVE (Fab1, YOTB,
Vac1, and EEA1) fingers which is a novel zinc finger-like
domain found in several proteins involved in membrane
trafficking, or ankyrin repeats [15]. These special domains
provide unique characteristics and functions to the BTB
proteins. The BTB domain facilitates protein-protein
interactions between KCTD proteins to allow self-
assembly or with non-BTB-domain-containing proteins
to promote oligomerization [15]. The X-ray crystal
structure of KCTD5 also revealed assemblies of five
subunits while tetramers were anticipated [16]. A variety
of functional roles of KCTD proteins have been identified
by different signal pathways, including sonic hedgehog
(Shh) [17-19], Wnt/beta-catenin [20], FGF [1], and GABA
signaling [21-24]. Alignment of the amino acids in the po-
tassium tetramerization domains of all known KCTD pro-
teins demonstrates that most KCTD proteins can be
divided into seven groups by amino acid sequences.
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The A-group contains KCTD9, KCTD17, KCTD 5, and
KCTD 2. The B-group contains KCTD10, KCTD13, and
TNFAIP1. The C-group contains KCTD7 and KCTD14.
The D-group contains KCTD8, KCTD12, and KCTD16.
The E-group contains KCTD11, KCTD21, and KCTD6.
Members of the F-group include KCTD1 and KCTD15.
And the final group is the G-group, which contains
KCTD3 and SHKBP1 and BTB10. KCTD20, KCTD18,
KCTD19, and KCTD4 do not belong to these seven
groups (Figure 1). The evolutionary tree of the KCTD
family proteins is similar to the group that Skoblov M
et al. built [25]. We also suggest that homologous KCTD
members may share similar functional roles in prolifera-
tion, transcription, protein degradation, regulation of G-
protein coupled receptors and other molecular or bio-
logical processes.

KCTD proteins as adaptor molecules
BTB-domain-containing KCTD proteins may act as adap-
tors for interactions between the Cul3 ubiquitin ligase and
its substrates. Thus, BTB KCTD proteins may facilitate
Figure 1 A paralogues tree of the KCTD family proteins as cullin ligas
entire amino acid sequences of the KCTD family proteins; Right: the family
successful ubiquitination of substrate proteins [26]. Cul3
is one of seven human cullin proteins (Cul1,Cul2,Cul3,
Cul4A,Cul4B,Cul5, and Cul7). Most cullins form com-
plexes with substrate proteins by interacting with the BTB
domains of adaptor proteins [3]. Thus, the BTB domain is
important for the process of ubiquitination and protein
degradation. Ubiquitination involves a three-step enzy-
matic cascade, which is initially activated by ubiquitin-
activating enzyme(E1). The substrate is then transferred to
ubiquitin-conjugating enzyme(E2) and is finally linked
with ubiquitin ligase(E3) [27]. Various cellular functions,
including cell proliferation, differentiation, apoptosis, and
protein transport, involve protein ubiquitination and de-
ubiquitination [28]. Bioinformatics and mutagenesis ana-
lyses have demonstrated that the best-characterized mem-
ber of the KCTD family, KCTD11/REN, is expressed as
two alternative variants, sKCTD11 and lKCTD11. Despite
the fact that both variants possess a BTB domain in the
N-terminus, only the lKCTD11 form has a complete
BTB domain. Intriguingly, this has not disturbed the
cul3-binding activity of sKCTD11. KCTD11/REN also
e adaptor and their substrate. Left: A paralogues tree built using
of KCTD proteins corresponding to cullin and their substrate.
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mediates histone deacetylase (HDAC1) ubiquitination and
degradation via cullin binding, resulting in reduced Hh/
Gli signaling [18]. The KCTD21 and KCTD6 have also
been found to have the same features as KCTD11 [29].
Thus, KCTD21 and KCTD6 may also facilitate protein
degradation and reduced cellular signaling due to asso-
ciations with ubiquitin ligases. KCTD5 and KCTD7 have
also been shown to function as substrate-specific adaptors
for cullin3-based E3 ligases [3,30,31]. In addition, KCTD7
has been shown to increase potassium conductance due
to increased proteasome degradation of an unidentified
substrate [30]. Thus, several members of the KCTD family
function as critical adaptor molecules for ubiquitin-
mediated protein degradation. This function ultimately
results in the modulation of important downstream sig-
naling pathways and biological processes. As can be seen
from Figure 1, cullin is fairly widely interaction with the
family of KCTD proteins. In the future, this novel sub-
strate of KCTD will help to understand the function of
the complex of CUL3 –BTB.

KCTDs and disease
KCTD proteins have essential roles in proliferation, differ-
entiation, apoptosis, and metabolism. Improper regulation
of KCTD genes has been associated with various diseases,
including medulloblastoma [32], breast carcinoma [33],
obesity [34,35], and pulmonary inflammation [36]. Many
studies show associations between mutations in individual
KCTD genes or allelic loss of KCTDs with specific
Table 1 KCTD proteins and related diseases

Disease KCTD -
related

Function of KCTD prote

Cancer Gastrointestinal
stromal tumor

KCTD12 biomarker

KCTD10 prognostic biomarker

Medulloblastoma KCTD11 Suppress Histone Deacet

KCTD21

KCTD6

Neurological
disease

Progressive Myoclonic
Epilepsy (PME)

KCTD7 KCTD7 mutations might

Abnormal Head Size KCTD13 overexpression microcep

underexpression macroce

Metabolic
disorder

HDL cholesterol
concentration

KCTD10 KCTD10 (V206VT - > C an
HDL-cholesterol concentra
intakes.

Others Influence EPO
production

KCTD2 Production of erythropoie
CEBPG, KCTD2, and TMEM

Live injury of
HBV-ACLF

KCTD9 The overexpressed KCTD
HBV-ACLF, which contrib

Chronic Tinnitus KCTD12 Risk modifier

Scalp-ear-nipple(SEN)
syndrome

KCTD1 missense mutation in KC
diseases. For example, a homozygous mutation (R99X) in
exon 2 of KCTD7 has been described in progressive myo-
clonic epilepsy (PME) [37]. A second homozygous mis-
sense mutation (R94W) in exon 2 of KCTD7 has also
been found in PME [38]. In addition, a heterozygous mis-
sense mutation (R84W) and a large heterozygous deletion
of exons 3 and 4 of KCTD7 have also been reported in pa-
tients with PME [30,31]. Allelic deletion of human KCTD11
at chromosomal location 17p13.2 has been found in me-
dulloblastoma [19,39]. In addition, gene copy number
variants (CNVs) of KCTD13 mapping to chromosomal lo-
cation 16p11.2 are considered to be major genetic causes
of macrocephaly and microcephaly. Overexpression of
KCTD13 induces microcephaly, whereas suppression of
the same locus results in a macrocephalic phenotype [40].
Missense mutations in KCTD1occur in Scalp-ear-nipple
(SEN) syndrome [41]. Single nucleotide polymorphisms
(SNPs) of KCTD10 (i5642G- > C and V206VT- > C) are
associated with altered concentrations of HDL cholesterol,
particularly in subjects with high levels of carbohydrate in-
take [42]. KCTD mutants affect proliferation, differenti-
ation, apoptosis, and metabolism in different tissues. For
example, the CNVs of KCTD13 affect the balance of pro-
liferation and apoptosis in neuronal progenitor cells. In
addition, deletions in KCTD11 abrogateinhibition of Shh
signaling at the outer to inner external granule layer-
granule cell progenitor (EGL GCP) transitions by affecting
expression of Gli1 and Gli2 [19]. Deletions in KCASH,
KCTD21, or KCTD6 block interactions with ubiquitination
ins in disease Reference

Ref. [43]

ylase and Hedgehog activity in medulloblastoma Ref. [17]; Ref. [19]; Ref.
[39];

be a recurrent cause of PME Ref. [30]; Ref. [31]; Ref.
[37]; Ref. [38]

haly phenotype Ref. [40]

phaly phenotype

d i5642G - > C) may contribute to the variation in
tions, particularly in subjects with high carbohydrate

Ref. [42]

tin (EPO) was significantly inhibited when
183A were knocked down

Ref. [44]

9 activates NK cell in peripheral blood and liver in
utes to liver injury

Ref. [45]; Ref. [46]

Ref. [22]

TD1 causes SEN syndrome Ref. [41]
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enzymes, preventing degradation of HDAC1. This leads
to increased acetylation of Gli1 and increased Hh/Gli
signaling, which drives uncontrolled proliferation and de-
velopment and progression of medulloblastoma [17,39].
Not only mutant KCTD could cause diseases, but also
the change of KCTD expression involved in different dis-
eases [22,43-46]. All of the diseases related with KCTD
proteins have been list in a Table 1 to make the family
more convenient for further study.
Conclusion
There are some features of KCTDs that have not been
reviewed in this article. For example, KCTD8, -12, -12b,
and-16 form functional oligomers with the GABAB recep-
tor, resulting in the modulation of important signaling
pathways [21-24,47]. In addition, the PDIP1 family mem-
bers (KCTD10, KCTD13, and TNFAIP1) are tumor necro-
sis factor-a-inducible proteins that can stimulate the
activity of DNA polymerase in DNA replication and repair
pathways [48]. Furthermore, interactions between KCTD1,
KCTD15, and AP-2 represses the transcriptional activity of
AP-2a [13], Finally, KCTD1 has been shown to interact
with PrPC [49]. In the review, we summarize the BTB char-
acteristics of the KCTD proteins, their roles in the ubiquiti-
nation pathway, and the relevance of KCTD mutations in
various diseases. The review highlight the extraordinary
possibility of the interaction of cullin-KCTDs to target sub-
strates for ubiquitin-dependent degradation. If BTB-
containing KCTD proteins can assemble into Cul3-based
complexes, we estimate KCTD proteins can recruit sub-
strates into ubiquitin system. We specifically discuss the
role of KCTD1 in the ubiquitination pathway via inter-
action with cul3. We also hypothesize that KCTD1 mediate
prion protein into ubiquitination signal pathway, and de-
regulation of the KCTD1 mediated prion protein ubiquiti-
nation might be both a cause and result of prion disease.
Furthermore, we speculate that members of the same sub-
groups may have similar roles in biological processes or
molecular signaling pathways. We believe that further in-
vestigations into the functions of individual KCTD family
members are warranted, particularly within the context of
specific diseases as described here.
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