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Regulation of TGF-f3 receptor activity

Fei Huang and Ye-Guang Chen’

Abstract

receptor activity.

TGF-B signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell
plasticity and migration. Its dysfunctions can result in various kinds of diseases, such as cancer and tissue fibrosis.
TGF-B signaling is tightly regulated at different levels along the pathway, and modulation of TGF-B receptor activity
is a critical step for signaling regulation. This review focuses on our recent understanding of regulation of TGF-8
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Introduction

Transforming growth factor-f (TGF-8) family, including
TGE-B, activin, Nodal, bone morphogenetic proteins
(BMPs) and others, play vital roles in development, tissue
homeostasis and some diseases development [1-3]. TGEF-
B signaling is initiated by the binding of TGF-B to its ser-
ine and threonine kinase receptors, the type II (TBRII)
and type I (TBRI) receptors on the cell membrane.
Ligand binding leads to formation of the receptor hetero-
complex, in which TBRII phosphorylates threonine and
serine residues in the TTSGSGSG motif of TBRI and
thus activates TPRI [2,4]. The activated TBRI recruits
and phosphorylates the R-Smad proteins, Smad2/3 for
TGF-B and activin signaling while Smad1/5/8 for BMP
signaling, which then form a heterocomplex with the Co-
Smad Smad4 [5,6]. The Smad complexes are then trans-
located into the nucleus to regulate transcription of the
target genes in cooperation with other co-factors [5,7,8].
For each member of the TGF-f family, they have their
own type I and type II receptors. Among the seven type I
receptors, which are also called as activin receptor-like
kinases (ALKs), TBRI/ALK5 can mediate TGF-B signal-
ing with the TGF-f type II receptor TBRII to activate
Smad2/3 in universal cell types, while in endothelial cells
ALK1 functions with TBRII to activate Smad1/5/8 for
TGE-B signaling [8-10]. In response to BMPs, ALK2/3/6
can activate Smadl/5/8 with the type II receptors
BMPRII, ActRII and ActRIIB [11,12]. ALK4/7 can acti-
vate Smad2/3 with ActRII and ActRIIB to mediate
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activin/Nodal signaling [13]. In this review, we mainly
discuss the regulation mechanisms of TGF-§ signaling
receptors.

In addition to activating Smad2/3, TGF-B can also acti-
vate mitogen-activating protein kinases (MAPKs) (ERK,
p38 and JNK), phosphatidylinositol 3 kinase (PI3K)/Akt
and small GTPases in a context-dependent manner
[14-17]. Furthermore, despite the fact that TGF-$ can acti-
vate Smad1/5/8 in endothelial cells which requires ALK1
[18,19], it can also activate Smad1/5/8 in other types of
cells that is facilitated by the BMP type I receptors ALK2/
3/6 or by other unclear mechanisms [20-22]. Those Smads
are previously regarded solely as the substrates of BMP
receptors to mediate BMP signaling. As modulation of the
receptor activity is important for TGF-B signaling, much
attention has been paid to this issue. This topic has been
covered in many excellent review articles, including the
one by Kang et al [23]. The current article attempts to
summarize the recent development of our understanding
on TGE-B receptor activity regulation.

Phosphorylation of TGF-B receptors

Despite the fact that they are protein kinases themselves,
TGE-B receptors also function as substrates for phos-
phorylation to regulate their activity [4] (Figure 1). TBRII
are constitutively active and can undergo autophosphory-
lation. Ser213 and Ser409 phosphorylation are essential
for TBRII’s kinase activity while Ser416 phosphorylation
has the inhibitory effect [24]. TBRI activation requires
the phosphorylation in its GS domain (TTSGSGSG) by
TBRII, and mutation of two or more residues in this
motif impairs TBRI kinase activity and further disrupts
expression of a Smad-dependent reporter [25]. For still
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Figure 1 Phosphorylation of TGF-§ receptors. Phosphorylation of TGF- receptors regulates their activity and thus downstream Smad-
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unknown mechanisms, however, substitution of the non-
phosphorylation residue Thr204 by aspartic acid leads to
partial activation independent of ligands [25]. The resi-
due Ser165 of TPRI can also be phosphorylated upon
ligands stimulation [26]. Interestingly, substitution of
Ser165 with alanine, glutamic acid or aspartic acid has no
effect on TGF-B-induced reporter expression, but
increases TGF-B-mediated growth inhibition and extra-
cellular matrix formation and decreases TGF-B-induced
apoptosis [26]. The same study has also identified several
other phosphoserine residues, but the functional signifi-
cance of these phosphorylations is unclear [26]. TGF-$
receptors are thought to possess both Ser/The kinase
activity and Tyr kinase activity. Indeed, TBRII has been
reported to be autophosphorylated on Tyr259, Tyr336
and Tyr424, and mutation of these three residues
strongly inhibits its kinase activity [27].

Phosphorylation is a reversible process. PPlc, a cataly-
tic subunit of the protein phosphatase 1 (PP1) was
reported to dephosphorylate TBRI [28] (Figure 1). TGF-
B promotes the ternary complex formation of the PP1

regulatory subunit GADD34, Smad7 and TBRI, thus
leading to the recruitment of PP1c via Smad7-GADD34
to the receptor complexes. PP1-mediated dephosphory-
lation of TPBRI serves as a negative feedback mechanism
to downregulate TGF-B signaling. TBRI can also be
dephosphorylated by the protein phosphatase PP2A
[29]. Interestingly, Ba. (PPP2R2A) and Bd (PPP2R2D),
two regulatory subunits of PP2A have been shown to
have opposite functions in regulation of signaling
mediated by TGF-B as well as other TGF-B family mem-
bers, activin and Nodal. Ba stabilizes the type I recep-
tors of TGF-B and activin/Nodal, while B3 inhibits
receptor kinase activity for unclear mechanisms [29]. In
analogy to TBRI, it is reasonable to assume that TBRII
can also undergo dephosphorylation. However, the
responsible phosphatases have not been reported yet.

Regulation of TGF-B receptor ubiquitination

TGEF-B receptors can undergo ubiquitination-mediated
degradation [30,31]. In addition to requirement of the
conventional ubiquitination system containing ubiquitin
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E1, E2 and E3 ligases, ubiquitination of TBRI appears to
need an adaptor protein, Smad7 [32]. Smad7, a member
of the I-Smads, can interact with the activated TBRI and
recruit the HECT domain-containing E3 ligases Smurfl,
Smurf2, NEDD4-2, or WWP1 to the receptor, leading to
ubiquitination and degradation of the receptor [33-37]
(Figure 2).

Ubiquitination of TBRI is finely controlled by multiple
proteins and mechanisms. The Salt-inducible kinase
(SIK) has been reported to promote Smad7-TBRI com-
plex formation and enhance the ubiquitination-depen-
dent degradation of TBRI [38]. In addition, SIK is a direct
transcriptional target of TGF-f} signaling, and therefore it
functions as a negative regulating feedback mechanism to
limit TGF-B signaling [38]. Atrophinl-interacting protein
4 (AIP4) and Yes-associated protein 65 (YAP65) have
been shown to enhance recruitment of Smad7 to TBRI
and thus inhibit TGF-B signaling [39,40]. In contrast, sev-
eral other proteins have been demonstrated to inhibit the
Smad7-dependent ubiquitination of TBRI. The 90-kDa
heat-shock protein (HSP90) interacts with both TBRI
and TBRIL and inhibition of HSP90 activity increases
Smad7/Smurf2-dependent ubiquitination of TBRI and
decreases TGF-B-induced signaling [41]. TGF-B-stimu-
lated clone 22 (TSC-22) can disrupt the binding of
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Smad7/Smurfs to TBRI and therefore decrease the ubi-
quitination and degradation of the receptor, resulting in
enhanced TGF-f signaling [42]. Regulation of ubiquitina-
tion-dependent degradation of the receptors is an impor-
tant aspect in termination of TGF-f signal transduction.

It seems that TGF-f receptors can be degraded in both
the proteasome and lysosome pathways, and the lysosomal
degradation may not always require ubiquitinaiton. For
instance, Dapper2 can interact with TBRI in the Rab7-
positive late endosomes and facilitate its transport to lyso-
somes for degradation [43,44]. It is unclear whether
Smad7 and ubiquitination play any roles in this process
(Figure 2). Sorting nexin 25 (SNX25) has been reported to
enhance TPRI degradation in lysosomes independent of
ubiquitination [45]. Although the regulation of TBRI
degradation has caught reasonable attention, how TBRII
degradation is regulated is less studied.

Regulation of the heterocomplex formation of TGF-§
receptors and Smad recruitment

The tetrameric complex formation between TBRI and
TPRII is essential for TGF-B signal transduction [46]. It
has long been regarded that both TBRI and TBRII exist
as a pre-formed dimer on the plasma membrane and
ligands binding promotes the homo-dimer to form a
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Figure 2 Degradation of TGF-B receptors. TGF-B receptors can be degraded through both ubiquitination-dependent and -independent ways.
After ubiquitination, both TGF-B type | (TBRI) and type Il (TBRII) receptors can be degraded via proteasome or lysosome. Although it is unclear
how TBRII ubiquitination/degradation is regulated, Smad7 and Dapper2 are important adaptor proteins for ubiquitin E3 ligases (indicated in the
green box)-mediated TBRI ubiquitination and degradation. Smad7-mediated ubiquitination/degradation of TBRI is finely controlled by Smad7-
binding proteins indicated in the pink box.
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hetero-tetramer [47-49]. However, using single-molecule
imaging combined with total internal reflection fluores-
cence microscopy technology, TGF-f receptors were
found to exist as monomers on the membrane in resting
cells and undergo dimerization upon TGF-f} stimulation
[50,51]. Therefore, regulation of receptor complex for-
mation is an important mechanism to control TGF-§3
signaling. The TGF-B coreceptor betaglycan facilitates
TGEF-B signaling by helping presentation of the ligands
to TBRII [52-55]. However, in some cell types such as
pig kidney LLC-PK1 cells, betaglycan can inhibit TGF-
heteromeric receptor complex formation to negatively
regulate the signaling, indicating that betaglycan regu-
lates TGF-B signaling at receptor level in a cell type
dependent manner [53]. BMP and activin membrane-
bound inhibitor (BAMBI) and the ETV6-NTRK3 chi-
meric tyrosine kinase have been demonstrated to
attenuate TGF-B signaling by interfering with the het-
erocomplex formation of TGF-B receptors [56-58]. In
contrast, the immunophilin FKBP12, which physically
binds to the GS domain of TPRI, does not interrupt
receptor complex formation, but blocks TBRI activation
by TBRRII [59-61](Figure 3A).

After phosphorylated by TBRII at the GS domain,
TPRRI is activated to interact with and phosphorylate
Smad2/3. Various proteins associated with receptors
complex have been reported to regulate Smad recruit-
ment, which was already summarized in the review of
Kang et al, such as SARA, STRAP and Axin [23]. Here
we take SARA as an example. Smad archor for receptor
activation protein (SARA), a FYVE domain protein
which associates with membrane via binding to phos-
phatidylinosital-3 phosphate, helps recruitment of
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Smad2/3 to the activated TBRI to facilitate Smad activa-
tion [62]. In addition to affecting receptor complex for-
mation, BAMBI can form a ternary complex with TBRI
and Smad?7 to disrupt the interactions between TPRI
and Smad3 [58]. Post-translational modification of the
receptors can also influence Smad recruitment. Sumoy-
lation is a ubiquitin-like modification and regulates pro-
tein localization and activity [63]. The phosphorylated
TBRI can be sumoylated at Lys389 [64]. Sumoylation of
TBRI can enhance TGF-B signaling by promoting
recruitment and phosphorylation of Smad3 (Figure 3B).

Activation of MAPKs and Smad1/5/8

TGEF-B not only transduces its signal via Smad proteins,
but can also activate other signaling molecules such as
MAPKSs in a cell type-specific manner (Figure 4A). Recep-
tor activity is also required for the later event as inhibition
of TRRI activity blocks TGF-B-induced MAPK activation
[65]. Several studies suggested that TGF-f-mediated
MAPK activation is associated with tyrosine phosphoryla-
tion of TGE-P receptors. Src was reported to phosphory-
late TBRII on Tyr284 and recruit the SH2-containing
adaptors Grb2 and Shc to the receptor [66]. This event
may play an important role in TGF-f-mediated p38 acti-
vation although it has no effect on the canonical Smad2/3
signaling. Like TRRIL, TRRI is also a dual-specificity kinase.
TGF-B can induce tyrosine phosphorylation of TBRI and
then phosphorylation on both tyrosine and serine residues
of Shc, leading to recruitment of Grb2 and Sos, a guanine
nucleotide exchange factor for Ras, and thus MAPK acti-
vation [67]. TBRI was also reported to interact with an E3
ubiquitin ligase TRAF6, which functions to mediate the
activation of p38 and JNK by TGF-B [65,68]. TBRI
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Figure 3 Various mechanisms regulate TGF-f receptor activity. (A) Regulation of TGF-B receptor activity by multiple receptor-binding
proteins. BAMBI and ETV6-NTRK3 attenuates TGF-B receptor activity by interfering receptor heterocomplex formation, while FKBP12 blocks GS
domain phosphorylation of TBRI by TBRII at the basal state. (B) Sumoylation promotes TBRI activity.
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Figure 4 Roles of TGF-§ receptors in activation of MAPKs and Smad1/5/8. In addition to activating Smad2/3, TGF3 can also turn on MAPKs
and Smad1/5/8. (A) Activation of MAPKs can be achieved via the TRAF6-TAK1 axis or the Grb2/Shc-Ras axis. (B) In addition to TGF-B receptors,
activation of Smad1/5/8 has been shown to be dependent on ALK1 and endoglin in endothelial cells or the BMP type | receptors ALK2/3/6 in

other cell types.

enhances the K63-linked ubiquitination of TRAF6, leading
to the activation of TAK1 and stimulation of p38 and JNK
signaling.

Smad1/5/8 is usually activated by BMP, but can also be
activated by TGF-$ [10,18,20-22,69] (Figure 4B). It has
been known that TGF-B can activate Smad1/5/8 via its
endothelial-specific type I receptor ALK1 in endothelial
cells [10,18]. A recent study reported that TBRI-mediated
phosphorylation of endoglin, an endothelial-specific TGF-
B coreceptor, is essential for TGF-B activation of Smad1/
5/8 in endothelial cells [70]. In other cell types, TGF-B-
mediated activation of Smad1/5/8 can be achieved via the
interaction of TBRI with BMP receptors ALK2/3/6 [20], or
in BMP receptor-independent mechanisms [22]. Other
proteins may be involved in this process. For example,
ERBB2, an EGFR family member, has been indicated in
Smad1/5/8 activation induced by TGF-f [21], but the
detailed mechanism still need to be defined.

Other non-canonical TGF-f receptor functions

As many other cell surface receptors, TGF-f receptors
mainly function through activating downstream signaling
molecules, such as Smads, MAPKs and Akt in the case of
TGE-B. However, it has been found that TGF- receptors
can also transduce signals via atypical manners. For
instance, TPRII can interact with and phosphorylate
Par6, which recruits the ubiquitin E3 ligase Smurfl to
degrade RhoA, leading to loss of tight junctions and
epithelial-mesenchymal transition [71] (Figure 5A).

A recent report revealed a nuclear function of TBRI
[72]. K63-linked polyubiquitination of TBRI by TRAF6
promotes its cleavage at the residue G120 by TNF-a
converting enzyme TACE (Figure 5B). The released
intracellular domain (TBRI-ICD) enters the nucleus and
associates with p300 to regulate the expression of target
genes such as Snail and MMP2. TGE-B can activate
PKCC in a TRAF6-dependent manner, and PKCC in turn
facilitates the TACE-mediated cleavage of TBRI. Block-
age of the TBRI-ICD releasing attenuates TGF-§-
induced invasiveness of breast MDA-MD-231 and lung
A549 carcinoma cells. Interestingly, TACE, activated by
ERK signaling, induced cleavage of TBRI was also
shown to reduce the cell surface receptor amount and
negatively regulate TGF-f3 signaling on anti-proliferation
and epithelial-mesenchymal transition [73]. Further
investigation is needed to solve these contradictory
issues.

Membrane trafficking regulates TGF-§ receptor activity

TGEF-B receptors are constitutively internalized via cla-
thrin-dependent or lipid-raft-dependent endocytic path-
ways [74-76] (Figure 6). Clathrin-dependent endocytosis
of the receptors has been regarded to positively facilitate
TGEF-B signaling while lipid raft/caveolae-mediated
internalization has an inhibitory effect [77-81]. Internali-
zation of TGF-B receptors through clathrin-dependent
endocytosis to EEA1-positive endosomes is more likely
to promote signaling as SARA and endofin are enriched
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Figure 5 TGF-B receptors can function independent of downstream signaling molecules Smads, MAPKs or Akt. (A) TBRII can interact
with Par6 to induce degradation of RhoA, leading to epithelia-mesenchymal transition. (B) The intracellular domain (ICD) of TBRI can be cleaved
by TACE and translocate into the nucleus to regulate transcription associated with p300.
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in EEA1-positive endosomes and can facilitate R-Smads
activation and Smad complex formation [78,82,83]
(Figure 6). The internalized receptors are targeted to
distinct destinations, and these processes are regulated
by different Rab GTPases. The internalized receptors
can be recycled and return to the membrane via Rab11-
dependent manner [84]. The clathrin adaptor protein
Dab2 was reported to target TBRII to the recycling
pathway in Rabl1-positive endosomes [85]. Once the
receptors are transported to Rab7-positive later endo-
somes, Dapper2 can associate with activated TBRI and
direct it to lysosome for degradation [43].

TGE-B receptors are partitioned between the lipid raft
microdomains and non-raft parts on the plasma mem-
brane [86-91], and the partitioning has been shown to be
regulated [74,87]. Caveolin-1, a protein enriched in caveo-
lae, inhibits TGF- signaling by interacting with TBRI [92]
and promotes TBRI degradation in a Smad7/Smurf2-
dependent manner [78]. Caveolin-1-mediated TGF-§3
receptor degradation is enhanced by CD109, a GPI-
anchored protein that can function as a TGF- co-recep-
tor [93,94]. Distribution of TGF-B receptors in lipid rafts
does not simply promote receptor degradation, it is also
required for TGF-B-mediated MAPK activation [95]
(Figure 6). Disturbance of distribution of TGF-B receptors

in lipid rafts by cholesterol depletion blocks TGF-§3-
induced MAPK activation and epithelial-mesenchymal
transition.

Conclusions and Perspectives

Modulation of receptor activity is a critical step for TGF§
signaling regulation. Although much effort has been made
to understand the regulatory mechanisms of TGF-B3 recep-
tor activity and stability, many questions still await to be
addressed. Ubiquitination is known to promote TGF-§3
receptor degradation. However, its role in mediating TGE-
B receptor endocytosis is unclear. Although membrane
trafficking of the receptors has been quite extensively
investigated, it is still far from establishment of the com-
plete picture. Furthermore, how ubiquitination regulates
TRRII is less understood, and the ubiquitin E3 ligases for
TPRRII are still missing. Although TGF-f receptors are
found to be modified by phosphorylation, ubiqitination
and sumoylation, whether the receptors also undergo
other post-translational modifications, such as acetylation,
neddylation, PARylation and others is still an open
question. In addition to the canonical activity as a kinase,
TGEF-B receptors have also been suggested to have other
functions. For instance, the cleaved intracellular domain of
TPRI has transcriptional activation activity in the nucleus.
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Figure 6 Membrane trafficking regulates TGF-P receptor activity and degradation. Receptors can be directed to transduce signals, be

It remains to test whether TBRII has a similar function.
Moreover, it has been reported that TGF-f-mediated acti-
vation of ERK in human skins is dependent on TBRII, but
not TPRRI [96], re-raising the question whether the two
types of TGF-f} receptors can activate noncanonical signal-
ing pathways independently of each other through new
mechanisms. Histone acetylation has been indicated to
regulate TGF-B receptor expression [97-100]. Other
mechanisms may be also employed to control their tran-
scription. For instance, microRNA mir-106b has been
reported to repress TRRII expressions [101], and the acti-
vin type I receptor ALK4 is a target of mir-24 [102].
Therefore, exploring the molecular mechanisms of how
the TGF-B receptor activity is modulated will still be an
exciting field.
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