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DUSPs, to MAP kinases and beyond
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Abstract

Phosphatases are important regulators of intracellular signaling events, and their functions have been implicated in
many biological processes. Dual-specificity phosphatases (DUSPs), whose family currently contains 25 members, are
phosphatases that can dephosphorylate both tyrosine and serine/threonine residues of their substrates. The
archetypical DUSP, DUSP1/MKP1, was initially discovered to regulate the activities of MAP kinases by
dephosphorylating the TXY motif in the kinase domain. However, although DUSPs were discovered more than a
decade ago, only in the past few years have their various functions begun to be described. DUSPs can be
categorized based on the presence or absence of a MAP kinase-interacting domain into typical DUSPs and atypical
DUSPs, respectively. In this review, we discuss the current understanding of how the activities of typical DUSPs are
regulated and how typical DUSPs can regulate the functions of their targets. We also summarize recent findings
from several in vivo DUSP-deficient mouse models that studied the involvement of DUSPs during the development
and functioning of T cells. Finally, we discuss briefly the potential roles of DUSPs in the regulation of non-MAP
kinase targets, as well as in the modulation of tumorigenesis.
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The dual-specificity phosphatase family
The dual-specificity phosphatase (DUSP) family proteins
are so named for their ability to dephosphorylate both
the threonine/serine and tyrosine residues of their sub-
strates. This ability may be attributed to their shallow
and flexible enzymatic pockets, which can accommodate
both types of phosphorylated residues. Structure-wise,
all DUSPs contain a common phosphatase domain with
conserved aspartic acid, cysteine, and arginine residues
forming the catalytic site. A subset of DUSPs contains
an N-terminal region composed of two CDC25 hom-
ology 2 domains and an intervening cluster of basic
amino acids known as the MAP kinase-binding (MKB)
motif or kinase-interacting motif (KIM); this MKB/KIM
motif of DUSP interacts with the common domain (CD)
of MAP kinases to mediate the enzyme-substrate inter-
action. Some DUSPs also contain a C-terminal PEST do-
main or additional N- or C-terminal domains; but the
functions of those domains are not well characterized
(Figure 1) [1].
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There are currently 25 genes in the Human Genome
Organization database designated as DUSPs, namely
DUSP1-28 — with DUSP17, -20, and −23 redundantly
assigned as DUSP19, -18, and −25, respectively. Within
the 25 DUSPs, MS-STYX/DUSP24 and DUSP27 do not
contain the conserved cysteine residue for nucleophilic at-
tack (C to S substitution) and thus lack phosphatase activ-
ity (Figure 1). These 25 DUSPs can be partitioned, based
on their amino acid alignment, into those that contain the
MKB/KIM domain and those that do not. DUSPs missing
the MKB/KIM domain are generally grouped as atypical
DUSPs, while MKB/KIM-containing DUSPs are generally
grouped as typical DUSPs or MAP kinase phosphatases
(MKPs) (Figure 2). However, there are a few exceptions,
with MKP6/DUSP14, JKAP/DUSP22, and MKP8/DUSP26
actually being atypical DUSPs without the KIM domain,
and KIM-containing PAC1/DUSP2, HVH3/DUSP5, and
HVH-5/DUSP8 not receiving MKP designation (Figure 1).
Typical DUSPs can be further divided into three groups
based on their predominant subcellular locations (nuclear,
cytoplasmic, or dually-located), with this grouping also co-
inciding with their sequence alignment (Figure 2). Re-
cently, several excellent articles have discussed the
potential roles of DUSPs in immune regulation [2-4] and
cancer therapy [5-7], and have detailed the regulation of
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Figure 1 Summary of DUSP aliases, mouse chromosomal locations, and domain structures. Gene symbols and selected aliases are from
the National Center for Biotechnology Information database via searches for human DUSPs. Selected mouse-specific aliases are shown in
parentheses. Chromosome locations (Ch.) and domain structures are manually annotated from the Ensembl database. *, MKPX has been
redundantly used for DUSP7 and DUSP22. #, DUSP24 and DUSP26 have been renamed to DUSP26 and DUSP28, respectively.
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MAP kinases by DUSPs [8,9]. In this review we will focus
on the typical DUSPs to discuss the current understand-
ings of their induction and regulation, their immune regu-
latory roles in peripheral or central lymphoid organ, and
their novel regulation of non-MAP kinase substrates.

Transcriptional, post-transcriptional, and post-
translational regulation of DUSPs
The transcription of DUSPs can be activated by factors
downstream of MAP kinase [10], such as AP-1. How-
ever, the expression of DUSPs is also regulated by other
transcription factors. Characterization of the MKP1/
DUSP1 promoter found binding sites for Sp1, Sp3,
CREB, and USF1 [11]. NF-κB [12] and glucocorticoid re-
ceptor [13] could both induce DUSP1 transcription,
while HoxA10 was found to induce MKP2/DUSP4
expression [14]. MKP3/DUSP6, in turn, could be
induced by ETS-1 following FGF stimulation [15]. More
interestingly, p53 was found to regulate the transcription
of all four nuclear DUSPs: DUSP1, -2, -4, and −5 [16-
19]. In addition to these factors, the transcriptional acti-
vation of DUSPs is also regulated by epigenetic modifi-
cations [20-22], while DUSP mRNA is subjected to
microRNA-mediated gene silencing [23-26]. This com-
plex network for controlling DUSPs’ expression implies
diverse functions of DUSPs in the regulation of physio-
logical events following various stimuli, possibly through
tissue-, developmental stage-, or activation status-
specific induction of DUSPs [27].
As opposed to nuclear DUSPs, which are often highly

induced following MAP kinase activation, other typical
DUSPs — such as MKP3/DUSP6, PYST2/DUSP7,
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Figure 2 Alignment of DUSP protein sequences. Longest variants of mouse DUSPs proteins are from the Ensembl database and are aligned
by VectorNTI software. For typical DUSPs, further subgrouping by cellular locations is also shown.
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MKP4/DUSP9, and MKP5/DUSP10 — are constitutively
expressed [28]. These DUSPs may serve to define the
threshold of MAP kinases activation through preemptive
dephosphorylation of MAP kinases. Such a function has
been proposed for VHR/DUSP3, and may be coordi-
nated with non-DUSP phosphatases such as PP2A [29].
Protein level of DUSPs is also tightly regulated post-

translationally, as the half-lives of many DUSPs are only
~1 h [30-32]. This tight regulation might be partially
mediated by the phosphorylation of DUSPs by MAP
kinases that inhibit the degradation of DUSPs by protea-
somes [31,33-36]. For those DUSPs, their stabilization
by MAP kinase-mediated phosphorylation, their short
protein half-lives, and sometimes high inducibility sug-
gest that they likely serve as the immediate-early off-
switch for MAP kinase signaling.

Mechanisms of signaling regulation by DUSPs
DUSPs’ primary mode of action is the dephosphorylation
of tyrosine and/or serine/threonine residues and the
resulting activity regulation of their substrates. The
physiological outcomes of DUSPs’ functions thus hinge on
their substrate specificity and phosphatase activity. Unlike
kinases, whose substrates are often determined by various
well-characterized protein–protein-interacting domains,
the substrates for DUSPs may not be similarly defined.
For example, while the KIM loosely defines MAP kinase
as the substrate for typical DUSPs, atypical DUSPs with-
out the KIM can also efficiently dephosphorylate MAP
kinases [29,37]. Furthermore, even with the relatively con-
served KIM, the reported specificities for different MAP
kinases vary significantly between typical DUSP members
(reviewed in [9]), suggesting that the specificity of DUSPs
may be refined by regions outside the KIM and phosphat-
ase domains. Indeed, by aligning the longest transcripts
for all 25 DUSPs, the results show that amino acid se-
quence conservation between DUSP members ranges
from ~24% to ~86%, with an average conservation of 44%.
Within the typical DUSP group, the conservation is on
average ~54%, with the lowest at 44% and highest at 86%
(Figure 3). Compared with the ~81% conservation within
the PP2A/PP4/PP6 family or ~71% conservation within
the ERK/JNK/p38 family, this relatively low conservation
reflects DUSPs’ variability in the non-phosphatase
domains and the inter-domain regions, and may contrib-
ute to their broad and divergent substrate specificity.
Between different typical DUSPs, variations also exist

in the structural conformation of their phosphatase
domains (reviewed in [1]). In these DUSPs, the con-
served D, C, and R residues are either well-aligned to
form a functional pocket (for DUSP4 [38] and DUSP5
[39]), or are separated in an sub-optimal conformation
(for DUSP2 [40] and DUSP6 [41]). In the latter case,
substrate-binding to DUSPs can induce conformational
changes that significantly increases the phosphatase ac-
tivity of DUSP2 [42] and DUSP6 [43-45]. Even with a
functional pocket, the phosphatase activity of DUSP4
[46] and DUSP5 [35] can still be significantly enhanced
by binding with their substrate, ERK. The activity of
other DUSPs has also been reported to be enhanced by
acteylation [47,48] or phosphorylation [32,49]. These
mechanisms likely provide another layer of regulation
for maintaining proper phosphatase activity of different
DUSPs in multiple signaling pathways.
Regulating the function of DUSP-interacting proteins,

however, does not always require DUSPs’ phosphatase
activity. It has been shown that DUSPs can modulate the
function of MAP kinases by sequestering them in the
cytoplasm or nucleus. These sequestrations may serve to
retain MAP kinases in the nucleus [50,51], or may
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Figure 3 Conservation matrix of mouse DUSPs. DUSPs protein sequences are aligned as in Figure 2, and the matrix of conservation is shown.
Orange blocks indicate typical DUSPs, while green blocks indicate atypical DUSPs.
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prevent them from reaching this destination [52].
Phosphatase-inactive members of the DUSP family —
namely DUSP24 and DUSP27 with mutations at the nu-
cleophilic cysteine residue — may thus act through this
mechanism to regulate the function of their substrates.
As an in vivo demonstration of such regulation, over-
expression of a phosphatase-inactive and nuclear export-
defective mutant of DUSP6 can significantly alter
thymocyte maturation [53]. Lastly, since DUSPs and
MAP kinase substrates both interact with MAP kinases
via MAP kinase’s common CD domain [54], DUSPs may
also regulate MAP kinase signaling by competing with
MAP kinase substrates for binding with MAP kinases.

Roles of DUSPs in the regulation of immune cell
functions: lessons from in vivo studies
In the context of innate and adaptive immune responses,
what are the roles of DUSPs in regulating immune cell
functions? Such a question is best answered by loss-of-
function mutations in genetic studies. In this regard, mice
deficient for DUSP1 [55], DUSP2 [56], DUSP4 [57-59],
DUSP6 [60,61], DUSP9 [62], and DUSP10 [63] have been
reported to exhibit considerably different phenotypes (see
also the review article from Salojin and Oravecz [64] for
other unpublished mouse lines). Within these mice,
DUSP6- and DUSP9-deficient mice did not show any
immune-related phenotypes. The dysregulation of im-
mune cell functions in DUSP1-, DUSP2-, and DUSP10-
deficient mice has been reviewed previously [3,4]. In sum-
mary, DUSP1 was found to be a negative regulator for the
production of inflammatory cytokines [55]. DUSP2 was
found to positively regulate autoimmune responses in an
arthritis animal model [56], while DUSP10 was found to
negatively regulate inflammatory cytokine production in
innate immune cells but to positively regulate Th1/Th2
cytokine production in CD4 T cells [63]. Several mechan-
isms may be responsible for the altered cytokine produc-
tion in DUSP-deficient cells. For example, the altered
cytokine productions have been correlated with enhanced
activation of MAP kinase and downstream transcription
factors such as AP-1 and Elk1 [56,63]. Alternatively, a re-
cent article shows that, in DUSP1-deficient cells,
enhanced MAP kinase activation increases AUF1 phos-
phorylation to maintain the stability of cytokine mRNA
[65]. Lastly, DUSPs may also regulate cytokine production
and signaling by modulating non-MAP kinase targets, a
possibility that will be discussed later in this review.
DUSPs’ regulation of cytokines also provides important

insights in the anti-inflammation function of glucocortic-
oid. Characterization of DUSP1-deficient mice showed
that glucocorticoid-mediated induction of DUSP1 and the
resulting suppression of JNK and p38 activation contribu-
ted to the anti-inflammatory effects of glucocorticoid [66].
A more detailed study of the anti-inflammatory effect of
fluticasone suggested that fluticasone induces DUSP1 ex-
pression to suppress p38 activation and GATA-3 nuclear
translocation, and thereby impairs Th2 cytokine produc-
tion [67]. However, DUSP2, DUSP4, DUSP9 [68], and
DUSP10 [69] have all been found to be induced by gluco-
corticoid, and are more strongly induced in DUSP1-
deficient cells to compensate for DUSP1-deficiency in the
induction of anti-inflammatory response [70]. These
results suggest that, despite the tissue- and developmental
stage-specific expression of different DUSPs, a significant
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degree of functional overlap and cross-regulation are cer-
tainly conceivable within the DUSP family. Similar com-
pensatory up-regulation has also been reported in LPS-
induced signaling in DUSP4-deficient mice [71].
DUSP4-deficient mice were recently reported to have

impaired inflammatory cytokine production and to be
more resistant to LPS-induced septic shock [71]. Inter-
estingly, in a second DUSP4-deficient mouse line,
DUSP4 was found to potentiate LPS-induced IL-6, IL-12,
TNFα, and prostaglandin E production [58]. Meanwhile,
DUSP4-deficiency in these mice resulted in susceptibility
to Leishmania mexicana infection [58]. Last but not least,
results from a third DUSP4-deficient mouse line revealed
phenotypes in CD4 T cell proliferation that could be
attributed to altered IL-2 response [59]. While the differ-
ent results from in these independently generated
DUSP4-deficient mouse lines may be caused by targeting
strategy variations, they may also reflect the complex na-
ture of DUSP transcriptional control, the positive/nega-
tive feedback-regulation via MAP kinases, and the
compensatory effects between different DUSPs. In this re-
gard, the characterization of in vivo functions of DUSPs
will need to be performed in well-defined systems, and
the results must be interpreted carefully for specific
scenarios.
The essential roles of DUSPs in immune regulation are

also demonstrated in various reports using other animal
models of LPS challenge, bacteria infection, or polymicro-
bial peritonitis induction. In DUSP1−/− mice, Gram+ [72],
Gram- [73,74], and commensal gut bacteria [75] all induce
exacerbated inflammatory responses that are associated
with increased secretion of inflammatory factors from
macrophages or neutrophils. Similar enhanced inflamma-
tion has also been observed in DUSP10−/− mice following
LPS challenge [76,77]. Interestingly, where live bacteria
are used, the enhanced inflammation and supposedly
stronger anti-bacterial immune response in DUSP1-
deficient mice do not facilitate bacteria clearance, but in-
stead cause a higher mortality rate [73] or increased bac-
teria burden [74,75]. These outcomes may be attributed to
possible bacteria dissemination due to vascular injury [76]
or to a novel function of IL-6 that enhances bacteria repli-
cation [74]. However, equally significant is the possibility
that DUSPs are required for maintaining a balanced im-
mune response by modulating the magnitude and dur-
ation of effector functions of immune cells; in other
words, DUSPs may be important for fine-tuning immune
responses so that these responses become strong enough
for keeping pathogens in check, but not too strong to in-
duce excessive tissue damage.

DUSP-mediated regulation of developing thymocytes
Signals from the MAP kinases are important for thymo-
cyte development and helper T cell polarization
(reviewed in [4]). In addition, several DUSPs have been
found to be dynamically expressed in differentiating thy-
mocytes [28]. It is thus intriguing that none of the
reported DUSP-deficient mice exhibited detectable
thymic phenotypes [55-58,60-63]. Our characterization
of DUSP4-deficient mice also did not reveal any signifi-
cant defect in T cell maturation [59]. Nevertheless, two
reports utilizing DUSP5 over-expression and DUSP6
dominant-negative mutant, respectively, revealed altered
thymocyte differentiation and T cell functions in vivo. In
the first report, transgenic over-expression of DUSP5
only slightly decreases the number of mature thymocytes
and peripheral T cells [78]. However, the DUSP5 trans-
gene increases the signaling threshold of thymocyte se-
lection by decreasing ERK phosphorylation and IL-2
response, which then lead to the selective maturation of
autoreactive T cells and subsequently autoimmune skin
lesions [78]. In the second report, wild-type bone mar-
row cells were infected with lentiviral dominant-negative
DUSP6 and were then used for reconstitution into con-
genic recipients; the analyses of donor-originated thymo-
cytes in the bone marrow chimera show that the
expression of dominant-negative DUSP6 leads to stron-
ger ERK activation and enhanced thymic positive selec-
tion [53]. These results suggest that DUSP5 and DUSP6
may be important for setting the T cell receptor signal-
ing threshold via the modulation of MAP kinase kinetics
or activity, so that proper thymic selection can facilitate
the production of protective, but not autoreactive or un-
responsive, peripheral T cells. Such a hypothesis is also
supported by results from the analyses of miR181a-
deficient mice, in which DUSP5 and DUSP6, two targets
of miR181a, are implicated as the effector molecules for
miR181a-mediated regulation in thymocyte maturation
[23].
Although the above results clearly demonstrate a poten-

tial role for DUSP5 and DUSP6 in the thymus, whether
these observed phenotypes reflect the physiological func-
tions of DUSP5 and DUSP6 in T cell differentiation
remains to be determined. Specifically, neither of the two
independent DUSP6-deficient mouse lines has shown any
thymic phenotypes [60,61]. This suggests that different
DUSPs may have redundant functions in regulating
thymocyte development, so that significant defects can be
observed only with transgenic over-expression of wild type
DUSPs [78] or dominant-negative mutant DUSPs [53]. It
may thus be necessary to cross multiple DUSP-deficient
mouse lines to uncover the roles of DUSPs in thymocyte
development. In this regard, all typical DUSP genes are
located on different chromosomes (Figure 1), making the
cross feasible and straightforward. In addition, the gener-
ation and characterization of mutant mice carrying mul-
tiple defective DUSP alleles should also provide better
insights into DUSPs’ other in vivo functions.
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Specificity of DUSPs against MAP Kinases: Do in vivo or
in vitro assays tell the true story?
The availability of DUSP-deficient mice also permits the
investigation, in a more physiological setting, of DUSPs’
substrate specificity in the context of MAP kinases. In this
regard, analyses of DUSP-deficient mice frequently show
that the phosphorylation of MAP kinases is not accord-
ingly enhanced based on their previously characterized
substrate specificity in vitro. For example, the deficiency
of DUSP2, a known phosphatase for ERK and p38, does
not cause enhanced ERK phosphorylation [56]. Similarly,
knockout of DUSP10 does not induce p38 hyperpho-
sphorylation [63]. One may attribute this inconsistency to
the use of in vitro overexpression system during previous
characterizations of DUPS’s substrate specificity, which
may not faithfully reflect the outcomes from DUSP-
deficient primary cells. Alternatively, the lack of a particu-
lar DUSP may be compensated by other DUSPs; due to
the large number and broad substrate specificity of
DUSPs, this compensatory effect may be more pro-
nounced in DUSP-deficient mice than in mice lacking
other signaling molecules. Mechanistically, this compensa-
tion may be mediated by other MAP kinase-inducible or
constitutively-expressed DUSPs. Finally, it is possible that
cross-talks between MAP kinase members [79] also con-
tribute to the observed changes of MAP kinase activation
in DUSP-deficient mice. This has been demonstrated in
JNK-dependent suppression of ERK activation in DUSP2
−/− mice [56], and in DUSP10/16 siRNA-induced, p38-
dependent suppression of ERK phosphorylation [80]. All
these mechanisms, together with the feed-forward and
feed-back modes of DUSP/MAP kinase cross-regulation,
will no doubt interfere with the prediction of MAP
kinase-related phenotypes in DUSP-deficient mice.

DUSP-mediated regulation of Non-MAP kinase targets
Many molecular mechanisms responsible for the cross-
regulations between DUSPs and MAP kinases have been
discussed (summarized in Figure 4). However, the possi-
bility that typical DUSPs may dephosphorylate non-MAP
kinase proteins must also be considered. During our
characterization of DUSP4-deficient mice, we found that
STAT5 phosphorylation was enhanced in activated
DUSP4−/− T cells; physical interaction between DUSP4
and STAT5 was also confirmed in both primary cells and
293T overexpression system. These data thus suggest that
DUSP4 may dephosphorylate STAT5 to negatively regu-
late T cell activation [59]. Similarly, DUSP22 interacts with
and dephosphorylates STAT3 after IL-6/LIF treatment in
transformed cell lines [81]. Other than STAT family pro-
teins, histone H3 also interacts with and is dephosphory-
lated by DUSP1 to mediate epigenetic regulation on
VEGF-induced gene transcription [82]; FAK co-
immunoprecipitates with and is dephosphorylated by
DUSP22 at several residues to regulate cell migration in
H1299 lung cancer cells [83]. Combined, these results sig-
nify DUSP-mediated modifications on non-MAP kinase
proteins, an aspect that was somewhat overlooked in the
past. Moreover, their effects on STATs also suggest an im-
portant role for DUSPs in the regulation of transcription
programs downstream of cytokine signaling.
While the above results implicate non-MAP kinase pro-

teins as targets of DUSPs based on both cellular and bio-
chemical analyses, additional reports also make similar
claims using RNAi interference or overexpression of
DUSPs. In this regard, knockdown of DUSP1 increases
angiotensin II- [84], IFNγ- [85], or LPS-induced [86]
STAT1 phosphorylation. Similarly, knockdown of DUSP26
regulates neuron differentiation by enhancing PI3K/Akt
signaling [87]. However, these results need to be inter-
preted with caution because the observed effects on non-
MAP kinase targets may result from indirect effects. For
example, a thorough biochemical study fails to reveal any
DUSP1-STAT1 interaction or cross-regulation [88]. In-
stead, DUSP1 is found to inhibit miR155 expression to in-
duce SOCS-1, thereby attenuating STAT1 activation [89].
Lastly, since DUSPs may regulate cytokine production
through MAP kinase-dependent pathways as discussed
previously, the observed changes in STAT activation may
also be secondary effects due to autocrine or paracrine
functions of the altered cytokines. Therefore, although the
substrate spectrum of DUSPs may indeed spread beyond
MAP kinases, such a conclusion must be sustained by
positive results from careful biochemical analyses or
in vitro functional tests.

Conclusions and future directions
Compared with kinases, phosphatases have arrived on
the stage of signaling regulation nearly a decade late. On
the one hand, this recent arrival allows more advanced
genetic, structural, and molecular tools to be used, ex-
pediting the studies of phosphatase functions. On the
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other hand, the late entry may also unintentionally limit
the breadth and scope of phosphatase-related studies to
their functions on kinase regulation. Although more and
more reports are focusing on the independent functions
of various phosphatases, we believe that the DUSP fam-
ily proteins deserve more attention for the following rea-
sons. First, the DUSP protein family is a fairly large
family with many members. While the theoretical and
observed functional redundancy may impede the ana-
lyses of their physiological roles, it also provides a safety
net if DUSPs are to be targeted by pharmacological
reagents in clinical trials. In other words, pharmaco-
logical disruption of DUSP functions may not obtain the
full-scale effects, as suggested by in vivo studies using
DUSP-deficient mouse models; however, their effects are
likely to be safer, milder, and less dramatic due to the
compensatory effects from other DUSPs. In this sense,
DUSP inhibitors may behave more like herbal medicines
with conceivably fewer side-effects. This concept may
provide a different perspective for the development of
DUSP inhibitors.
The second reason that DUSPs are a desirable target

for medical research is their small size and their simple
domain structure, which, to a certain degree, makes the
development of small molecule inhibitors less difficult
[90]. Indeed, significant efforts have been undertaken by
the pharmaceutical industry to develop such inhibitors
for medical use (reviewed in [4,91]). With accumulating
structural and tissue-expression data, the design and val-
idation of these inhibitors may become more efficient
and productive [90,91]. If one can complement the sys-
tem by generating a comprehensive database of DUSP-
deficient mouse models so that off-target effects of these
inhibitors can be easily evaluated, we will be one step
closer to seeing the applications of DUSP inhibitors in
therapeutic treatments.
A third point, which has not been emphasized in this re-

view, is the growing list of cancers associated with deregu-
lated DUSP expression (reviewed in [5-7]). These articles
detailed how DUSPs may be essential for regulating MAP
kinase activities during oncogenic transformation and pro-
liferation/apoptosis of cancer cells. In a separate review, the
functions of DUSP-mediated regulations on MAP kinases
in tumor metastasis, hypoxia response, and angiogenesis
are also discussed [92]. Previous results from our laboratory
also demonstrated that DUSPs regulate cancer cell stress
response or differentiation via MAP kinase-dependent
[93,94] or -independent [87] pathways. In writing this re-
view, we wish to further emphasize the immune regulatory
functions of DUSPs, as well as the potential involvement of
non-MAP kinase substrates during tumorigenesis. The
above regulatory mechanisms are summarized in Figure 5.
Upon glimpsing of Figure 5, one can easily appreciate

the “multiple-input, multiple-output” nature of DUSP-
mediated modulations on cancer cells. Conceptually,
such a scenario is similar to a neuron network in the
context of signaling regulations. In such a network,
altering one DUSP may cause multiple functional
changes of its substrates that are translated into even
more diverse physiological functions in the least predict-
able manner. This argument is partially supported by the
fact that the same DUSP is often reported as both over-
expressed or suppressed in different tumor cells
(reviewed in [91]). In this regard, the design and valid-
ation of DUSP inhibitors for treating cancers may be
segregated from the investigations of DUSPs’ in vitro or
in vivo functions. While the latter will certainly provide
directions for mechanistic studies, they may not assist in
predicting the outcome of the treatments. Therefore, we
believe that the therapeutic validation of DUSP inhibi-
tors may benefit significantly by expedited migration to
in vivo models, such as orthotopic tumor transplanta-
tions, so that the physiological effects of these treat-
ments can be more faithfully recapitulated.
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