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Long noncoding RNAs, emerging players in
muscle differentiation and disease
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Abstract

The vast majority of the mammalian genome is transcribed giving rise to many different types of noncoding RNAs.
Among them, long noncoding RNAs are the most numerous and functionally versatile class. Indeed, the lncRNA
repertoire might be as rich as the proteome. LncRNAs have emerged as key regulators of gene expression at
multiple levels. They play important roles in the regulation of development, differentiation and maintenance of cell
identity and they also contribute to disease. In this review, we present recent advances in the biology of lncRNAs in
muscle development and differentiation. We will also discuss the contribution of lncRNAs to muscle disease with a
particular focus on Duchenne and facioscapulohumeral muscular dystrophies.

Keywords: Chromatin, DMD, FSHD, Muscular dystrophy, ncRNA, Repeat
Review
Long non protein-coding RNAs (lncRNAs)
In mammals, the vast majority of the transcriptional out-
put is noncoding [1]. While 75% of the genome is tran-
scribed, only 2% encodes for proteins [2]. Non protein-
coding RNAs (ncRNAs) are operationally divided in two
classes according to their size. Small ncRNAs are below
200 bp and include transfer RNA (tRNA), ribosomal RNA
(rRNA), small nuclear RNAs (snRNA), small nucleolar
RNAs (snoRNA), microRNAs, siRNAs and Piwi-inter-
acting RNAs (piRNA) [3-7]. Long ncRNAs (lncRNAs) in-
clude all ncRNA transcripts greater than 200 bp with little
or no coding potential. Although discovered relatively re-
cently, lncRNAs are considered the most numerous and
functionally diverse class of RNAs [8]. Up to 15,000
lncRNAs have been identified so far [9] and, as the num-
ber constantly increases, the lncRNA assortment might
turn out to be as rich as the proteome.
LncRNAs loci are often in close association with

protein-coding genes as they are encoded from exonic or
intronic sequences in both sense and antisense orientation
or even from gene regulatory regions [10]. LncRNAs can
also arise from intergenic regions including repetitive se-
quences [11]. Most lncRNAs are transcribed by RNA
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polymerase II and may share mRNA-like features such as
5’cap, polyA tail and splicing sites [12,13]. Alternatively,
non-polyadenylated lncRNAs are likely generated by RNA
polymerase III [14,15].
In terms of transcriptional profile, lncRNAs are gener-

ally expressed at lower levels than protein-coding tran-
scripts and, compared to the latter, their pattern of
expression is more developmental stage- and cell type-
specific [2,16]. The intrinsic nature and complex secon-
dary structures of lncRNAs enable them to specifically
interact with DNA, RNA and proteins. Since lncRNAs
are localized both in the nucleus and the cytosol, they
can act at virtually every level of gene expression [17,18].
LncRNA, a molecular ‘passepartout’
LncRNAs can be divided into multiple functional cat-
egories based on the site of action and the level of gene
expression at which they act. However, as our knowledge
of lncRNAs increases, new functional groups emerge
and the distinction between classes is not always ad-
equate. Here, we present a very brief classification to
provide a framework for the examples of lncRNAs acting
in muscle differentiation and disease later described.
Nuclear lncRNAs can be subdivided into cis-acting

RNAs that work in proximity to their site of transcription,
and trans-acting RNAs that operate at distant loci. Both
cis- and trans-acting lncRNAs can activate or repress
transcription through the recruitment of chromatin
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remodelers and modifiers, thus shaping the chromatin sta-
tus of a particular locus or even of an entire chromosome
(Figure 1A) [19-24]. Besides, lncRNAs are able to recruit
or prevent the binding of the transcriptional machinery
and transcription factors directly impacting the transcrip-
tional output of a region (Figure 1B) [25-28]. Among
these, enhancer RNAs (eRNAs), are encoded by extragenic
enhancer regions and promote transcription of surroun-
ding genes [29-32]. LncRNAs also participate in co- and
Figure 1 Mechanisms for long noncoding RNA (lncRNA) function. (A)
deposition of activatory (green dots) or repressive (red dots) histone marks
components of the transcriptional machinery. (C) LncRNAs can directly bin
the higher order organization of the nucleus by mediating chromatin loop
of nuclear bodies (E). (F) LncRNAs control translation rates favoring or inhi
decay protecting mRNA from degradation or, alternatively, mediating the r
sponges, thus favoring the expression of the mRNAs targeted by the seque
post-transcriptional regulation in the nucleus. For ex-
ample, lncRNAs can interact with the splicing machinery
or directly with nascent mRNAs to guide particular spli-
cing events (Figure 1C) [33-35]. In addition to the cis ver-
sus trans distinction, lncRNAs can shape the subnuclear
architecture in different ways. Certain lncRNAs regu-
late chromosome looping, favoring or disrupting chro-
mosomal interactions (Figure 1D) [36,37]. Others act as
structural scaffolds for the formation and regulation of
LncRNAs (in red) are able to recruit chromatin modifiers mediating the
. (B) LncRNAs control the recruitment of transcription factors and core
d mRNAs and modulate splicing events. (D-E) LncRNAs participate in
ing (D) and as structural components for the formation and function
biting polysome loading to mRNAs. (G) LncRNAs modulate mRNA
ecruitment of degradation machinery. (H) LncRNAs can act as miRNA
stered miRNA.
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nuclear compartments such as speckles [33], paraspeckles
[38] and Polycomb bodies [39] (Figure 1E).
In the cytoplasm, lncRNAs influence translational out-

put in different ways. Firstly, they can modulate the trans-
lational rate by regulating polysome loading to an mRNA
molecule (Figure 1F) or through the control of internal
ribosomal entry sites (IRES) [40-42]. Secondly, they can
regulate gene expression by reducing or stimulating
mRNA decay (Figure 1G) [43,44]. A particular class of
cytoplasmic lncRNAs, the competing endogenous RNAs
(ceRNA), regulates both the translation and the degra-
dation rates of mRNAs by acting as molecular sponges for
miRNAs, thus modulating the repressive activity of
miRNA on their mRNA targets (Figure 1H) [45-49].
Altogether, lncRNAs exhibit remarkable functional flexi-

bility and tightly regulated expression that confer on them
an enormous potential as fine tuners of cell function and
identity. Due to their versatility, they are able to control
different aspects of cellular development, from stem cell
maintenance to commitment and differentiation and we
anticipate their biological role in a great variety of cell types
to be uncovered in the near future [50]. In this review, we
will focus on the fascinating discoveries regarding the role
of lncRNAs in muscle differentiation and disease, with a
particular focus on Duchenne muscular dystrophy (DMD)
and facioscapulohumeral muscular dystrophy (FSHD).

LncRNAs in myogenic differentiation
Myogenesis is the process where progenitor cells give rise
to myoblasts that fuse onto multi-nucleated myofibers
endowed with contractile ability. This complex and tightly
regulated process starts from extra/intra cellular signals
impinging on the myogenic transcription program. An
Table 1 Long noncoding RNAs (lncRNAs) involved in muscle d

LncRNA Site of action Function

eRNAs (CE and DRRRNAs) Nucleus Transcriptional activation

Gtl2/Meg3 Nucleus Epigenetic repression

H19 Nucleus and
cytoplasm

Epigenetic repression, miRN

Linc-MD1 Cytoplasm miRNAs sponge

Malat1 Nucleus Epigenetic repression, pre-m
splicing

Neat1 Nucleus Structural integrity of nuclea
paraspeckles

Nctc1 Nucleus? Unknown

SRA Nucleus Scaffold factor

SINE containing
lncRNAs

Cytoplasm mRNA decay

Yams Nucleus Transcriptional activation

eRNAs: enhancer RNAs; CE and DRRRNAs: Core Enhancer and Distal Regulatory Region
Metastasis associated lung adenocarcinoma transcript 1; Neat1: Nuclear enriched ab
Activator; SINE containing lncRNAs: Short Interspersed Elements containing lncRNAs
enormous literature provides evidence that the myogenic
gene expression program is orchestrated by a trans-
criptional hierarchy, including the Myogenic Regulatory
Factors (MyoD, Myf5, Myogenin, and MRF4) and the
Myocyte Enhancer Factor-2 (MEF2A-D) families of tran-
scription factors (reviewed in [51] and [52]). In a stage-
specific manner, these factors act in coordination with
other transcriptional regulators, including epigenetic fac-
tors, to execute the muscle differentiation program [53].
Still, this scenario is not complete as new players are grad-
ually emerging. Indeed, there is increasing evidence that
ncRNAs are also part of the muscle regulatory network.
So far, miRNAs are the most extensively studied and cha-
racterized [54]. However, in the last years lncRNAs are
emerging as critical regulators of muscle differentiation
(Table 1).

LncRNAs mediating the activity of chromatin modifiers
and transcription factors
An increasing body of work indicates that many nuclear
lncRNAs regulate the activity of enhancers at various
levels. Enhancers are distal regulatory elements that play
an essential role for the proper temporal and tissue-
specific expression of protein-coding genes. Typically, ac-
tive enhancers display increased chromatin accessibility
and are enriched for monomethyl histone H3 lysine 4
(H3K4me1) and acetylated H3K27 (H3K27ac). Intri-
guingly, RNA polymerase II (RNAPII) is also enriched at
active enhancers where it drives localized transcription of
lncRNAs called enhancer-derived RNAs (eRNAs) [31,66].
Many eRNAs regulate enhancer/promoter communica-
tion by directly recruiting chromatin modifiers and remo-
delers and the transcriptional machinery, thus favoring
ifferentiation

Effector molecule Regulation during
muscle differentiation

References

MyoD Up [30]

PRC2 Up [55,56]

As sponge PRC2, let-7 miRNAs Up [57]

HuR Up [46,58]

RNA Cbx4 and SR family
of splicing factors

Up [59]

r Various RNA-binding
proteins

Up [60]

Unknown Up [61]

MyoD Up [62,63]

STAU1 and STAU2 Up [64]

Unknown Up/down [65]

RNAs; Gtl2/Meg3: Gene trap locus 2/Maternally expressed gene 3; Malat1:
undant transcript 1; Nctc1: Noncoding transcript 1; SRA: Steroid receptor RNA
; Yams: YY1-associated muscle lincRNAs.
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the activation of gene expression in cis or in trans
(Figure 1B) [29,32,36,67-70]. Recently, a key role for eRNAs
in the regulation of muscle differentiation was uncovered
[30]. In myotubes, ChIP-seq analyses revealed that the
myogenic regulatory factors MyoD and MyoG display a
very similar genome-wide binding profile and are mostly
associated with extragenic regions, many of which exhibit
eRNA features [30]. Several of these eRNAs are prefe-
rentially localized to the nucleus and are mainly regulated
by MyoD, as MyoG silencing has a marginal effect on
their expression [30]. In turn, two eRNAs generated by
Figure 2 Distinct roles of long noncoding RNAs (lncRNAs) in muscle d
expression of myogenic regulators MyoD and MyoG acting in cis or in trans
p68 and p72 at the promoter region of myogenic genes to activate their e
complex to modulate their target genes. (D) As a molecular sponge H19 in
regulators Hmga2 and Igfbp2. (E) Short interspersed element (SINE) contain
promote their decay at different stages of muscle differentiation.
upstream regulatory regions of MyoD (CE and DRR) regu-
late the expression of MyoD and MyoG (Figure 2A and
Table 1) [71,72]. Both eRNAs are involved in the activa-
tion of gene expression, but they differ in their mode
of action. While the CERNA functions in cis to activate
expression of MyoD, DRRRNA works in trans to promote
MyoG transcription and muscle differentiation (Figure 2A).
At their site of action, both eRNAs mediate increased
chromatin accessibility and recruitment of RNAPII [30].
Collectively, these findings suggest that eRNAs regulate
myogenesis by directing chromatin-remodeling events,
ifferentiation. (A) Enhancer RNAs (eRNAs) CE and DRRRNAs can induce
, respectively. (B) LncRNA SRA acts as a scaffold molecule for MyoD,
xpression. (C) LncRNAs Malat1, H19 and Gtl-Meg3 interact with PRC1/2
hibits let-7 mediated mRNA degradation of myogenic negative
ing lncRNAs can bind to UTR region of Cdc6 and Traf6 mRNAs and
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controlling the hierarchy within the myogenic gene regu-
latory network.
The transcription factor Yin Yang 1 (YY1) is another im-

portant regulator of myogenesis at multiple levels [73-77].
By comparing YY1 ChIP-seq results in proliferating and
differentiated C2C12 muscle cells, a number of lncRNAs
regulated by YY1 (YY1-associated muscle lincRNAs or
Yams) have been recently identified [65]. Yams display dis-
tinct expression patterns during muscle differentiation
and affect myogenesis differently (Table1). For example,
while Yam-2 and -3 promote C2C12 muscle differen-
tiation, Yam-1 and -4 inhibit it [65]. The mechanism of
action of Yam-1 was investigated in more detail. Yam-1 is
a single exon transcript, regulated during in vitro and
in vivo myogenesis and equally distributed in the nucleus
and cytoplasm. Throughout development, in muscle re-
generation and in tissue culture, Yam-1 is downregulated
during terminal muscle differentiation [65]. Yam-1 knock-
down promotes muscle differentiation in tissue cul-
ture and accelerates regeneration following muscle injury
in vivo [65]. Importantly, Yam-1 knockdown rescues the
myogenic defects caused by YY1 overexpression indicating
that Yam-1 is an important mediator of YY1 activity in
muscle [65]. Silencing of Yam-1 reduces the expression of
several nearby genes, suggesting that it could be a positive
cis-regulator of surrounding genes similar to eRNAs
(Figure 1B) [65]. One of the nearby genes co-regulated
with Yam-1 encodes for miR-715, a miRNA targeting
Wnt7b. Since Wnt signaling is a critical modulator of ske-
letal muscle formation [78], it is tempting to speculate that
Yam-1 could function, at least in part, by activating miR-
715 in cis leading to Wnt7b downregulation.
Besides regulating chromatin accessibility like eRNAs,

nuclear lncRNAs can also control gene expression by dir-
ectly affecting the activity of sequence-specific transcrip-
tion factors. This is the case for steroid receptor RNA
activator (SRA) [79], the first example of lncRNA regula-
ting myogenesis [62]. SRA likely functions as a scaffold,
bringing together multiple factors that modulate gene ex-
pression [80] including the master regulator of muscle dif-
ferentiation MyoD (Figure 2B and Table1) [62]. In muscle,
a complex composed by SRA, MyoD and the RNA heli-
cases p68 and p72 has been identified (Figure 2B) [62].
Knockdown and overexpression studies indicate that p68/
p72 and SRA are coactivators required for the trans-
cription of a subset of MyoD target genes and for muscle
differentiation [62]. The SRA gene produces multiple
transcripts through alternative splicing. While retention of
intron 1 gives rise to the non protein-coding SRA tran-
script, splicing of the intron creates an open reading frame
that generates the SRA protein (SRAP) [81]. The ratio bet-
ween the coding and noncoding SRA transcripts varies
during muscle differentiation with SRAP mRNA being
more abundant in myoblasts and SRA lncRNA being the
predominant isoform in myotubes [63]. SRAP works at
least in part by regulating SRA lncRNA coactivator func-
tion. Indeed, SRAP is an RNA-binding protein that speci-
fically binds SRA lncRNA, thus preventing SRA-mediated
regulation of MyoD transcriptional activity [63]. Hence,
the correct balance between coding and noncoding SRA
molecules is important for normal muscle differentiation.
Intriguingly, aberrant SRA splicing is present in myotonic
dystrophy patients. Whether impaired splicing of SRA
contributes to the pathogenesis of muscular dystrophy re-
mains to be elucidated [63].

Subnuclear structure-specific lncRNAs
A number of lncRNAs are enriched in and contribute to
organize specific subnuclear domains (Figure 1E) [82-88].
The lncRNA Malat1 is enriched in nuclear speckles,
abundantly expressed in cancer cells and a strong pre-
dictor of tumor metastasis [89]. Malat1 has been shown
to regulate gene transcription and pre-mRNA splicing by
respectively interacting with the epigenetic repressor Poly-
comb protein Cbx4 [39] and with the SR family of splicing
factors (Figure 2C and Table 1) [33]. Malat1 is upregu-
lated during early differentiation of C2C12 mouse myo-
blasts and primary human skeletal muscle cells, while its
knockdown leads to suppression of myoblast proliferation
by arresting cells in the G0/G1 phase [59], suggesting a
role for Malat1 in the transition from the proliferative
phase to the permanent cell cycle exit, as well as in the
commitment to differentiation. Intriguingly, Malat1 has
been recently identified as a novel downstream target of
myostatin [59], an important regulator of myoblast prolif-
eration, differentiation and skeletal muscle mass [90]. Fu-
ture work will indicate how relevant Malat1 is for
myostatin activity.

Imprinted lncRNAs
The Dlk1-Dio3 region is a very complex, imprinted locus
involved in tissue growth regulation and human cancers
[91]. Aberrant repression of the Dlk1-Dio3 imprinted clus-
ter is present in most induced pluripotent stem cell (iPSC)
lines and is responsible for the failure of iPSCs to form
viable mice [92]. Intriguingly, postnatal aberrant expres-
sion of this locus is responsible for muscle hypertrophy in
mouse and sheep [93,94]. The locus contains protein-
coding RNAs, lncRNAs, miRNAs and snoRNAs expressed
from either the paternal or the maternal allele. Several of
the lncRNAs transcribed from the Dlk1-Dio3 region are
enriched in the nucleus and have been reported to bind to
Polycomb Repressive Complex 1 (PRC1), PRC2 and other
epigenetic repressors [95-97]. Expression of the various
Dlk1-Dio3 transcripts is reciprocally regulated. For ex-
ample, the Glt2/Meg3 lncRNA binds to PRC2 recruiting it
to the Dlk1-Dio3 locus to repress the protein-coding gene
Dlk1 and the lncRNA Gtl2-as (Figure 2C and Table 1).
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Consistently, Glt2/Meg3 knockdown leads to a decreased
PRC2 recruitment at the Dlk1 promoter with subsequent
increased expression of Dlk1 and Gtl2-as [95]. During
development, Gtl2/Meg3 is abundantly expressed in the
paraxial mesoderm suggesting a role in myogenesis [55].
Indeed, Gtl2/Meg3 knockout mice develop skeletal muscle
developmental defects along with perinatal death [56],
promoting Gtl2/Meg3 as an example of a nuclear, cis-
acting lncRNA regulating muscle development.
H19 was the first lncRNA described in mammalian cells

[98]. It is transcribed from the maternal allele of the H19/
Igf2 locus producing a lncRNA predominantly enriched in
the cytoplasm [98]. H19 is highly expressed in developing
embryo and adult muscle in human and mouse [99,100],
and is upregulated during myoblast differentiation and
muscle regeneration [57,101]. H19 works at multiple
levels. Through binding to the PRC2 epigenetic repressor
complex [95], H19 can mediate the transcriptional repres-
sion of Igf2 (Figure 2C) [102,103]. Moreover, H19 can bind
Igf2 mRNA binding-protein (IMP) family members to
regulate Igf2 post-transcriptionally [104]. Also, H19 con-
tains several binding sites for the let-7 family of micro-
RNAs suggesting that H19 may act as a miRNA sponge
for let-7 (Figure 2D and Table 1) [57]. Among let-7
targets, Hmga2 and Igfbp2 have an important role in myo-
blasts proliferation and myogenesis but must be downreg-
ulated to allow the formation of multinucleated myofibers
(Figure 2D) [105]. Finally, H19 exon 1 encodes the con-
served microRNAs miR-675-3p and miR-675-5p [106].
Recent results indicate that, by targeting Smad1, Smad5,
and Cdc6, these miRNAs play an important role in the
skeletal muscle differentiation and regeneration activities
associated to H19 [101].

LncRNAs containing repetitive sequences controlling
mRNA decay
Short interspersed elements (SINEs) are among the most
abundant repetitive sequences in mammalian genomes
[107]. While initially thought of as ‘junk’ DNA, SINEs can
be transcribed as individual elements by RNA polymerase
III or as part of longer transcripts synthesized by RNA
polymerase II and they can regulate gene expression by di-
verse mechanisms [41,108]. It has recently been discovered
that a SINE within the 3′ UTR of a protein-coding RNA
can form intermolecular base pairing with a partially com-
plementary SINE within one or more lncRNAs [43,64].
Extensive yet imperfect stretches of double-stranded RNA
(dsRNA) can be bound at multiple sites by dsRNA-binding
proteins, including Staufen 1 and 2 (STAU1 and STAU2).
Staufen recruitment activates Staufen-mediated mRNA
decay (SMD), an important mRNA degradation process in
mammalian cells. Using this mechanism, lncRNAs con-
taining SINEs regulate the stability of several mRNAs
encoding for proteins with a role in muscle differentiation,
including Cdc6 and Traf6 (Figure 2E and Table 1) [64].
Both STAU1 and STAU2 interact directly with the ATP-
dependent RNA helicase UPF1, a key SMD factor, enhan-
cing its helicase activity to promote effective SMD. Because
both SMD and the mechanistically related nonsense-me-
diated mRNA decay (NMD) employ UPF1, SMD and
NMD are competitive pathways. This competition plays an
important role in the control of muscle differentiation. In-
deed, during myogenesis, the efficiency of NMD decreases
while the efficiency of SMD increases. Interestingly, Myo-
genin and PAX3 are differentially targeted by these two
pathways of degradation and this different susceptibility
contributes to their relative abundance during differenti-
ation. PAX3 mRNA is an SMD target and its increased
decay promotes myogenesis, whereas decreased degrad-
ation of the NMD target Myogenin is required for myogen-
esis [109]. Importantly, since close to one third of all
lncRNAs contains at least one SINE [64,110], lncRNAs
containing SINE sequences could be at the heart of
many physiologically important processes in addition to
myogenesis.

LncRNAs in muscle diseases
Growing evidence shows that the vast majority of disease-
associated genetic variations occur in the noncoding por-
tion of the genome. In fact, whereas only 7% of disease-
associated SNPs localize in protein-coding exons, the
remaining 93% arise in noncoding areas of the genome, of
which 43% fall in intergenic regions [111]. Considering
the extensive transcription of these areas, it is reasonable
to predict that a significant and yet unknown number of
lncRNAs are involved in a variety of human diseases.
LncRNAs can either have a primary role in the patho-
genesis of a disease or rather act as modulators of disease
penetrance, explaining, at least in part, the inter-personal
variability observed in virtually every disorder. So far, the
contribution of lncRNAs to disease has mostly been inves-
tigated in cancer and neurological disorders [112-114] but
the first examples of lncRNA involved in myopathies are
now unveiled. Here, we focus on the recent discoveries re-
garding the role of lncRNAs in Duchenne muscular dys-
trophy and facioscapulohumeral muscular dystrophy.

Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD) is the most com-
mon and severe myopathy affecting 1:3,500 males. It is
inherited in an X-linked recessive manner but, in very
rare cases, heterozygous females can be mildly affected
[115]. DMD is characterized by severe muscle wasting
from early childhood that usually arises in leg and pelvic
muscles and later extends to the trunk of the body, com-
promising the heart and respiratory muscles. DMD is
caused by a variety of out-of-frame mutations in the dys-
trophin (DMD) gene encoded on the X chromosome
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(Xp21.2) resulting in the lack of a functional dystrophin
protein in skeletal muscle. With 79 exons and 2.4 Mb in
size, DMD is the largest gene of our genome and up to
2,900 types of mutations have been reported in DMD
patients so far [116,117]. Despite the mutations trig-
gering the disease being well characterized, the regula-
tion of dystrophin is in part unknown and appears much
more complex than previously thought. Moreover, the
inter-individual variability in the severity and the disease
progression is only partially explained by the types of
mutations and the occurrence of female patients remains
enigmatic. Therefore, the regulation of DMD is an area of
intense research that in the last few years has led to the
characterization of miRNA and lncRNA involvement [118].
Using custom-made tiling arrays, 14 lncRNAs tran-

scribed from intronic sequences of the DMD gene both
in sense and antisense orientations were recently identi-
fied [119]. These lncRNAs are expressed concomitantly
with dystrophin in at least one of the tissues that nor-
mally express it: skeletal muscle, heart and brain [119].
Ectopic expression and promoter binding assays suggest
that the lncRNAs can function in trans by downregulat-
ing the expression of specific dystrophin isoforms target-
ing their promoters (Figure 3A). Interestingly, an inverse
correlation was found between the levels of dystrophin
and a subset of lncRNAs in female carriers, both symp-
tomatic and asymptomatic [119]. It remains to be inves-
tigated if these lncRNAs act in an allele-specific manner
or whether they may also modulate the expression of the
wild type dystrophin allele in female carriers. Additio-
nally, it would be interesting to define how different
Figure 3 Proposed roles for long noncoding RNAs (lncRNAs) in Duche
transcription from intronic sequences of the dystrophin (DMD) gene gives r
(B) In the cytoplasm, the muscle specific lncRNA linc-MD1 acts as a compe
their target mRNAs. Linc-MD1 contributes to muscle differentiation by spon
MEF2C and MAML1. Linc-MD1 is strongly reduced in muscle cells from DMD
DMD mutations may impact the expression of the
lncRNAs.
The mutations occurring in DMD patients could also

deregulate the expression of lncRNAs located outside the
dystrophin gene or could even give rise to new lncRNAs
as a result of translocation events. This could modulate
the severity of the muscle degeneration or contribute to
the development of additional symptoms such as the
neurological complications observed in around one third
of the patients [120,121]. A single case study recently pub-
lished explores this hypothesis and describes how an in-
trachromosomal inversion (inv(X)p21.2;q28) disrupts the
novel lncRNA KUCG1 in a DMD patient with moderate
mental retardation [122]. KUCG1 is a 648-bp nuclear
lncRNA expressed in a tissue specific manner [122]. Since
it is normally expressed in the brain, its deregulation could
contribute to the neurological impairment of the patient
[122] as already reported for other pathologies [114]. Al-
though a functional characterization of this transcript has
not been performed, this study underscores the patho-
logical potential of mutations in noncoding loci that often
follow genomic rearrangements.
Another lncRNA associated with DMD is long intergenic

noncoding RNA-muscle differentiation 1 (linc-MD1) [46].
Linc-MD1 is a muscle-specific lncRNA required to acti-
vate late stages of the myogenic program. Linc-MD1 is a
cytoplasmic ceRNA that acts as a molecular sponge for
miR-133 and miRNA-135 (Figure 3B and Table 1) [46].
Through this mechanism, linc-MD1 promotes the expres-
sion of myocyte-specific enhancer factor 2C (MEF2C) and
mastermind-like protein 1 (MAML1), two transcription
nne muscular dystrophy. (A) In the nucleus, sense and antisense
ise to lncRNAs that play a repressive effect at specific DMD promoters.
titive endogenous RNA (ceRNA) by sequestering miRNAs away from
ging miRNA-135 and -133, and thus promoting the expression of
patients.



Neguembor et al. Skeletal Muscle 2014, 4:8 Page 8 of 12
http://www.skeletalmusclejournal.com/content/4/1/8
factors with an important role in muscle differentiation
(Figure 3B) [46]. Interestingly, the levels of linc-MD1 are
strongly reduced in primary myoblasts of DMD patients
and its ectopic expression rescues the myogenic differenti-
ation potential of these cells, restoring the correct expres-
sion pattern of MAML1, MEF2C, MYOG and MHC [46].
Linc-MD1 can have a double life as lncRNA or as miRNA,
since its primary transcript harbors the pri-miR-133b se-
quence. The balance between linc-MD1 and miR-133 bio-
genesis is regulated by HuR, an RNA-binding protein with
a crucial role in myogenesis (Table 1) [123]. Moreover,
HuR facilitates the linc-MD1-miRNA interaction, enhan-
cing its sponge activity, thus affecting this ceRNA circuitry
potentially relevant for DMD [58].

Facioscapulohumeral muscular dystrophy
Facioscapulohumeral muscular dystrophy (FSHD) is the
third most common muscular dystrophy (1:14,000).
FSHD is transmitted in an autosomal dominant manner
and affects both sexes but presents a gender bias, as
males are usually more severely affected [124]. FSHD
displays a more restricted pattern of muscle weakness
compared to DMD, mainly confined to the facial mimic
and shoulder girdle muscles but extending to abdominal
and leg muscles in the most severe cases [125,126]. The
genetic lesion involved in FSHD is unusual as it does
not target a protein-coding gene, but rather affects the
copy number of the 3.3 kb macrosatellite D4Z4 mapping
at the subtelomeric region of chromosome 4 (4q35)
[127]. In the general population, D4Z4 copy number
Figure 4 Role of DBE-T long noncoding RNA (lncRNA) in facioscapulo
D4Z4 array displays from 11 to more than 100 units and is extensively bou
locus. In FSHD patients, the reduction of D4Z4 copy number to below 11 u
allows the transcription of the lncRNA DBE-T that remains associated to the
of FSHD candidate genes.
is highly polymorphic, displaying 11 to more than 100
units [128,129]. On the contrary, FSHD patients carry
deletions reducing D4Z4 copy number between one and
ten units [129,130]. D4Z4 deletion is associated with a
profound change in the epigenetic status of the 4q35 re-
gion [131]. A recently identified lncRNA plays a key role
in this transition [37]. In healthy subjects, the FSHD locus
is under a repressive chromatin status, with high levels of
DNA methylation, histone de-acetylation and enrichment
for repressive histone marks such as H2Aub1, H3K9me3
and H3K27me3. Indeed, D4Z4 has been recently identi-
fied as a novel Polycomb (PcG) target region, suggesting
that the presence of a high number of D4Z4 units leads to
the extensive recruitment of PcG and the consequent re-
pression of 4q35 genes in healthy subjects (Figure 4). In
FSHD patients, instead, the reduction in number of D4Z4
units under a critical threshold leads to a reduced PcG
binding with decreased levels of H3K27me3, particularly
in the region immediately proximal to the D4Z4 repeat
array. As a result, this region becomes more prone to
transcription and gives rise to the activatory lncRNA
DBE-T. DBE-T is mainly produced in FSHD patients and
mediates the aberrant activation of the FSHD locus [37].
DBE-T is a nuclear transcript that acts in cis as it re-
mains associated with the chromatin of the FSHD locus
(Figure 4) [37]. DBE-T directly binds to the Trithorax
(TrxG) protein ASHL1 recruiting it to the FSHD locus
where it mediates the accumulation of H3K36me2 [37], a
histone modification that counteracts PcG repressive ac-
tivity [132-134]. Consequently, this leads to altered higher
humeral muscular dystrophy (FSHD). In healthy individuals, the
nd by Polycomb group proteins (PcG), leading to the repression of the
nits causes decreased PcG binding and hence reduced silencing. This
FSHD locus and recruits the TrxG protein ASHL1 leading to activation
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order chromatin organization and derepression of FSHD
candidate genes localized nearby the D4Z4 array and
unleashing FSHD pathogenesis [37].

Conclusion
It is increasingly evident that the functional repertoire of
metazoan genomes extends far beyond protein-coding
genes. A growing body of genetic and biochemical work
indicates that long noncoding RNAs are important mem-
bers of the complex muscle regulatory network, being
engaged in diverse activities crucial for myogenesis. How-
ever, there is still a substantial gap between the expanding
list of muscle lncRNAs and the precise molecular tasks
they fulfill in the control of muscle differentiation. More-
over, the functional characterization of lncRNAs in muscu-
lar dystrophy is still in its infancy. Nevertheless, there is
little doubt that results from such studies will significantly
contribute to the formulation of specific and complemen-
tary diagnostic and therapeutic strategies for muscle was-
ting diseases.
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