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dystrophy in mdx mice and increases efficiency
of cell therapy by reducing fibrosis
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Abstract

satellite cells onto the tibialis anterior of mdx mice.

injection of dystrophin-positive satellite cells.

with DMD.

Background: Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein
dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-f3) signaling, and fibrosis. At the
present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle
strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a
bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other
infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an
animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy.

Methods: mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine
kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-f3 signaling were evaluated by
indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal
muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle

Results: mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated
dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in
isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-3
signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular

Conclusions: These results suggest that andrographolide could be used to improve quality of life in individuals
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Background

Muscular dystrophies are a group of genetic muscular dis-
eases. The most severe is Duchenne muscular dystrophy
(DMD), an X-linked recessive disorder affecting 1 in 3,500
births for which there is no effective therapy [1]. DMD is
caused by the absence of dystrophin, a cytoskeletal protein
that anchors the muscle fiber to the extracellular matrix
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(ECM). The absence of this protein increases susceptibility
to muscle fiber rupture caused by the continuous cycles of
contraction and relaxation [2,3]. Thus, children with this
condition gradually and progressively lose muscle strength,
typically requiring the use of a wheel chair from the age of
ten and dying in the late second or early third decade of life
as a result of cardiorespiratory arrest. One of the causes of
muscle damage and loss of function is the development of
fibrosis, which is characterized by excessive accumulation
of extracellular matrix (ECM) that replaces muscle tissue
with connective tissue, dramatically affecting the environ-
ment of the fibers and normal muscle physiology [4-9].
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Pathologic features of DMD include myofiber atrophy,
fatty degeneration, necrosis and fibrosis, but only fibrosis
has been shown through clinical studies to correlate with
poor motor outcome, evaluated by muscle strength and
age at loss of ambulation [10]. This finding supports the
notion that fibrosis directly contributes to progressive
muscle dysfunction and the lethal phenotype of DMD
[6]. Therefore, the development of new drugs and ther-
apies with anti-fibrotic activity is crucial.

Andrographolide, a bicyclic diterpenoid lactone, is the
major constituent of Andrographis paniculata, a plant
indigenous to Southeast Asian countries that has been
used as an official herbal medicine in China for many
years [11]. Traditionally, it is used for the treatment of
colds, fever, laryngitis, and other infections, with no or
minimal side effects. It has been reported to be particu-
larly efficient at regulating immune responses [12,13]
and possesses anti-inflammatory properties by reducing
the generation of reactive oxygen species in human neu-
trophils [11]. Andrographolide not only regulates inflam-
mation, but is also effective against the fibrotic pathology
observed in chronic liver and kidney diseases [14-16].
Mechanistically, andrographolide forms a covalent adduct
with NF-kB, thus blocking the binding of NF-«xB to nu-
clear proteins [17]. NF-xB is an important transcription
factor in the progression of skeletal muscular dystrophic
diseases [18-20].

Because dystrophic disorders such as DMD have genetic
origins there is a great effort to restore gene expression
through gene and/or cell therapies. Nevertheless, these
therapies represent a major challenge because muscle is
the most abundant tissue in the body. Moreover, fibrosis
strongly reduces the efficacy of these approaches [6,9,21],
therefore, even if current trials are successful, they are
unlikely to elicit a significant benefit when extended to
people with more advanced stages of the disease and
enhanced fibrosis [21,22]. Therefore, understanding the
cellular and molecular mechanisms underlying muscle
fibrogenesis associated with muscular dystrophies is crit-
ical to the development of an effective anti-fibrotic ther-
apy for this type of disease.

In this study, we investigated the effects of andrographo-
lide on the onset of dystrophy in mdx mice, an animal
model used to study DMD. We demonstrated that andro-
grapholide treatment of dystrophic mice prevented damage
and fibrosis progression as reflected by reduced collagen
and fibronectin deposition through a mechanism that in-
volves a decrease in the expression of transforming growth
factor type beta (TGF-B) and its downstream mediator
connective tissue growth factor (CTGF/CCN2). The re-
duction of fibrosis was associated with enhanced muscle
strength and improved exercise performance. Finally, we
determined that the use of andrographolide increased the
efficiency of cell therapy through fibrosis reduction.
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Methods

Animals and experimental exercise

We used 12-week-old control or mdx male mice of the
C57BL/10 ScSn strain. The animals were kept at room
temperature with a 24-hour night-day cycle and were
fed with pellets and water ad libitum. Experimental exer-
cise involved running the mice on a treadmill three times
per week for 30 minutes each session at 12 m/minute over
three or four months [6,23-25]. Two experimental groups
were designed: animals in the first group were injected in-
traperitoneally (ip) with andrographolide (1.0 mg/kg/day)
and animals in the second group were treated with vehicle
alone. At the end of the experiment the muscles were dis-
sected and removed under anesthesia (isofluorane gas)
and then the animals were sacrificed. Tissues were used
for electrophysiological measurement or rapidly frozen
and stored at —80°C until processing. All protocols were
conducted in strict accordance with guidelines and with
the formal approval of the Animal Ethics Committee of
the Pontificia Universidad Catoélica de Chile.

Skeletal muscle histology
Muscle architecture and histology were analyzed by
H&E staining of transverse sections of muscle [6,26-28].

Evans blue dye (EBD) uptake

Animals were sacrificed 24 hours after injection with EBD
(1% in PBS). The tibialis anterior (TA) muscles were snap-
frozen in isopentane, sectioned in 7-um cryosections, and
fixed in 4% paraformaldehyde [6]. Muscle cross-sections
were visualized under a Nikon Diaphot Eclipse-600 (Nikon,
Melville, NY, USA) inverted microscope equipped for epi-
fluorescence. The percentage of EBD-positive fibers was
manually counted in a blinded manner [29].

Serum creatine kinase measurement

Mice were anesthetized and blood was obtained from
the periorbital vascular plexus directly into 70 pl micro-
hematocrit tubes (Fisher Scientific, Loughborough, UK).
Serum was obtained by allowing the blood to clot at
room temperature for 30 minutes followed by centrifuga-
tion at 1,700 x g for ten minutes. Serum creatine kinase
(CK) was measured using an enzymatic system (Valtek,
Santiago, Chile) according to the manufacturer’s instruc-
tions [6].

Immunoblot analysis

Muscles were homogenized in ten volumes of Tris-
EDTA buffer with 1 mM PMSF as described previously
[26]. Briefly, protein concentration in aliquots of muscle
extract was determined using the bicinchoninic acid pro-
tein assay kit (Pierce, Rockford, IL, USA) using BSA as a
standard. Aliquots (50 to 100 pg) were subjected to SDS
gel electrophoresis in 8% or 10% polyacrylamide gels,
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electrophoretically transferred onto PVDF membranes
(Schleicher & Schuell, Keene, NH, USA), and probed
with specific antibodies against fibronectin (Sigma, St.
Louis, MO, USA), collagen III (Rockland, Gilbertsville,
PA USA) and GAPDH (Millipore, Billerica, MA, USA),
tubulin (Sigma, St. Louis, MO, USA) as described previ-
ously [6]. All immunoreactions were visualized using an
enhanced chemiluminescence kit (Pierce, Rockford, IL,
USA). Densitometric analysis and quantification were
performed using Image] software (NIH, Bethesda, MD,
USA) [25].

Immunofluorescence microscopy

For immunofluorescence, 7-um cryosections were fixed
in 4% paraformaldehyde, blocked for one hour in 10%
goat serum in PBS and incubated for one hour at room
temperature with specific antibodies against fibronectin
(Sigma, St. Louis, MO, USA), collagen I (Chemicon,
Temecula, CA, USA), F4/80 (Abcam, Cambridge, MA,
USA), p-Smad-2 (Abcam, Cambridge, MA, USA), and
dystrophin (Santa Cruz Biotechnology, Santa Cruz, CA,
USA). FITC-conjugated goat anti-rabbit IgG and rabbit
anti-mouse IgG (Invitrogen, Carlsbad, CA, USA) were
used as secondary antibodies. For monoclonal anti-mouse
antibodies, all incubations were performed with mouse
IgG-blocking solution from the MOM kit (Vector Lab,
Burlingame, CA, USA) diluted in 0.01% Triton X-100/
PBS. For nuclear staining, sections were incubated with
1 pg/ml Hoechst 33258 in PBS for ten minutes. After rins-
ing, the coverslips were mounted using Fluoromount
(Dako, Carpinteria, CA, USA) and observed under a
Nikon Diaphot inverted microscope equipped for epifluor-
escence [26].

NF-kB detection in vivo by Southwestern blotting

Synthetic sense DNA 5-AGTTGAGGGGACTTTCC-
CAGGC-3’, which contains a consensus sequence for
NE-kB, was used as the probe. After annealing with
complementary DNA (80°C for two minutes), the probe
was labeled with digoxigenin (DIG) oligonucleotide 3"-end
labeling (Boehringer Mannheim, Mannheim, Germany).
Paraffin-embedded muscle sections were dewaxed, rehy-
drated, and fixed with 0.2% paraformaldehyde for 30 mi-
nutes at 28°C. Sections were subsequently digested with
433 U/mg pepsin A (Sigma, St. Louis, MO, USA), washed
twice with buffer 1 (10 mmol/L HEPES, 40 mmol/L NaCl,
10 mmol/L. MgCl,, 1 mmol/L DTT, 1 mmol/L. EDTA,
0.25% BSA, pH 7.4), treated with 0.1 mg/mL DNase I and
washed with buffer 2 (10 mmol/L. HEPES, 40 mmol/L
NaCl, 1 mmol/L DTT, 10 mmol/L EDTA, 0.25% BSA,
pH 7.4) to stop the reaction. Labeled probe (100 pmol/L)
diluted in buffer 1 containing 0.5 mg/mL poly dl-dC (Phar-
macia, New York, NY, USA) was applied overnight at
37°C. After washing, sections were incubated for one

Page 3 of 15

hour in blocking solution (0.01x SSC, 0.01% SDS,
0.03% Tween 20, 0.1 mol/L maleic acid, 0.15 mol/L
NaCl, pH 7.5) and then overnight at 4°C with rabbit
anti-digoxigenin antibody (1:250 in blocking solution;
Invitrogen, Carlsbad, CA, USA). The samples were washed
and incubated with a secondary Alexa fluor 568 anti-rabbit
antibody (Invitrogen, Carlsbad, CA, USA). Nuclear staining
with Hoechst 33258 was performed as described above.
We used the following negative controls: (a) absence of
probes, (b) DIG-labeled mutant NF-kB probe (sense: 5'-
AGTTGAGGCTCCTTTCCCAGGC-3'), at the same con-
centration as labeled probe, (c) competition assays with
100-fold excess of unlabeled NF-kB probe, followed by
incubation with the respective labeled probe [30].

RNA isolation and quantitative real-time PCR analysis
During tissue collection, one TA muscle from each
animal was rapidly frozen in liquid nitrogen and used
for RNA isolation. Total RNA was isolated with TRI-
zol reagent according to the manufacturer’s protocol
(Invitrogen, Carlsbad, CA, USA). Total RNA (500 ng) from
each sample was reverse transcribed to cDNA using Super
Script Reverse Transcriptase II (Invitrogen, Carlsbad, CA,
USA). Quantitative real-time PCR (qPCR) reactions
were performed using SYBR Green Master Mix (Bio-Rad,
Hercules, CA, USA). Levels of TGF-f and CTGF were
determined as described before [31]. The real-time
amplification of genes was measured with the iCycler
thermocycler system and iQ5 optical system software
(Bio-Rad, Hercules, CA, USA) [32].

Contractile properties

The isometric force of isolated muscles was measured as
described previously [6,25,26]. Briefly, optimum muscle
length (Lo) and stimulation voltage were determined from
micromanipulation of muscle length to produce max-
imum isometric twitch force. Maximum isometric tetanic
force (Po) was determined from the plateau of the
frequency-force relationship after successive stimulations
at 1 to 200 Hz for 450 ms, with two-minute rests between
stimuli. After determination of isometric contractile prop-
erties, muscles were subjected to a three repeated tetanic
stimulation protocol. Muscles at Lo were maximally stim-
ulated for 450 ms once every five seconds. After functional
testing, muscles were removed from the bath, trimmed of
their tendons and any adhering non-muscle tissue, blotted
once on filter paper and weighed [33-35]. Muscle mass
and Lo were used to calculate specific net force (force nor-
malized per total muscle fiber cross-sectional area (CSA),
mN/mm?®) [6,26].

Running test
Mice were subjected to a running test for 15 minutes at
15 m/minute on a treadmill. The number of times that
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mice were retarded to the first one third of the moving
platform (detentions) was counted [6,25].

Single myofiber isolation and satellite cell grafting

Single myofibers were isolated essentially as described
previously [6,36]. Briefly, extensor digitorum longus (EDL)
and soleus muscles from six-week-old C57-BL10 mice
were dissected and digested in 0.2% (w/v) collagenase type
1 (Sigma, St. Louis, MO, USA) in DMEM (Gibco, Grand
Island, NY, USA) with 4 mM L-glutamine (Sigma, St.
Louis, MO, USA) and 1% penicillin and streptomycin solu-
tion (Sigma, St. Louis, MO, USA) for 90 minutes in a 37°C
water bath. Satellite cells were separated from the myo-
fibers by physical trituration using the method of Collins
et al. [36]. The isolated intact fibers were suspended in
10 ml of complete medium and triturated with a 19 G needle
mounted on a 1 ml syringe. The suspension was sequen-
tially passed through a 70-pm and 40-pm cell sieve (BD
Biosciences, San Jose, CA, USA) to remove debris. The
satellite cell suspension was centrifuged for 15 minutes at
450 x g. The pellet was resuspended in physiologic serum
(0.9% NaCl). An aliquot was stained with 1 pg/ml Hoechst
and 1 pg/ml cholera toxin subunit B conjugated to Alexa
Fluor 488 (Invitrogen, Carlsbad, CA, USA) for five mi-
nutes, washed with PBS and incubated with trypan blue.
Cells were counted using a hemocytometer. Double-
stained cells that exclude trypan blue were counted as vi-
able cells and the concentration of cells was adjusted to 25
cells/pl. To confirm the purity of the isolated satellite cells,
an aliquot was seeded onto Matrigel (1 mg/ml) (Sigma, St.
Louis, MO, USA) and cultured overnight in complete
medium for 18 hours before immunocytochemistry for
myogenic markers. For grafting, 500 satellite cells were
grafted into both TA muscles of seven-month-old mdx
mice in a C57-BL10 background under anesthesia using an
8-mm 30 G needle under microscopic observation.The
number of dystrophin positive fibers was determined as de-
scribed previously [6].

Determination of the grafted-satellite cell survival

The determination of the survival of the grafted satellite
cells was performed as previously described [6]. Briefly,
500 freshly isolated satellite cells from a C57-EGFP mice,
as described in the previous section, were grafted into
both TA muscles of seven-month-old mdx mice in a
C57-BL10 background under anesthesia using an 8-mm
30 G needle under microscopic observation. The muscle
genomic DNA was extracted with a DNA purification
kit (QiAamp DNA from Quiagen). Then the purified
DNA were subjected to amplification by real time PCR
using TagMan PCR Universal Master Mix, in an Illu-
mina Eco real time PCR (Illumina, USA), Primer and
Tagman probe for EGFP and b-actin (endogenous con-
trol) were from Applied Biosystems, (USA).

Page 4 of 15

Statistics

The statistical significance of differences between the
means of the experimental groups was evaluated using
one-way analysis of variance (ANOVA) with a post hoc
Bonferroni multiple-comparison test or two tailed ¢-tests
(Prism 3.0, GraphPad, San Diego, CA, USA). A differ-
ence was considered statistically significant at P < 0.05.

Results

Andrographolide treatment improves histology and
reduces muscle damage in dystrophic skeletal muscle

To determine whether andrographolide has an effect on
the dystrophic phenotype of mdx mice, we evaluated the
histology of the TA muscle from andrographolide and
vehicle-treated mdx mice by H&E staining. Administra-
tion of andrographolide to mdx mice for three months
reduced the increase in infiltrating cells and necrotic
areas and showed a clear improvement in muscle his-
topathology compared with vehicle-treated mdx mice
(Figure 1A, two different magnifications). To specifically
evaluate damage at the mdx sarcolemma, we used the EBD
uptake protocol [29]. Lower EBD uptake was observed in
the muscle fibers from mdx mice treated with androgra-
pholide compared with control mdx fibers, suggesting less
muscle damage (Figure 1B). Concordantly, serum CK levels
were decreased in andrographolide-treated mdx compared
with control mdx mice, with an approximately 50% recov-
ery score [37] (Figure 1C). Table 1 shows quantification of
areas of necrosis and regeneration [38]. Administration of
andrographolide to mdx decreased cumulative damage. We
did not find any differences in the minimal Feret's diameter
between mdx mice treated with andrographolide and mdx
mice treated with vehicle (Additional file 1: Figure S1).
These results indicate that treatment of mdx mice with
andrographolide improves the architecture of dystrophic
skeletal muscles and decreases tissue damage.

Fibrosis in dystrophic skeletal muscle is reduced by
andrographolide treatment

Development of fibrosis in dystrophic skeletal muscle is
characterized by an increase in ECM compounds such
as fibronectin and several types of collagen [4,6,25,39].
We evaluated the effect of andrographolide on the level
of fibrotic protein in skeletal muscle of dystrophic mdx
mice. Immunofluorescence staining of TA muscles from
mdx mice treated with andrographolide revealed a large
decrease in the accumulation of collagen type III (Figure 2,
upper panels) and fibronectin (Figure 2, lower panels).
Western blot analysis of the same muscles indicated that
andrographolide treatment decreased fibronectin and col-
lagen III protein levels (Figure 3A and B). We also evalu-
ated andrographolide treatment decrease in fibrosis in
gastrocnemius of exercised mdx mice and in diaphragm
from non-exercised animals, since diaphragm is the most
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Figure 1 Andrographolide reduces skeletal muscle damage in mdx mice. To augment the extent of muscle fibrosis, three-month-old mdx
mice were subjected to an exercise protocol for three months [6,25]. During this period, mice were treated with 1 mg/kg andrographolide or
vehicle (intraperitoneal (ip) injections three times per week, six animals per group). (A) H&E staining of tibialis anterior (TA) muscles showed a
striking reduction in the damaged areas of muscle in andrographolide-treated mdx mice compared with untreated mdx mice. Upper panel shows
100X magnification pictures (scale bars =200 pm), while the bottom panel shows 400X magnification pictures (scale bars =50 um). (B) Evans blue
dye uptake in TA muscle fibers from wild type (WT), vehicle-treated mdx mice, and andrographolide-treated mdx mice. Nuclei were labeled with
Hoechst. Mice were injected ip with 1% Evans blue dye 24 hours before muscle fixation (scale bar =200 pm). (C) Serum creatine kinase (CK) was
measured to evaluate skeletal muscle damage. The bar graph shows a significant reduction in serum CK activity in andrographolide-treated mdx
mice compared with vehicle-treated mdx mice. Values are expressed as mean + SD of three independent experiments, using five mice for each
experimental condition. (*P < 0.05 relative to WT mice; #P < 0.05 relative to vehicle-treated mdx mice). The recovery score was 49.5%.

Table 1 Cumulative muscle damage in exercised mdx mice treated or not with andrographolide

Necrosis Regeneration Cumulative damage
mdx + vehicle 7.63+0.85 42.14+403 49.77 £ 461
mdx + andrographolide 414+051° 30.23 +2.86" 3437 +297°

Cumulative skeletal muscle damage in mdx mice consists of active myofiber necrosis plus the areas of subsequent regeneration (new myofibers). Values shown
are average percentage (%) of whole cross-sectional area +/— SEM (values were analyzed by a t-test, n =5, °P < 0.05) [38]. bp < 0.01.
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200 and 50 pm for 100X and 400X magnification pictures respectively.

Figure 2 Andrographolide reduces skeletal muscle fibrosis in mdx mice. Fibrosis was augmented as explained in the legend of Figure 1.
During this period, mice were treated with 1 mg/kg andrographolide or vehicle (intraperitoneal (ip) injections three times per week, six animals
per group). Indirect immunofluorescence analysis of (A) collagen | (green) and (B) fibronectin (red) in cryosections of tibialis anterior (TA) muscles
from wild type (WT), vehicle-treated mdx mice, and andrographolide-treated mdx mice. Nuclei are stained in blue (Hoechst). Bar corresponds to

midx + andrographalide

mdx + andrographolide

damaged muscle in mdx mice and is not clearly affected
by exercise [6,25]. Additional file 2: Figure S2 shows a
decrease in fibrosis and damage determined by collagen
type I staining and H&E respectively. Together, these
results suggest that the treatment of mdx mice with andro-
grapholide decreases the accumulation of fibrotic proteins
in different skeletal muscle groups. Together, these results
suggest that the treatment of mdx mice with andrographo-
lide decreases the accumulation of fibrotic proteins.

Andrographolide reduces the activity of NF-kB in vivo

Because andrographolide is a specific NF-kB inhibitor
[17], we evaluated the in vivo activity of NF-«kB in
skeletal muscle of andrographolide-treated mdx mice by
Southwestern blotting [30]. The results showed that NF-

KB activity was increased in mdx TA compared with the
corresponding wild type (WT) samples. In contrast, treat-
ment with andrographolide reduced the number of nuclei
positive for NF-kB in mdx TA skeletal muscle (Figure 4A
and B). This result shows that andrographolide reduces
the activity of NF-«B in skeletal muscle in vivo.

Andrographolide reduces the level of the pro-fibrotic
factor TGF-B and the downstream Smad-dependent
signaling pathway in mdx skeletal muscles

TGF-p is an important pro-fibrotic factor and the down-
stream Smad-dependent signaling pathway is augmented
in mdx skeletal muscle [6,40,41]. Therefore, we evaluated
whether andrographolide modulated the in vivo expression
of TGF-B. Concordant with the decrease in fibrosis, TGF-§
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Figure 3 Andrographolide reduces the amount of fibrotic proteins in mdx skeletal muscle. Experiments were performed as explained
in the legend of Figure 2. Muscle extracts were obtained under each experimental condition and fibrotic proteins were analyzed by western
blotting. (A) Fibronectin (FN) and (B) collagen type IIl (Col Ill) from tibialis anterior (TA) muscles of wild type (WT), vehicle-treated mdx mice, and
andrographolide-treated mdx mice. GAPDH protein levels are shown as loading control; molecular weight markers are shown in kDa. Values are
expressed as mean + SD of three independent experiments, using three mice for each experimental condition. (*P < 0.05 relative to WT mice;
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expression determined by qPCR was reduced in mdx mice
as a consequence of andrographolide treatment (Figure 5A).
We then evaluated the expression levels of CTGF and col-
lagen type I, two downstream pro-fibrotic factor [6,26,42]
and showed that expression levels of CTGF and collagen
type I in dystrophic skeletal muscle were also reduced by
andrographolide treatment (Figure 5B and C).

We then determined whether the decrease in TGF-f
expression following andrographolide treatment was re-
flected in diminished activity of the Smad-dependent
signaling pathway. Immunofluorescence localization of
phosphorylated Smad-2 and Smad-3 proteins (p-Smad-2
and p-Smad-3) in TA muscle sections indicated that
andrographolide treatment reduced the number and the
proportion of nuclei positive for both phosphorylated
Smad proteins in TA of mdx mice (Figure 6). Additional
file 3: Figure S3 shows the localization of p-Smad-3 in con-
secutive Sections. p-Smad-3 positive reaction is found
mainly in necrotic-regenerating areas, likely corresponding
to interstitial cells but also in nuclei inside regenerated
fibers. Andrographolide treatment suggests a higher reduc-
tion in interstitial cells compared to regenerating muscle
fibers. Collectively, these results show that andrographolide
treatment reduced both the expression and activity of
TGEF-B in mdx skeletal muscle.

Andrographolide treatment improves skeletal muscle
strength and exercise performance in mdx mice

We then evaluated whether andrographolide treatment
of mdx mice had an impact on the skeletal muscle

physiology that determines contractile strength in iso-
lated TA muscles. Andrographolide-treated mdx mice
showed a significant increase in the generation of iso-
metric force compared with vehicle-treated mdx mice
at frequencies ranging between 50 and 100 Hz (Figure 7A).
Twitch and tetanic force also showed a higher strength
in the TA muscle from andrographolide-treated mdx
mice (Figure 7B and C respectively). Given that andro-
grapholide treatment improves muscle strength in single
isolated dystrophic muscles, we asked whether androgra-
pholide treatment similarly affects the whole body muscle
performance when mdx mice are challenged in a treadmill
running protocol. To address this question, we performed
a functional test of exercise endurance through continu-
ous exercise [23-25]. Mice treated with andrographo-
lide showed an enhanced performance, as determined
by a significant decrease in the number of detentions
in the treadmill running protocol (Figure 7D). To-
gether, these results indicate that andrographolide im-
proves skeletal muscle strength and endurance.

Reduction of fibrosis by andrographolide improves the
efficiency of in vivo cell therapy

Because we observed an accumulation of fibroblasts in
non-fibrotic areas of skeletal muscle from androgra-
pholide-treated mdx mice, we evaluated whether cell ther-
apy using muscle precursor cells was improved in the
andrographolide-treated mice. Freshly purified satellite
cells from isolated single myofibers from WT mouse
donors were grafted into both TA muscles of seven-



Cabrera et al. Skeletal Muscle 2014, 4:6
http://www.skeletalmusclejournal.com/content/4/1/6

Page 8 of 15

mdx+ vehicle

mdx + vehicle
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Total NFxB positive nuclei

Figure 4 Andrographolide decreases NF-kB activity in vivo. Fibrosis was augmented as explained in the legend of Figure 1. During this
period, mice were treated with 1 mg/kg andrographolide or vehicle (intraperitoneal (ip) injections three times per week, six animals per group).
The activity of NF-kB was evaluated in formalin-fixed muscle samples by Southwestern blot analysis. A specific DNA was used to detect active
NF-kB by immunofluorescence (red). The nuclei were stained with Hoechst (blue). (A) The upper panel shows merged red (active NF-kB) and blue
(total nuclei) signals. Bar corresponds to 50 um. (B) Quantification of total nuclei per field (in 400X magnification pictures).
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Figure 5 Andrographolide reduces expression of pro-fibrotic factors and collagen type | in mdx mice. Fibrosis was augmented as
explained in the legend of Figure 1. During this period, mice were treated with 1 mg/kg andrographolide or vehicle (intraperitoneal (ip)
injections three times per week, four animals per group). (A) Transforming growth factor type beta (TGF-31), (B) Connective tissue growth factor
(CTGF) and (C) collagen type | mRNA levels were determined in tibialis anterior (TA) muscle from wild type (WT), vehicle-treated mdx mice, and
andrographolide-treated mdx mice by gPCR using GAPDH as a reference gene. Values correspond to the mean dCT value + SD of three independent
experiments, normalized to WT levels (*P < 0.05 relative to WT mice; #P < 0.05 relative to vehicle-treated mdx mice). The recovery scores for TGF-31

and CTGF were 56.3% and 63.2 respectively.
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month-old mdx mice following pre-treatment with either
andrographolide or vehicle for a three-month period under
an exercise protocol. Treatment with andrographolide was
stopped one week before the transplantation to rule out
any direct effect of the drug on the transplanted cells. One
month after the satellite cell transplantation, the muscle
was analyzed for the presence of dystrophin-positive myo-
fibers and the amount of collagen I. Figure 8 shows that
the number of dystrophin-positive fibers in the mdx back-
ground was increased three-fold in the andrographolide-
treated mice compared with controls (Figure 8A and B).
Moreover, Figure 8A shows the expected reduction in

collagen I content following andrographolide treatment.
The purity of the transplanted cells was determined prior
to the graft by plating an aliquot of the cells on ECM gel
for 12 hours and analyzing expression of the muscle-
specific transcription factors Pax7, MyoD, and myogenin.
Over 92% of the nuclei were positive for at least one of
these factors, indicating the purity of the preparation (data
not shown). To evaluate if andrographolide treatment has
an effect on the size of endogenous satellite cells, the
number of satellite cells present on isolated EDL myofibers
obtained from the same transplanted mice was determined,
with a mean of 12.5 satellite cells per EDL myofiber as
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Figure 7 Andrographolide increases skeletal muscle strength in mdx mice. Fibrosis was augmented as explained in the legend of Figure 1.
During this period, mice were treated with 1 mg/kg andrographolide or vehicle (intraperitoneal (ip) injections three times per week, six animals
per group). (A) Tibialis anterior (TA) muscles were isolated from wild type (WT), vehicle-treated mdx mice, and andrographolide-treated mdx mice
to evaluate isometric specific force (mMN/mm2) at different stimulation frequencies (pulses per second, pps). (B) Bar graph shows tetanic specific
force. Values are represented as percentage of specific isometric force generated by WT muscle (*P < 0.05 relative to WT mice; #P < 0.05 relative to
vehicle-treated mdx mice). The recovery score for the twitch force measurement was 54.2%. (C) Bar graph showing twitch force (*P < 0.05 relative
to WT mice; #P < 0.05 relative to vehicle-treated mdx mice). The recovery score for the tetanus measurement was 50.3%. (D) Mice were subjected
to an exercise challenge on the treadmill at 15 meters/minute for five minutes and the number of set-backs was counted (n=7, *P < 0.05 relative
to WT mice; #P < 0.05 relative to vehicle-treated mdx mice). The recovery score for this measurement was 45.5%.

J

shown in Figure 8C, suggesting than andrographolide treat-
ment did not affect the size of satellite cell populations. Fi-
nally the number of cells engrafted was determined as a
function of time. Figure 8D, indicates that the number of
transplanted cells increase with time. This increase is dra-
matically augmented in muscle TA obtained from mouse
pre-treated with andrographolide, suggesting a higher rate
of survival of the grafted cells. These results strongly
suggest that andrographolide treatment of mdx mice
improves the efficiency of cell therapy.

Discussion

In this paper, we show that andrographolide treatment re-
duced skeletal muscle damage and fibrosis in mdx mice.
We observed that this reduction was associated with an
increase in muscle functionality. Moreover, we showed
that the improved skeletal muscle phenotype of dystrophic
mice favored the incorporation of dystrophin-positive
muscle cells after intramuscular injection of satellite cells
derived from WT skeletal muscle. To the best of our
knowledge, this is the first report of the use of androgra-
pholide on a model of muscular dystrophy.

Several anti-fibrotics have been tested to decrease fibro-
sis associated to dystrophic skeletal muscle [43]. Among
them neutralizing antibodies against all three forms of
TGF-B importantly reduced hydroxyproline levels and
plasma creatine kinase, improved respiratory function and
grip strength [44]. Halofunginone has been tested in mdx
mice, reducing collagen content and improving respiratory
and heart function. It has been suggested that it inhibits
p-Smad-3 in response to TGF-B1 [45-47]. The use of in-
hibitors and antagonists of the renin-angiotensin system
have been shown to decrease fibrosis and improve skeletal
muscle function [48]. Infusion of angiotensin 1-7, which
signals through the Mas receptor, has been shown to
importantly decrease fibrosis, TGF-p mediated signaling
and increase skeletal muscle strength [49]. It is difficult to
compare which of these drugs, including andrographolide,
have a better effect on dystrophic skeletal muscle, since
some of them may also have other undesired side ef-
fects. Furthermore, the same readouts are not always
determined in each case. Nevertheless a comparative
study, under the same experimental conditions would
be very valuable.
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Figure 8 Muscle stem cell therapy with satellite cells (SC) is improved by the reduction in muscle fibrosis following treatment with
andrographolide. (A) Fibrosis was augmented as explained in the legend of Figure 1. During this period, mice were treated with andrographolide
or vehicle (intraperitoneal (ip) injections three times per week, six animals per group). One week after the last drug administration (seven-month-
old mice), 500 freshly isolated satellite cells purified from wild type (WT) mice were transplanted into both tibialis anterior (TA) muscles of each mdx
mouse. At four weeks after engraftment, the number of fibers expressing dystrophin and collagen | was determined by immunofluorescence
analysis of cryosections. The images are representative of two experimental groups with six mice per group. Bar corresponds to 200 um. (B)
Quantification of the data obtained in (A) showing the number of myofibers expressing dystrophin per TA muscle in each case. (C) The number of
satellite cells (PAX-7-positive nuclei) was determined for isolated single muscle fibers from extensor digitorum longus muscle (EDL) of each case as
an indicator of endogenous SC survival. (D) 500 WT SC freshly isolated as in (A), from the C57-EGFP mice were engrafted in mice treated as in (A)
(six animals per group). Both TA muscles were dissected immediately after engraftment or after 2 or 15 days from two animals in each case. Total
genomic DNA was purified. EGFP transgene present in the engrafted muscle was detected by gPCR. Values are expressed as mean £ SD of three in-
dependent experiments. (*P<0.05 relative to vehicle-treated mice, **P<0.01 relative to vehicle-treated mice at day 15).

Corticosteroids are currently the most effective treat-
ment for DMD [50-52]. They act by blocking transcription
factors such as NF-kB and AP-1 to down-regulate a vast
group of pro-inflammatory genes. However, the use of
corticosteroids is associated with unwanted side effects

and a significant proportion of patients are steroid-
resistant [52], therefore there is an urgent need to develop
novel anti-inflammatory drugs to replace or complement
current therapy. In this study, we have preliminary data
that indicate that parallel treatment with prednisone
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or andrographolide in mdx three-month-old animals
for three months produce the same histological im-
provement together with a decrease in the amount of
collagen (Additional file 4: Figure S4).

Andrographolide has been used in acute and chronic dis-
eases such as the common cold and rheumatoid arthritis
with no observable side effects (for a review, see reference
[53]). Therefore, it is reasonable to consider the use of alter-
native treatments such as andrographolide to improve skel-
etal muscle physiology in patients suffering from skeletal
muscular dystrophies such as DMD. Although our findings
suggest that andrographolide might be used to improve
quality of life in individuals with DMD, the effectiveness of
andrographolide in other skeletal muscle dystrophies re-
quires further investigation. Extrapolation of studies in small
animals, such as mice, to clinical treatment of humans can
be very difficult. The use of andrographolide as shown in
this paper is promising because andrographolide has been
used alone or as a botanical extract for the treatment of
colds, fever, laryngitis and other infections with no or min-
imal side effects. Andrographolide not only regulates inflam-
mation, but also suppresses the fibrotic pathology observed
in chronic liver and kidney diseases [14-16]. Other advan-
tages include the low cost of the drug, or a botanical extract
highly enriched in andrographolide, and the fact that it can
be given orally in capsules, thus providing hope for future
therapeutic options of an oral formulation with no un-
desired side effects for patients with muscular disorders.

Fibrosis is one of the main features of dystrophic
muscle. A high increase in ECM deposition is found in
biopsies from DMD patients and in different animal
models of the disease [4,39,54,55]. Although enormous
efforts have been made to restore dystrophin expression
in DMD patients through different approaches, such as
gene and cell therapies, it has been proposed that fibrosis
is an important barrier to the success of these approaches
[9,21,56-58]. Therefore, targeting fibrosis is an important
strategy to generate an environment that facilitates cell
migration and regeneration in the dystrophic muscle. This
is supported by a report that local injection of fibroblasts
secreting metalloproteinases reduced collagen deposition,
thereby allowing efficient subsequent therapy with intra-
arterial injection of WT mesoangioblasts in dystrophic
muscles [21], and the observation that models with re-
duced activity of a pro-fibrotic growth factor showed an
increase in the number of grafted dystrophin-positive skel-
etal muscle fibers in mdx muscle [6].

Different experimental approaches have been attempted
to decrease fibrosis in dystrophic muscle and other myop-
athies [59,60]. One of the main pro-fibrotic cytokines is
TGEF-B, therefore blocking TGE- promotes histological
recovery of muscle tissue and also significantly decreases
the levels of ECM proteins, thus promoting and increasing
muscular functionality [41,60,61]. In the same way, our
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results show that inhibition of fibrosis is correlated with a
decrease in TGF-P. Furthermore, our results showed that
andrographolide treatment inhibited the TGF-f3 canonical
signaling pathway, as evidenced by a reduced number of
nuclei positive for the key TGF-f intracellular mediators
p-Smad-2 and p-Smad-3. The decrease seems to affect, in
higher proportion, interstitial cells than regenerating
fibers. These observations suggest a novel mechanism of
the action for andrographolide.

Andrographolide is an anti-inflammatory molecule
that acts through specific inhibition of NF-«xB. NF-«kB
predominantly functions as a heterodimer of p65 and
p50, in which p65 contains the transactivation domain
and p50 is involved in the recognition of NF-kB DNA
element responses. It has been reported that andrographo-
lide inhibits NF-kB by covalent binding with a cysteine
residue in the p50 subunit, thus inhibiting the binding of
NF-kB to DNA [17]. Contrary to our report, mdx mice
heterozygous for the p50 subunit do not present any sig-
nificant histological changes; however, mdx mice hetero-
zygous for the p65 subunit present a mild dystrophic
phenotype [18]. A probable explanation is that p50 bound
to andrographolide sequesters the p65 subunits thus pre-
venting transactivation activity of this protein on target
genes. However, this hypothesis needs to be confirmed.

Moreover, we showed that the inhibition of fibrosis by
andrographolide correlates with a decrease in TGF-$
and CTGF expression. Both growth factors can directly
induce fibrosis in skeletal muscle and specific reduction
of either of them improves the dystrophic phenotype in
mdx mice [6,40]. It is known that TGF-f is a strong
inducer of CTGF activity [7,42,62]. Furthermore, it has
been shown that CTGF strongly synergizes with TGF-
to induce fibrosis [63]. CTGF expression requires NF-kB
activity because the CTGF promoter contains a func-
tional and specific NF-kB response element [64]. There-
fore, is plausible that andrographolide down-regulates
CTGF expression through inhibition of NF-kB because
andrographolide decreased NF-«B activity in vivo.

Conclusions

In conclusion, our preclinical evaluation of androgra-
pholide in a mouse model of DMD showed promising
improvements in dystrophic skeletal muscles by prevent-
ing damage and fibrosis progression. The reduction of
fibrosis was associated with enhanced muscle strength
and increased efficiency of cell therapy.

Additional files

Additional file 1: Figure S1. TA fiber diameter in mdx mice is not affected
by andrographolide treatment. Minimal Feret's diameters were determined in
muscle cross- sections from WT, mdx mice treated with vehicle, and mdx mice
treated with andrographolide. Fiber diameters were grouped from 0 to
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100 um. The images are representative of three independent experiments,
using four mice for each experimental condition.

Additional file 2: Figure S2. Andrographolide improves skeletal
muscle morphology and reduces the amount of collagen | in mdx
skeletal muscles. (A) Fibrosis was augmented as explained in the legend
of Figure 1. During this period, mice were treated with 1 mg/kg
andrographolide or vehicle (ip injections three times per week, six
animals per group). H&E staining and indirect immunofluorescence
analysis of collagen | (green) in cryosections of gastrocnemius muscles
from vehicle-treated mdx mice and andrographolide-treated mdx mice
are shown in the upper and the bottom panel respectively. (B) Non-
exercised mice were treated with 1 mg/kg andrographolide or vehicle
(ip injections three times per week, six animals per group). H&E staining
and indirect immunofluorescence analysis of collagen | (green) in
cryosections of diaphragm muscles from vehicle-treated mdx mice and
andrographolide-treated mdx mice are shown in the upper and the
bottom panel respectively. Bar corresponds to 50 um. Nuclei are stained
in blue (Hoechst).

Additional file 3: Figure S3. Andrographolide mainly reduces TGF-$
signaling pathway activity in necrotic and regeneration foci in mdx.
Upper panel shows an indirect immunofluorescence analysis of p-Smad-3
(red), to localize the positive nuclei, the membranes were labeled with
wheat germ agglutinin (green) and the nuclei are stained in blue
(Hoechst). Bottom panel shows consecutive sections stained with H&E.
Bar corresponds to 200 um.

Additional file 4: Figure S4. Andrographolide or prednisone treatment
improves skeletal muscle histology and decreases collagen content to
some extent in mdx skeletal muscles. Fibrosis was augmented as
explained in the legend of Figure 1. During this period, mice were
treated with 1 mg/kg andrographolide or with 5 mg/kg prednisone
(both drugs were administered orally twice weekly on consecutive days).
The figure shows an indirect immunofluorescence analysis of collagen |
(green) in cryosections of TA muscles from vehicle-treated mdx mice,
andrographolide-treated mdx mice and prednisone-treated mdx mice.
Nuclei are stained in blue (Hoechst). Bar corresponds to 50 pym.
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