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Abstract

Background: Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal
muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated
fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect
functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard
operating procedures have been developed to guide analysis of many of these parameters, the software to freely,
efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle
research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections
incorporating user controls for muscle histological analysis.

Results: The software consists of multiple functions designed to provide tools for the analysis selected. Initial
segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined
parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size
and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle
sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with
previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size
variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in
size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly
larger than peripherally nucleated fibers.

Conclusions: The MATLAB code described and provided along with this manuscript is designed for image processing
of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection
along with user correction. The output of the code provides data in accordance with established standards of practice.
The results of the program have been validated using a small set of wild-type and mdx muscle sections. This program
is the first freely available and open source image processing program designed to automate analysis of skeletal muscle
histological sections.

Keywords: Histological muscle analysis, Standardized quantitative analysis, Image segmentation, mdx mouse
Background
Skeletal muscle has a robust ability to adapt to the pat-
tern of use and to regenerate following injury. These are
often quantified using histological techniques. However,
the methods for this quantification remain disparate
among investigators and often require painstaking man-
ual procedures [1,2]. The goal of this work is to provide
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a widely available image processing software package
specifically designed for muscle histological analysis.
Altering muscle fiber size is one of the primary methods

in which muscle responds to external stimuli. Muscle
mass may be increased in response to resistance training
[3] or with potential pharmacological agents like myosta-
tin inhibitors [4], while muscle atrophy occurs in response
to disuse [5] and injuries such as denervation [6]. These
conditions primarily reflect hypertrophy or atrophy of
individual fibers rather than hyper- or hypoplasia [7].
Muscle fiber size is routinely evaluated using fixed or fro-
zen tissue sections. Fiber outlines are visualized using a
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variety of techniques, including hematoxylin and eosin
staining, laminin immunostaining, dystrophin immuno-
staining, and wheat germ aggluttinin staining [8]. While
these techniques enable visualization of fiber boundaries,
determining fiber cross-sectional area (CSA) is often still
performed by manual tracing of individual fibers. There
are software programs available to help automate fiber
detection, however they are often expensive and are not
specifically designed for muscle histology [9].
Muscle fiber type distributions are often investigated

in muscle histology as they are known to be altered in
response to exercise, inactivity, and aging [10]. Fiber type
is primarily determined by the myosin heavy chain iso-
form, which has differential contractile and ATPase ac-
tivity. Fiber type is often determined by ATPase staining
[11,12] or with immunostaining for specific myosin
heavy chain (MyHC) isoforms individually [13,14]. How-
ever, methods to determine fiber type can be subjective
and tedious when fibers are manually classified. Follow-
ing fiber segmentation, computing the size distribution
of single fiber types is easily automated.
Muscle fibers also undergo changes in morphology as

they develop. In particular, centrally nucleated fibers are
often used as a marker for muscle regeneration. While
fully mature fibers have peripheral nuclei, newly regener-
ated fibers have central nuclei [15]. In many muscular
dystrophies, which are characterized by continual cycles
of degeneration and regeneration, the number of cen-
trally nucleated fibers (CNFs) is substantial while CNFs
are hardly present in healthy muscle. Although nuclei
are easily stained with DAPI, determination of CNFs is
often performed manually. Combined use of automated
CNF and fiber size determination allows the size of re-
generating fibers to be calculated, providing a measure
of how efficiently regeneration is occurring after acute
injury [16].
Skeletal muscle is a highly metabolically active tissue

requiring large blood supply. As with fiber type shifts,
capillary density of skeletal muscle may be affected by al-
tered metabolic demand or in disease [17]. Endothelial
cells and capillaries are frequently stained in skeletal
muscle with Von Willibrand Factor or PECAM [18,19].
Automated determination of capillary density in relation
to fiber size and number provides a useful parameter of
skeletal muscle histology.
All of the methods discussed above are commonly per-

formed using immunofluorescence, which provides high
contrast in stained and unstained structures. We have
developed MATLAB (MATLAB and Image Processing
Toolbox 2014a, MathWorks) scripts bundled into a
MATLAB App (see Availability and Requirements) that
automate, or partially automate determination of fiber
size, fiber type, centrally nucleated fibers, and capillary
density. These programs are created to comply with
standard operating procedures developed by TREAT-
NMD when available using sophisticated boundary de-
tection algorithms [2]. The software also includes built-in
image editing to manually inspect and manipulate fiber
boundaries. Fully automated fiber size determination as
well as fiber types and CNFs may be possible with ad-
equate image acquisition [9,20]. However, these newly
designed fully automated programs are not yet available
[9] and/or have a significant cost [20]. Additionally,
allowing the user to have manual control over some as-
pect of image processing allows users to maintain the
fidelity established by manual techniques. The open na-
ture of this software also allows custom usage and fur-
ther advancement of the methods. For users that do not
have access to a MATLAB license or the image process-
ing toolbox we have compiled an .exe file that runs
using the freely available MATLAB Runtime Compiler
(MCR) version 8.3 (http://www.mathworks.com/products/
compiler/mcr/). Automating a large portion of muscle
histology makes it feasible to analyze full muscle cross-
sections, eliminating variability introduced by selecting
only a portion of the cross section for analysis. This soft-
ware is validated with muscles from mdx mice, which have
many alterations of muscle fiber morphology compared to
wild-type mice [21]. The purpose of this study is to de-
velop freely available automatic and standardized image
segmentation platform and validate the program using
standard muscle histological analysis.

Implementation
Mice
All animal experiments were approved by the University
of Pennsylvania Institutional Animal Care and Use Com-
mittee. C57Bl/6 mice were used as wild-type controls
and mdx mice were used as a dystrophic model. Both
animal groups were analyzed at 1 year of age.

Immunohistochemistry
Soleus muscles from both groups (n = 4 per group) were
dissected, embedded in OCT, and frozen in liquid nitrogen
cooled isopentane. Frozen 10 um sections were cut from
muscles and mounted on slides. Sections were washed in
PBS and immunostained using antibodies to laminin
(Thermo Scientific), and either myosin heavy chain I (Devel-
opmental Studies Hybridoma Bank) or platelet endothelial
cell adhesion molecule (PECAM; eBiosciences) overnight
at 4°C. After PBS wash, fluorescent secondary antibodies
(Sigma) were applied for 1 h at room temperature. Nuclei
were labeled with DAPI incorporated into the mounting
media (Vectashield). Images were acquired using a Leica
DM RBE microscope and DFC350FX camera and Open-
Lab software. Individual fields were stitched together to
create a composite full view of the muscle cross-section
using Photoshop (Adobe).
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Image selection
The software has built in several steps of image processing
tools within the same script. Initially the user must select
an image file (.bmp, .jpg, .png, and .tif.) to be processed. Fol-
lowing selection of the appropriate file the user is provided
a list of the built in functions (Figure 1A). A representative
image of a soleus muscle from a 1-year-old mdx mouse is
used which has been immunostained with laminin (red)
and slow myosin heavy chain (green) as well as DAPI (blue)
(Figure 1B and C). Dystrophic muscle can be more difficult
to process automatically due greater interstitial spaces and
the examples highlight some manual adjustments that may
be required. The software includes an Excel (Microsoft) file
containing default parameter values (Table 1), which may
be altered to the needs of the user. The details of each par-
ameter are discussed in the relevant section below.

Initial segmentation
Prior to any other function being run, a mask file for
the image must be created with the ‘Initial Segmentation’
Figure 1 Image selection. (A) Dialog box allowing selection of a single fun
section of 1-year-old soleus muscle from mdx mouse. Red is laminin stain, gre
portion of (B).
function. The Initial Segmentation function uses the water-
shed transformation to determine the fiber edges, as it has
become one of the most common and standard choices for
image segmentation [22,23]. However, the watershed trans-
formation often leads to over-segmentation due to local
minima created from noise within an image [24]. Prior to
applying the watershed transformation, the image is
smoothed with a function that suppresses local minima
whose depth is below a given threshold. Upon selecting
this function users are presented with options for segmen-
tation (Figure 2A). The pixel size measured in μm/pixel is
requested in all functions. The segmentation takes place
based on a single RGB color channel, which the user pro-
vides designating the color of the fiber outlines. The user
also provides an initial value for suppressing local minima
based on 8-bit channel images (0 to 255). Previous experi-
ence shows that a segmentation value of 4 to 10 produces
robust fiber identification, depending on the quality of
staining (Figure 3). However, the segmentation value may
need to be adjusted based on the image quality and
ction to perform on the selected muscle section. (B) Example muscle
en is slow muscle myosin heavy chain, and blue is DAPI. (C) Enlarged



Table 1 Default parameters from Excel file

Default parameters Default values

Pixel size (μm/pixel) 0.645

Fiber outline channel (red = 1, green = 2, blue = 3) 1

Nuclei channel (red = 1, green = 2, blue = 3) 3

Fiber type channel (red = 1, green = 2, blue = 3) 2

Object channel (red = 1, green = 2, blue = 3) 2

Segmentation smoothing factor 5

Nuclear smoothing factor 5

Object smoothing factor 10

Minimum fiber area (μm2) 100

Maximum fiber area (μm2) 5,000

Maximum eccentricity 0.95

Minimum convexity 0.8

Nuclear distance from boarder (μm) 10

Minimum nuclear size (μm2) 5

Fiber properties output folder C:\SMASH\Output

Fiber type output folder C:\SMASH\Output

Central nuclei output folder C:\ SMASH\Output

Objects output folder C:\ SMASH\Output
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exposure (Figure 3). For example, a suboptimal segmenta-
tion can generate false objects (Figure 3A, E) or merge ob-
jects (Figure 3C, E). Once initial parameters have been
selected, the initial segmentation takes place with the
segmented fiber edges overlaid on the original image
(Figure 2B) [25]. After inspecting the image the user can
decide to re-run the function with alternative parameters.
Once proper segmentation has been achieved, the user has
the option to separate any merged fibers that may have
arisen from poor staining. The user implements a freehand
drawing tool to separate any fibers that are merged with
other fibers (red dotted line) or interstitial space (yellow
dotted line) (Figure 2C). After the user has finished separ-
ating any fibers a mask file is saved. Initial segmentation
will often produce many small segments in interstitial
space; however, non-fiber areas will be filtered in the ‘Fiber
Filter’ function. All fibers in the mask should be separated
prior to running the fiber filter function to prevent in-
appropriate filtering of fibers.

Fiber filter
Following the initial segmentation the fiber filter function
removes objects based on user-defined criteria (Figure 4A).
Fibers that touch the edge of the image are removed so
partial fibers are not included in further calculations. To
provide the proper scale, the pixel size is entered by the
user in μm/pixel. Any fibers below the minimum fiber
area or above the maximum fiber area entered in μm2 are
removed from the mask and from further analysis. More
advanced filtering is also included with eccentricity and
convexity. Interstitial space may fit the size requirements
of a fiber; however, it will not have a grossly circular shape
in cross section. The eccentricity takes an ellipse with the
same second moments as the objects and is the ratio be-
tween the distance between the foci of the ellipse and the
major axis. Thus, circles have an eccentricity of 0 and line
segments have an eccentricity of 1. Further, interstitial
space may have a stellate shape between fibers while main-
taining high eccentricity. The stellate shape creates regions
of concavity, while polygonal fibers have minimal concav-
ity and high convexity. The convexity is determined by the
ratio of the object area and the smallest convex polygon
that can contain the entire region. Thus, a completely con-
vex image will have a convexity of 1. After the filtering pa-
rameters have been selected, a new mask is created with
only the objects passing the filter (Figure 4B) [25]. At this
point the user has the option to inspect the mask and se-
lect any objects that may have passed the filter but are not
fibers (Figure 4C). This may include areas of interstitial
space, vessels, or other structures the user does not want
to include (Figure 4D, yellow arrow). The zoomed ex-
ample image shows fibers that were filtered because of
high eccentricity and high convexity due to improper sep-
aration of fiber from interstitial space (Figure 4D, pink
arrows). Following user removal of non-fiber objects the
mask file is overwritten.

Fiber properties
After the mask has been filtered to contain only objects
that are fibers the properties of the fibers may be deter-
mined. The user is prompted for pixel size and the
folder location that the output data should be exported
to. The output file is in Excel (.xls) format with the same
name as the image file appended by ‘_Props’ (Figure 5A).
The Feret diameter properties are obtained from an
incorporated publically available script on MATLAB
Central [26]. The function displays histograms for fiber
minimal Feret diameter and fiber CSA for inspection
(Figure 5B). The Feret properties are defined by the
smallest rectangle that bounds the fiber [27]. The mini-
mum Feret diameter has been shown to be a more ro-
bust measure of fiber size. Feret diameter is much less
sensitive to oblique muscle section compared to fiber
CSA [2]. For each fiber the properties exported are: cen-
troid in x and y in pixels, the maximum Feret diameter
(μm), minimum Feret diameter (μm), Feret direction (ra-
dians), and fiber area (μm2). The output Excel file is then
written with all fiber properties as well as the mean,
standard deviation (SD), and standard error of the mean
(SEM) for each property (Figure 5C).

Fiber typing
The fiber typing function uses the fiber mask to inspect
each fiber area for determination of fiber staining. The



Figure 2 Initial segmentation. (A) Input box with options for fiber segmentation. (B) The example image with white lines drawn along fiber
boarders based on segmentation parameters. (C) Dialog box that appears after separating a fiber. (D) Zoomed in of B. Red dotted lines shows
where two fibers are separated by the user. Yellow dotted lines shows where a fiber is not separated from intestinal space.
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function examines the average intensity of staining within
the individual fiber region determined by the mask to cal-
culate an average intensity. A threshold value is used to de-
termine if the fiber is positive or negative based on the
average intensity. The user inputs the pixel size, the RGB
channel which includes fiber type staining, and the output
folder location (Figure 6A). The initial threshold value for
average fiber type intensity is obtained using Otsu’s
method, which calculates the threshold to minimize intra-
class variance of the thresholded binary image [28]. The
program then performs an initial calculation of fiber types.
A figure is displayed with the original image and an image
where positive fibers are white and negative fibers are grey
(Figure 6D). The figure includes a histogram of staining in-
tensities along with the threshold. The intensity histogram
should have two peaks, with the lower and sharper peak
being negative fibers and high intensity peak representing
positively stained fibers. Intermediate values may represent
mixed fibers. A histogram with the CSA of positive fibers
(red, front) and all fibers (blue, back) is presented to exam-
ine any fiber type-dependent size changes. After inspecting
the figure the user is able to adjust the threshold value and
the figure is updated. Once the user is satisfied with the
analysis they select accept and are prompted to create an
Excel file with each fiber’s average intensity, fiber area, and
if it is classified as positive (1) or negative (0) (Figure 6B).
Summary data including average fiber area, average fiber
intensity and percent of positive fibers are included for all,
positive, and negative fibers.

Centrally nucleated fibers
The CNF function again requires prior creation of a fiber
mask to analyze the centers of fibers for nuclei. The user
is prompted to input pixel size as well as the RGB channel



Figure 3 Segmentation examples. Example muscle section of 1-year-old soleus muscle from mdx mouse. Red is laminin stain, green is slow muscle
myosin heavy chain, and blue is DAPI. (A) Segmentation filter value of 2 produces over segmentation of original image. (B) Segmentation filter value
of 5 produces appropriate segmentation. (C) Segmentation filter value of 12 produces under segmentation of original image. (D) Reducing the
brightness of laminin staining by 50% (representing poor staining) produces under segmentation. (E) Enhancing the brightness of laminin by
400% (representing over exposure) produces over segmentation. (F) Overexposure can be compensated for by increasing the segmentation
filter value to 12. Yellow arrow heads show areas of over segmentation. Pink arrow heads show areas of under segmentation.
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that corresponds to nuclear staining (Figure 7A). To re-
strict the inspection to central nuclei the nuclear staining
must be greater than a user-defined distance from the
border of the fiber input in μm. The user is also allowed
to specify the minimum area of nuclei to count so that
random staining is minimized. To minimize the effect of
streaking that can be present with poor DAPI staining the
image can be smoothed using the same suppression of
local minima used for fiber segmentation. An automatic
threshold is applied after nuclei smoothing using Otsu’s
method. Finally, the user also specifies the output folder
for the Excel data to be written to. After input selection a
figure is displayed that contains the original image and an
image with the borders. The distance not inspected is in
red and the nuclei are in blue, with peripheral nuclei
appearing purple (Figure 7C, bottom left). The figure also
contains images of only the smoothed nuclear image
and an image with only CNFs. In some situations the
automatic thresholding of nuclei may be unsuitable. After
inspecting the image the user may adjust the threshold
value as desired. Mousing over smoothed nuclear image
may provide useful information for manual threshold-
ing. Once a proper threshold is determined, the user is
prompted if to determine if the results should be output to
Excel. If the answer is yes, a file is created that contains the
fiber area, the area of positive nuclei staining in the center
region, and if the fiber is classified as a CNF (1) or not (0)
(Figure 7B). Summary data include the average fiber area,
area of central nuclei, and percent of CNFs for all fibers,
CNFs, and non-CNFs. If parameter selection was not suffi-
cient, the function can be rerun with new parameters.

Capillary density or non-fiber objects
It is often useful to identify objects within muscle sections
that are not within fibers. The object counter was designed
to identify capillary density using a PECAM staining to
identify endothelial cells, however other cell types could be
analyzed with the same techniques, such as macrophage



Figure 4 Fiber filter. (A) Input box with options for filtering fibers. (B) Image generated in which fibers passing the filter are randomly colored
to more easily distinguish adjacent fibers. (C) Zoomed in of (B). Yellow arrows point to possible user selections as non-fiber objects. Pink arrows
show fibers that did not pass the filter. Lower left pink arrow did not pass due to improper segmentation as depicted in Figure 2D. (D) After selection
of fibers the user is asked if they would like to indeed delete them or complete the function operation.
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infiltration [29]. The user is prompted for pixel size and the
RGB channel of the objects to be identified (Figure 8A). Ini-
tial values for smoothing the objects, identical to that for
nuclei and fiber type, with initial threshold automatically
generated using Otsu’s method. The user also identifies the
folder location of the Excel file output. After initial parame-
ters are selected a figure is presented with a figure contain-
ing the original image, the object channel image, smoothed
object channel image, and thresholded object image
(Figure 8C). After inspection, the user is then prompted to
change the threshold if desired. Once the user has achieved
a suitable threshold the user selects whether to output an
Excel file with the data. Each object has its area and cen-
troid listed along with summary data including the total
number of objects in the image.
SMASH data verification
To verify the data generated by SMASH we compared
the same images used in previously published data [30].
In this case legacy methods were done using Openlab
software (Improvision, PerkinElmer) with simple thresh-
olding of individual RGB channels for fiber size and fiber
type. For central nucleation fibers were manually deter-
mined to be CNF or PNF and a marker placed using
Openlab to enable counting.

Statistical analysis
The C57 and mdx output data were compared using a
Student’s t-test. For comparing CNFs and PNFs a paired
Student’s t-test was used. All data analyses were per-
formed using PRISM (Graphpad Software).



Figure 5 Fiber properties. (A) Input box with options for fiber properties. (B) Histograms showing minimum Feret diameter (top) and fiber CSA
(bottom). (C) Truncated example of Excel output from running fiber properties function.
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Results
In order to evaluate the suitability of the software described,
skeletal muscle morphologies from a selection of wild-type
C57BL6 and mdx mouse soleus muscles were analyzed
(n = 4 per group). The mdx mouse is a model of Duchenne
muscular dystrophy (DMD) that is commonly studied. A
multitude of previous reports demonstrate that mean indi-
vidual fiber cross-sectional area in mdx muscle is not
consistently altered. However, as the mdx muscle is under-
going continual cycles of degeneration and regeneration the
variability in fiber CSA is much greater than wild-type
muscle [2,31]. The results produced here clearly reflect the



Figure 6 Fiber type. (A) Input box with options for fiber type function. (B) Truncated example of Excel output from running fiber type function.
(C) Portion of immunofluorescent image. Red is laminin stain, green is slow muscle myosin heavy chain, and blue is DAPI (top left). Image
showing negative fibers in gray and positive fibers in white (top right). Histogram of average fiber intensity for fiber type stain with threshold
value (bottom left). Histogram of fiber CSA with positive fiber in red and all fibers in blue (bottom right).
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previous literature on mean CSA and variability of CSA
(Figure 9A and B). The mean fiber CSA was not different
between the C57 and mdx muscles; however the standard
deviation (SD) of CSA within a muscle was much greater
in mdx than C57. While measurements of fiber CSA have
commonly been used, the fiber CSA is highly dependent on
the angle of the section relative to the axis of the fiber. Use
of minimal Feret diameter provides a robust measure of
fiber size largely independent of the angle of the section
and is endorsed as a standard operating procedure [2]. Our
results on Feret diameter align well with that of CSA show-
ing no change in the mean Feret diameter, but a substantial
increase in the standard deviation of Feret diameter within
an mdxmuscle (Figure 9C and D).
Fiber type determination is commonly performed in

muscle histological analysis. The muscles studied here
have been stained for slow myosin heavy chain (Type I).
The soleus muscle has a large portion of type I fibers of
approximately 40% in wild-type mice [32]. This proportion
is close to the value obtained with the software (Figure 9E),
however there was a large increase in the percentage of
slow fibers in the mdx soleus muscle. This is expected
based on the advanced age of these mice of 1 year and that
type I fibers are more resistant to damage in mdx muscle



Figure 7 Centrally nucleated fibers. (A) Input box with options for CNF function. (B) Truncated example of Excel output from running CNF
function. (C) Portion of immunofluorescent image. Red is laminin stain, green is slow muscle myosin heavy chain, and blue is DAPI (top left).
Image showing filtered nuclei (top right). Image with boarder regions in red and nuclei above threshold in blue (bottom left). Image in which
only CNFs are depicted in white (bottom right).
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[33]. Determination of the size of various fiber types is an
automatic feature of the software. Assuming all unlabeled
fibers are type II fibers the results show that C57 type I fi-
bers are smaller than type II and the relationship is not
different in mdx soleus muscles (Figure 9F).
Due to the continual cycles of degeneration and regen-

eration, dystrophic muscles have a high prevalence of
CNFs, while uninjured wild-type muscles have very few
CNFs. The percentage of CNFs in dystrophic muscle is a
commonly measured histological marker of disease [34].
The automatic detection demonstrated the expected re-
sults with C57 soleus muscle showing very rare CNFs
while >30% of mdx soleus muscle fibers were CNFs
[33,35] (Figure 9G). While CNF percentage is routinely
performed, often using manual methods, reporting on
the size of the CNFs is less common. The software



Figure 8 Object counter. (A) Input box with options for object counter function. (B) Truncated example of Excel output from running object
counter function. (C) Portion of immunofluorescent image. Red is laminin stain, green is PECAM, and blue is DAPI (top left). Image showing only
the objects of interest, here PECAM from the green channel (top right). Image showing objects of interest after smoothing filter is applied
(bottom left). Binary image showing discrete objects that pass threshold value (bottom right).
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makes it trivial to measure the size of the CNF popula-
tion. The data collected show that within mdx muscle
CNFs are larger than peripherally nucleated fibers
(PNFs) (Figure 9H). This relationship has been previ-
ously observed in the EDL muscle of mdx mice [16,36].
The difference between data output from legacy

methods and SMASH for fiber size, fiber size variability,
fiber type percentage, and CNF percentage are presented
in Table 2. There was little discrepancy between values
obtained for fiber type percentage or CNF percentage.
However, the calculated fiber areas were consistently
higher using SMASH compared to legacy methods. This
is due to the greater and more variable fiber border re-
gion using simple thresholding in legacy systems com-
pared to SMASH (Figure 10). The time required to
process each function in SMASH compared to legacy
methods is reported in Table 3. Smash demonstrates
greatly reduced time of analysis for the muscles tested.

Discussion
The manual analysis of skeletal muscle immunofluores-
cence is often a laborious task. The Semiautomatic
Image Processing of Skeletal Muscle Histology Software
described and tested provides researchers with a valuable
tool for measuring multiple facets of muscle histology.
While image analysis software is available to conduct
many of these features, it carries a high monetary cost
and is not specifically designed for skeletal muscle ana-
lysis. In contrast, this program is available on the widely
used MATLAB software and is designed to investigate



Figure 9 Comparison of output data from 1-year-old C57 and mdx mouse soleus muscle. (A) Mean of cross-sectional area of fibers in C57
and mdx muscle sections. (B) Standard deviation of CSA of fibers. (C) Mean of minimum Feret diameter (MFD) of fibers. (D) Standard deviation of
MFD diameter. (E) Percentage of Type I fibers in C57 and mdx muscle sections. (F) The ratio of mean CSA of type I fibers to type II fibers. (G) The
percentage of fibers with centrally nucleated fiber (CNF)s. (H) The mean CSA of mdx peripherally nucleated fibers (PNF) and CNFs. *P <0.05 for
mdx compared to C57, † P <0.05 for CNFs compared to PNFs within the same muscle.
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specific features of muscle histology, and is open to cus-
tom modifications for advanced users.
All of the functions in the program rely and are based

on the segmentation of skeletal muscle fibers in an
image. This is commonly done with manual tracing,
which is very time-consuming, or basic thresholding of
fiber outlines, which requires extensive manual correc-
tion on all but the most pristine sections. Using a com-
bination of the image smoothing fiber and the watershed
transform fiber boundaries are automatically produced
Table 2 Data comparison from legacy methods to SMASH

Image Legacy Method SMASH Difference

Fiber type - myosin IIa (%)

A 59 58 -1

B 60 57 -3

C 58 61 3

Fiber size - fiber area (μm2)

A 708 898 189

B 745 934 189

C 622 819 198

Fiber size - fiber area SD (μm2)

A 303 415 112

B 265 346 81

C 219 339 121

Centrally nucleated fibers (%)

A 71 66 -5

B 58 55 -3

C 61 60 -1
with much improved reliability over standard threshold-
ing. However, the software maintains the manual ability
to correct image segmentation. Furthermore, if the built-
in manual editing features are not suitable, the user may
edit the created mask file with software of his choice,
such as Adobe Photoshop. After the mask has been fi-
nalized, running the analysis functions is expedient. The
user is required to enter parameters for analysis and
may adjust them based on the resulting image guides.
To analyze the entire cross-section of 1-year-old soleus
muscles for fiber size, fiber type, and CNFs from the
same image took approximately 15 min, substantially
less than manual methods. Increased time efficiency al-
lows analysis of the whole muscle cross-section, avoiding
the sampling issues of only using select fields of view.
Using the whole muscle cross-section is required to
meet TREAT-NMD standards of practice [37]. Analyzing
more fiber and eliminating regional differences in cross-
section improves the consistency of the results. Highly
significant results were obtained with low variability in
our investigation with only four muscles per group.
The output of fiber size data in Excel format permits

the use of many graphing tools to create plots of fiber
size commonly used. Ensuring the ability to measure
Feret diameter ensures compliance with the latest stand-
ard operating procedures for fiber size analysis [2].
Automation of fiber type data with defined boundaries
has advantages over using thresholding to determine
fiber type and size. Instead of determining the fiber size
by the area above a threshold value of staining, the area
is determined entirely by the fiber outline so the positive
fiber size will not be affected by blotchiness in fiber type



Figure 10 Comparison of mask file from legacy method and SMASH. (A) Original image of a laminin stained muscle section. (B) Fibers are
colored randomly from SMASH output mask with dark regions corresponding to fiber area using a simple threshold. Dark gray areas are
interstitial in SMASH and fibers using legacy methods while white areas are interstitial in both masks. Figure demonstrates the larger fiber area
obtained with SMASH compared to the legacy method of using a simple threshold for fiber area.
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staining. The fiber type function may also be used for
additional signals internal to fibers such as Evan’s Blue
Dye permeability or IgG infiltration of necrotic fibers
[2,38]. Automatic determination of CNFs provides a use-
ful measure of skeletal muscle histology. Although it is
not frequently studied, combining fiber size with CNF
determination may provide a more informative marker
of muscle health [16]. The computation of this add-
itional parameter is trivial using this software. Analysis
of structures outside of fibers themselves in skeletal
muscle is also important. The object counter function was
designed to automate analysis of capillary density, as is
done in muscle histological analysis for capillaries per fiber
and capillaries per area [19]. However, it may also be used
to analyze a multitude of other structures within a muscle,
such macrophage infiltration or matrix proteins.
The data generated by SMASH are validated against

legacy methods showing largely consistent results be-
tween methods for fiber type and CNF percentages
(Table 2). However, the discrepancy in fiber area illus-
trates the importance of using a single analytical method
for a given study and highlights the variability between
different approaches. Using a simple threshold to separ-
ate fibers creates highly variable borders between adja-
cent fibers that are dependent on parameters such as
exposure time and focus during image acquisition. Fil-
tering the signal and using the watershed function as is
Table 3 Run time (mm:ss) comparisons from legacy methods

Image Legacy method - functions

FPa FTa CNF TOT IS

A 30: 10: 16:30 56:30 1:50

B 30: 10: 13:50 53:50 2:46

C 30: 10: 13:30 53:30 1:45
aTimes are approximate.
CNF functions were performed on different sections than other functions.
CNF: Centrally nucleated fibers function; FF: Fiber filter function; FP: Fiber properties
function; TOT: Total time for analysis.
done in SMASH provides signal that is more robust to
these parameters. SMASH provides a mask more con-
sistent with manual tracing of fibers than applying a
threshold. While SMASH reduces the border region be-
tween adjacent fibers, it is also clearly capable of delin-
eating interstitial space between adjacent fibers when
there is an appreciable separation as evidenced by the
white and grey areas in Figure 10. Thus, we attest that
SMASH generally provides a more robust and accurate
fiber size as well as requiring less manual editing than
using simple thresholds. It is also noteworthy that fiber
area is generally more variable than Feret diameter as
for perfectly round areas it is squaring the difference
and the more elongated the fiber the greater the propor-
tion of border region that may influence the results.
In addition the gains in robust analysis Table 3 demon-

strates that SMASH greatly reduces the time required to
analyze images. Manual editing of the fiber mask is still
required in the majority of muscle sections for both ini-
tial segmentation and fiber filtering and take the major-
ity of the processing time. However, with SMASH this
manual editing is reduced to just a few minutes in the
case of the soleus muscles tested. The time gains are es-
pecially significant when doing multiple analyses on the
same image, as manually editing the mask is the major
time consumer and additional functions are able to be
processed in just seconds.
to SMASH

SMASH - functions Diff

FF FP FT CNF TOT TOT

1:49 0:06 0:17 0:12 4:14 52:16

3:42 0:05 0:26 0:15 7:14 46:36

2:39 0:07 0:14 0:10 4:55 48:35

function, including fiber size; FT: Fiber typing function; IS: Initial segmentation
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While this software provides many advantages there
are notable limitations. The analysis is currently limited
to immunofluorescence and is not compatible with com-
mon stains such as hematoxylin and eosin. The software
does often require manual segmentation and filtration of
fibers based on the current algorithms. These manual
adjustments allow the user more control over the ana-
lysis, but also increase the time required for analysis and
introduce a degree of subjectivity. Manual adjustments
are more frequently required in analysis of diseased
muscle as well. While these algorithms are advanced
compared to many of the techniques currently in use,
extending fiber segmentation algorithms may provide
more reliable boundaries. The proposed method of
measuring fiber type is limited to investigation of a sin-
gle fiber type per image, or per color in an RGB image.
Thus to measure each fiber type individually requires
multiple image segmentation masks from serial sections.
Alternatively, using distinguishable fluorophors for each
fiber type [39] would permit the analysis of two fiber
types using the same mask using this software. Using
serial sections for fiber typing is standard procedure in
many labs and it is not enhanced by this software. The
analysis of myonuclei is limited to CNFs in this software,
as opposed to providing a measure of myonuclear dens-
ity with peripheral nuclei [9,20]. The method of measur-
ing CNFs is recommended by TREAT-NMD, however it
causes an issue with very small fibers as the entire CSA
may be in the defined border region, making it impos-
sible to be labeled as a CNF. The measurement of non-
fiber objects designed for capillary density is currently
preliminary. There is no filtering of objects or a method
to select an object of interest. However, the output of
object size does allow filtering based on the objects CSA
within Excel. This program currently is designed for use
with muscle cross-sections and not designed to analyze
images from longitudinal muscle sections. As an open
source program, users may address any of these limita-
tions as they see fit within the framework of the software
platform and MATLAB.

Conclusions
The software package based in MATLAB provides image
processing tools to analyze immunofluorescent muscle
cross-sections. The semi-automatic fiber segmentation
functions provide advanced algorithms for fiber segmenta-
tion as well as provide an interface for users to manually
correct any errors. The histological analysis includes func-
tions for fiber CSA, fiber Feret diameter, fiber typing,
CNFs, and capillary density. These functions produced ex-
pected results comparing wild-type and dystrophic mouse
muscle. These functions may be purposed for other ana-
lyses. This open source platform provides users a frame-
work to create their own functions or modification of
previously incorporated functions. Automated functions
improve the speed and consistency of skeletal muscle
histological analysis. Although it requires a MATLAB li-
cense, this is the only freely available software designed for
the analysis of skeletal muscle histology.

Availability and requirements
Project name: SMASH - Semiautomatic Image Process-
ing of Skeletal Muscle Histology: a MATLAB Application.
Project homepage: http://dx.doi.org/10.6084/m9.figshare.
1247634
Operating System: Platform Independent.
Programming Language: MATLAB.
Other requirements: SMASH Stand Alone (SMASH_
Installer.exe) requires MATLAB Compiler Runtime (MCR)
version R2014a (8.3) which is freely available fromMathworks
(http://www.mathworks.com/products/compiler/mcr/).
SMASH App (SMASH_App.mlappinstall) requires
MATLAB version R2014a (8.3) or later with the Image
Processing Toolbox.
License: CC-BY.
Any restrictions to use by non-academics: None.
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