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Abstract

muscle-specific Cre transgenic mouse strain.

community.

Background: The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for
understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal

Methods: To achieve skeletal muscle-specific expression, the human a-skeletal actin promoter was used to drive
expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains.

Results: Western blot analysis, PCR and 3-galactosidase staining confirmed that Cre-mediated recombination was
restricted to limb and craniofacial skeletal muscles only after tamoxifen administration.

Conclusions: A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult
skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle
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Background

The ability to manipulate the murine genome has
proven to be instrumental in the understanding of gene
function in vivo. In particular, the use of the Cre/loxP
system has allowed investigators to circumvent the lim-
itations of conventional gene targeting strategy by pro-
viding temporal and tissue-specific control over gene
expression [1]. A number of different skeletal muscle-
specific Cre mice have been used to alter gene expres-
sion during embryonic development and in the adult. In
the most popular strains, the muscle creatine kinase
(MCK), human a-skeletal actin (HSA), myogenic factor
5 (Myf5), myosin light chain 1/3 fast (MLC1/3f), myo-
genic differentiation 1 (Myodl), myogenin (Myog) or
paired box gene 7 (Pax7) promoters have been used to
drive expression [2-18]. A search of the CREATE con-
sortium database (http://www.creline.org/) revealed that,
of the dozen or so skeletal muscle fiber-specific Cre
mice available, only two were inducible. One strain used
a mutated estrogen receptor ligand-binding domain
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(CreMer) to control the timing of Cre-mediated recom-
bination via tamoxifen activation [3]. The second indu-
cible mouse strain employed a muscle-specific Tet-On
system to control Cre expression following administra-
tion of the tetracycline analogue doxycycline [18].

To provide a readily available mouse strain to the skel-
etal muscle community, we generated our own skeletal
muscle-specific, inducible Cre strain and characterized
the effectiveness of recombination in both limb and cra-
niofacial muscles. The design of our transgene was based
on a previous Cre transgenic strain that achieved a high
degree of skeletal muscle specificity using the HSA pro-
moter [2]. We modified the previously described HSA-
Cre transgene by substituting Cre with a MerCreMer
(MCM) cDNA, thus making the system inducible by re-
quiring tamoxifen binding to induce Cre-mediated re-
combination [2]. Characterization of the HSA-MCM
mouse demonstrated skeletal muscle-specific expression
of the MCM protein and that recombination only oc-
curred following tamoxifen administration. Moreover, in
addition to limb muscle, we observed recombination in
craniofacial muscle, thus expanding the utility of this
mouse strain for the study of gene function in skeletal
muscles of different developmental origins.
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Methods

Cloning of the HSA-MerCreMer transgene

The design of the transgene is based on a previous
muscle-specific Cre transgene reported by Miniou and
colleagues (1999); however, we replaced the Cre cDNA
with an inducible form of Cre described by Verrou et al.
(1999) [2,19]. The inducible Cre contained a mutated es-
trogen receptor (Mer) ligand-binding domain at both
the N- and C-termini and was designated as MerCreMer
(MCM) to be consistent with the cardiac-specific MCM
strain [20]. To generate the transgene, the promoter and
first exon (-2,000 to +239 relative to the transcription
start site) of the HSA gene was amplified from human
genomic DNA (Promega, Madison, WI, USA) and
cloned into Clal site of the SG5 expression vector (Agi-
lent Technologies, Santa Clara, CA, USA) upstream of
the B-globin intron II. The MCM cDNA was then ampli-
fied from the pANMerCreMer expression vector (a kind
gift from Dr Reth) and cloned into the EcoRI site of the
pSG5-HSA plasmid to generate the pSG5-HSA-MCM.
The mutation (G525R) introduced into the estrogen re-
ceptor ligand-binding domain has been shown to abolish
estradiol binding while retaining the ability to bind 4-
hydroxytamoxifen [21]. The plasmid was then sequenced
for verification. The HSA-MCM transgene was released
from the plasmid by HindIlI/Nsil enzyme digestion, gel-
purified using the QIAquick Gel Extraction Kit accord-
ing to the manufacturer’s directions (Qiagen, Valencia,
CA, USA) and then provided to the University of
Kentucky Transgenic Mouse facility for microinjection.

Generation and screening of HSA-MCM transgenic lines

All animal procedures were conducted in accordance
with institutional guidelines for the care and use of la-
boratory animals as approved by the Institutional Ani-
mal Care and Use Committee of the University of
Kentucky. The HSA-MCM transgene was introduced
into F2 embryos derived from the mating of C57BL/6 X
C3H (B6C3F1) parents. Production of mice was per-
formed by the staff of the University of Kentucky Trans-
genic Mouse facility. Genomic DNA was isolated from
tail biopsies of eight offspring using the DNeasy Blood &
Tissue Kit (Qiagen) and screened for the presence of the
HSA-MCM transgene by PCR using the following pri-
mers: forward, 5'-GCATGGTGGAGATCTTTGA-3’; re-
verse, 5'-GCTTCTGTCCG TTTGCCGGTCG-3'. The
primers spanned the C-terminus MerCre junction (see
Figure 1) and produced a 717-bp product. Five of the
offspring were positive for the presence of the HSA-
MCM transgene. To determine which of the HSA-MCM
founder lines showed germline transmission and were
capable of inducible, muscle-specific Cre-mediated re-
combination, each line was bred to a lacZ reporter
mouse line (B6;129 S4-Gt(ROSA)26Sor”™ /], stock
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Figure 1 A schematic of the HSA-MCM transgene. The promoter
and first exon (—2,000 to +239 relative to the transcription start site)
of the human a-skeletal actin (HSA) gene drives expression of the
MerCreMer (MCM) gene which harbors a mutated estrogen receptor
(Mer) ligand-binding domain on each terminus of the Cre
recombinase gene. The 3-globin intron Il (BGI) and poly(A) tail were
incorporated into the transgene to ensure proper splicing and
transcript stability, respectively. The positions of the PCR primers
used for genotyping are indicated by half-arrows.

number 003474) purchased from The Jackson Labora-
tory (Bar Harbor, ME, USA) and originally described by
Soriano [22]. A second reporter mouse strain, containing
a lacZ with a nuclear localization signal, was also used
to assess the ability of the HSA-MCM strain to drive in-
ducible recombination and label adult skeletal muscle
nuclei. This second reporter mouse was described by
Yamamoto and colleagues and purchased from The Jack-
son Laboratory (FVB.Cg—Gt(ROSA)26Sor”"1(CAG’I“CZ”
EGEP)GI 1 - stock number 012429) [23].

Western blot analysis

To expand the potential utility of the HSA-MCM strain,
we determined the expression of the MCM protein in
skeletal muscles of different developmental origins. To
generate total protein lysates for Western blot analysis,
tissue samples were collected from limb muscles (Gstn,
gastrocnemius; Pln, plantaris; Sol, soleus; EDL, extensor
digitorum longus; Quad, quadriceps; TA, tibialis anter-
ior), craniofacial muscles (EOM, extraocular muscle;
Mastr, masseter; Tong, tongue), the heart (Hrt), samples
containing smooth muscle (Stom, stomach; S. Int, small
intestine) and nonmuscle tissue (Lung; Panc, pancreas;
Liver; Brain; Fat; Spln, spleen; Kdny, kidney). Tissue
samples (about 20 mg) were homogenized by using the
Polytron PowerGen 125 (Fischer Scientific, Suwanee,
GA, USA) in homogenization buffer (1% Nonidet P-40,
0.5% sodium deoxycholate, 0.1% SDS, 50 mM NaCl,
400 mM KCl, 25 mM p-glycerophosphate, 50 mM NaF,
5 mM benzamidine, 20 mM Tris-HCl (pH 7.6), 1 mM
ethylenediaminetetraacetic acid, 1 mM sodium orthova-
nadate, 5 mM N-ethylmaleimide, 1 mM phenylmethyl-
sulfonyl fluoride) supplemented with protease inhibitor
cocktail (catalog no. P8340; Sigma-Aldrich, St Louis,
MO, USA). The muscle homogenates were then centri-
fuged for 10 min at 10,000 g at 4°C, and the protein con-
centration of the supernatant was determined using the
Bradford protein assay (Bio-Rad Laboratories, Hercules,
CA, USA). Ten micrograms per sample were separated
by SDS-PAGE (8% gel) and then transferred to
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nitrocellulose membrane (0.2 pm) (Bio-Rad Laborator-
ies). The membrane was incubated in blocking buffer
(5% nonfat dry milk in Tris-buffered saline (TBS) plus
0.1% Tween-20 (TBS-T)) for 1 hour at room
temperature and then incubated in blocking buffer over-
night at 4°C with a 1:3,000 dilution of the primary anti-
body. An antibody against the estrogen receptor-a (ERa)
(MC-20; Santa Cruz Biotechnology, Santa Cruz, CA,
USA) was used to detect the MCM protein and anti-
bodies against y-tubulin and glucose-6-phosphate de-
hydrogenase (T359 and A-9527, respectively; Sigma-
Aldrich) were used to evaluate loading between samples.
The ERa antibody was able to distinguish between the
endogenous ERa (66 kDa) and MCM (112 kDa) proteins
based on their significant difference in molecular weight
as previously shown [19]. After the overnight incubation,
the membrane was washed for 5 minutes four times in
TBS-T and then incubated with a horseradish peroxid-
ase-conjugated secondary antibody (2 ng/ml) for 45
minutes at room temperature in blocking buffer. Follow-
ing this incubation, the membrane was washed again in
TBS-T as described above, incubated for 5 minutes in
chemiluminescence substrate (ECL Primer Western
Blotting Detection Reagent; GE Healthcare, Piscataway,
NJ, USA) and then visualized by exposure to X-ray film.

B-galactosidase assay

Tissue was excised and mounted on an aluminum-cov-
ered cork block, covered in O.C.T. compound, frozen in
liquid nitrogen-cooled isopentane and then stored at
-80°C until sectioning. Tissue sections (10 um) were air-
dried for 30 minutes, rehydrated in PBS for 10 minutes,
fixed in 0.2% glutaraldehyde for 7 minutes at room
temperature and then washed briefly three times in PBS.
Fixed sections were then incubated overnight in 5-
bromo-4-chloro-3-indolyl-B-D-galactopyranoside (X-gal)
working solution at 37°C in a humidified chamber. The
X-gal working solution contained 5 mM potassium hex-
acyanoferrate(IlI), 5 mM potassium hexacyanoferrate(Il)
trihydrate, 2 mM MgCl, and 1 mg/ml of X-gal. Follow-
ing the overnight incubation, sections were washed three
times for 5 minutes per wash in PBS, dehydrated in 95%
ethanol for 1 minute twice, 100% ethanol for 1 minute
twice, cleared for 1 minute in xylene and then mounted
on a coverslip using Permount mounting media. For nu-
clear localized [-galactosidase detection, transcardial
perfusion was performed using ice-cold PBS containing
10 U of heparin followed by freshly prepared, ice-cold
4% paraformaldehyde. The Gstn muscle was dissected
out and fixed for an additional 60 minutes in 4% paraf-
ormaldehyde, which was followed by a series of rinses in
PBS. Tissue was cryoprotected by then being placed in a
15% (wt/vol) sucrose solution until equilibration, fol-
lowed by immersion in a 30% sucrose solution until
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equilibration, each performed at 4°C. Tissue was then
transferred to a 1:1 (vol/vol) mixture of 30% sucrose and
O.C.T. compound (Tissue-Tek; Sakura Finetek USA,
Inc, Torrance, CA,) for 30 minutes and then embedded
in O.C.T. compound and frozen in an ethanol, dry-ice
solution. Tissue sections were viewed using a Nikon
E600 microscope (Nikon Inc, Melville, NY, USA), and
images were captured with a SPOT RT digital camera
(Diagnostic Instruments, Inc, Sterling Heights, MI, USA)
and a PowerMac G4 computer (Apple Computer Inc,
Cupertino, CA, USA) equipped with SPOT RT software
version 4.0 (Diagnostic Instruments, Inc).

PCR analysis of cre-mediated recombination

PCR was performed to assess recombination following
tamoxifen administration. The PCR conditions and pri-
mer sequences used were as described by Takehashi
et al. [24].

Results and discussion

A schematic of the HSA-MCM transgene is presented in
Figure 1. We used the HSA promoter (-2,000 to +239)
to drive skeletal muscle-specific expression of the Cre
¢DNA as others have done [2]. Additionally, the $-globin
intron II was incorporated into the transgene to ensure
proper splicing [2,25]. To make the system inducible, we
replaced the Cre cDNA with a modified Cre that con-
tained a Mer ligand-binding domain at both N- and C-
termini, thereby creating the MCM chimeric protein
[19,21]. We decided to use the MCM protein based on
the finding that it has been shown to be more tightly
regulated (that is, less recombinant in the absence of
tamoxifen) than the single CreMer fusion protein, with
no loss in recombination efficiency [19] .

To confirm the ability of the HSA promoter to drive
skeletal muscle-specific expression of the MCM protein,
Western blot analysis was performed using protein
extracts derived from a broad range of muscles as well
as from nonmuscle tissues. As shown in Figure 2, the
MCM protein was detected only in skeletal muscle sam-
ples and not in the heart (Hrt) or in samples containing
smooth muscle (Stom, stomach; S. Int, small intestine).
Importantly, in addition to limb musculature (Gstn,
gastrocnemius; Pln, plantaris; Sol, soleus; EDL, extensor
digitorum longus; Quad, quadriceps; TA, tibialis anter-
ior), the MCM protein was detected in other skeletal
muscles, including the diaphragm (Diaph), extraocular
muscle (EOM), masseter (Mastr), tongue (Tong) and
esophagus (Esop). The expression of MCM protein in
craniofacial muscles (EOM, Mastr and Tong) expands
the utility of the HSA-MCM mouse for investigators
interested in studying gene function in craniofacial
muscles.
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Figure 2 Skeletal muscle-specific expression of MerCreMer (MCM) protein. Western blot analysis of different muscle and nonmuscle tissues
from the human a-skeletal actin (HSA)-MCM transgenic strain detected the MCM protein (112 kDa) only in skeletal muscle (Esop, esophagus; Gstn,
gastrocnemius; PIn, plantaris; Sol, soleus; EDL, extensor digitorum longus; EOM, extraocular muscle; Mastr, masseter; Tong, tongue; Quad,
quadriceps; TA, tibialis anterior; Diaph, diaphragm) and not in the heart (Hrt), samples containing smooth muscle (Stom, stomach; S. Int, small
intestine) or nonmuscle tissue (Lung; Panc, pancreas; Liver; Brain; Fat; Spin, spleen; Kdny, kidney). Both glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and tubulin, y1 (TUBGT1) were used as loading controls.

Having established the skeletal muscle-specific expres-  readout of recombination, the HSA-MCM mouse was

sion of the MCM protein, we next wanted to determine
the effectiveness of the system to mediate recombination
in response to tamoxifen administration. To provide a

bred to an inducible lacZ reporter strain [22]. A sche-
matic of the lacZ reporter gene is shown in Figure 3A.
Expression of the lacZ gene is prevented by the
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Figure 3 PCR analysis of inducible, skeletal muscle-specific, Cre-mediated recombination. (A) Schematic of the lacZ reporter gene showing
the floxed (flanking loxP sites, solid arrowheads) STOP cassette prevents expression of the downstream lacZ cDNA. Following tamoxifen
administration, a Cre-mediated recombination event resulted in deletion of the STOP cassette, thereby allowing expression of the lacZ cDNA. (B)
Qualitative PCR analysis of genomic DNA shows Cre-mediated recombination (deleted, 0.4-kb band) occurred only in skeletal muscle samples
(Gstn, gastrocnemius; PIn, plantaris; Sol, soleus; TA, tibialis anterior; Diaph, diaphragm) and not in the heart (Hrt) following tamoxifen (t)
administration, with no recombination (floxed, 3.2-kb band) in vehicle-treated (v) samples. The positions of the PCR primers are indicated by
half-arrows.
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Figure 4 Skeletal muscle-specific recombination as assessed by B-galactosidase activity. The HSA-MCM strain was bred to a lacZ reporter
mouse to visually assess tamoxifen-induced recombination. (A) consistent with the Western blot analysis and PCR results, strong (3-galactosidase
expression (blue precipitate) was observed only in skeletal muscle (Gstn, gastrocnemius; PIn, plantaris; Sol, soleus; TA, tibialis anterior; EDL,
extensor digitorum longus; Diaph, diaphragm; EOM, extraocular muscle) and not in the heart (Hrt) or liver following tamoxifen administration. (B)
When we used a second lacZ reporter mouse (that contained a nuclear localization signal), 3-galactosidase-positive, “blue” myonuclei were
observed in Gstn skeletal muscle after tamoxifen treatment, but not in vehicle-treated Gstn. Inset shows enlarged image of labeled nuclei that
reside within the muscle fiber.
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upstream presence of a STOP cassette that is flanked by
loxP (floxed) sites. Upon exposure to tamoxifen, Cre
promotes a recombination event that leads to excision of
the STOP cassette and expression of lacZ ¢cDNA. PCR
analysis was employed to detect this recombination
event using genomic DNA isolated from different skel-
etal muscles as a template. As shown in Figure 3B, re-
combination was detected only in skeletal muscle
samples following tamoxifen administration, consistent
with the expression of the MCM protein. These results
demonstrate the MCM protein is capable of effective re-
combination that is tightly regulated, as no recombin-
ation event was detected in vehicle-treated samples.

To localize Cre-mediated recombination at the cellular
level, we performed histology to detect LacZ expression
by assaying [-galactosidase activity following addition of
the X-gal substrate. Consistent with the Western blot and
PCR analyses, we observed X-gal staining in all skeletal
muscle fibers of tamoxifen-treated mice (see Figure 4A).
Importantly, no X-gal staining was observed in vehicle-
treated samples, confirming that the MCM-mediated re-
combination requires tamoxifen treatment. We did, how-
ever, detect low-level X-gal staining in the heart, and,
though this finding was somewhat surprising because of
the lack of detection of the MCM protein in the heart, it
is consistent with the findings of Collins et al. [26]. Using
a quantitative Northern blot method, Collins and collea-
gues found a low level of a-skeletal actin mRNA in the
adult mouse heart [26]. Thus, the minor amount of X-gal
staining in the heart likely reflects the function of the
HSA promoter rather than a transgenic artifact or leaki-
ness of the MCM system.

Although all skeletal muscles were positive for X-gal
staining, variability in the intensity of staining among
different skeletal muscle samples was apparent. It is im-
portant to note that there does not appear to be a linear
relationship between X-gal staining intensity and the
level of recombination, as our PCR results show similar
levels of recombination in the soleus and gastrocnemius
muscles; yet the staining intensities between these two
muscles are different. Moreover, there does not appear
to be any relationship between X-gal staining intensity
and either type I or type II fiber composition, consistent
with what has been reported for other HSA-Cre strains
[2,3]. For example, the Gstn and Pln muscles are com-
posed of > 90% type II fibers, but X-gal staining intensity
is much stronger in Gstn than Pln muscle fibers (see
Figure 4) [27]. The variability in the intensity of X-gal
staining among the different muscle samples likely
reflects differences in the activity of the Rosa26 pro-
moter and/or stability of the E. coli B-galactosidase pro-
tein across the different muscles.

The HSA-MCM mouse is also useful for driving re-
porter genes with different subcellular localization in
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muscle fibers, as demonstrated in Figure 4B. The HSA-
MCM mouse was bred to a lacZ reporter mouse that
contained a nuclear localization signal. X-gal staining on
gastrocnemius (Gstn) muscle sections showed “blue”
myonuclei were detectable following tamoxifen treat-
ment (Figure 4B). Furthermore, there are no labeled
myonuclei in the muscle from vehicle-treated mice, indi-
cating that the system is tightly regulated at this age (12
to 14 weeks of age). To provide an additional measure of
recombination efficiency, we counted the number of X-
gal-positive nuclei associated with approximately 900
fibers from the Gstn muscle. On the basis of the results
of this analysis, we determined that there are approxi-
mately 0.91 myonuclei per fiber, a value comparable to
the 0.88 myonuclei per fiber we recently reported [28].
Although these results demonstrate that the HSA-MCM
strain can achieve a high level of recombination effi-
ciency, they should be interpreted with caution as there
is evidence suggesting that the P-galactosidase protein
can translocate to “unlabeled” nuclei [29].

Conclusions

Collectively, the results of our study provide convincing
evidence that the HSA-MCM strain allows robust,
tightly controlled, Cre-mediated recombination specific-
ally within adult skeletal muscle in an inducible manner.
Furthermore, the ability of the HSA promoter to drive
MCM expression in craniofacial muscles, in addition to
limb musculature, greatly expands the usefulness of the
HSA-MCM mouse strain to the skeletal muscle commu-
nity. The HSA-MCM mouse will be freely available upon
request.
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