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Abstract

Background: During development, the branchial mesoderm of Torpedo californica transdifferentiates into an
electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of
cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the
neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its
composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic
proteins.

Results: Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14
uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or
signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence
similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or
are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were
present in the electric organ proteome but absent in the skeletal muscle proteome.

Conclusions: Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of
the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a
comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling
proteins not previously characterized as components of the NMJ.

Background
Ionic gradients across cell membranes (bioelectricity) are
utilized by all organisms. Some fish have developed
extreme adaptations of bioelectricity with the evolution
of electric organ systems. It is thought that electric
organs have evolved independently six or seven times in
fish and can be classified as either weak or strong, which
is reflective of the size and function of the organs within
the fish. For example, Gymnotids are weakly electrogenic
and only possess accessory electric organs used for elec-
troreception and electrolocation [1]. In contrast, Torpedi-
nid and Electrophorous are strongly electrogenic and
possess organs that account for approximately one-third

of the organism’s mass and are used for generation of
electric shocks for predation or protection [2].
Developmental studies have shown most electric

organs are derived from muscle anlage tissue; the excep-
tion is the neurogenic development of the Sternarcus
electric organ. Several basic differences exist amongst
myogenic-derived electric organs. The location of the
myogenic-derived electric organs varies from gill (Tor-
pedo), tail (Raja, Gnathonemus, Gymnarchus, Gymnotus),
and ocular muscle (Astroscopus). Strong electrogenic
organs lose the characteristic myofibrils and sarcomeres
during transdifferentiation of the organ. In contrast,
weakly electrogenic Gymnarchids and Mormyrids main-
tain the myofibrillar structures into adulthood [3].
Organs differ in the ability to initiate and propagate an
action potential. Generally, marine fish possess organs
with electrically inexcitable membranes (lacking voltage-
sensitive sodium channels), whereas fresh water fish have
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organs that are electrically excitable (have voltage-sensi-
tive sodium channels). Succinctly put, the degree of mus-
cle likeness of precursor cells differs among electrogenic
fish families. These anatomical differences may represent
an evolutionary divergence required for the performance
of strong and weak electric organs.
The research presented here focuses on Torpedo cali-

fornica (Pacific electric ray), a cartilaginous fish within
the Chondrichthyes class and Torpedinidae family. This
species evolved an electric organ capable of generating
approximately 45-50 V (electron motive force 110 mV),
released in 414 monophasic discharges that last 3-5 ms
each, with a total power output up to 1 kW [4-6]. An
electrocyte from the electric organ of Torpedo nobiliana
(Atlantic Torpedo with similar length but twice the
weight of T. californica) measures 5-7 mm in diameter
by 10-30 μm thick and 500-1,000 electrocytes are stacked
into columns, all with ventrally innervated and dorsally
non-innervated membranes aligned [5]. Approximately
50 A of current has been measured from the parallel
stacks composing the electric organ of T. nobiliana, and
about 1 A measured from the series-aligned electrocytes
of Electrophorous [6]. The postsynaptic membrane of the
electric organ in Torpedo is rich in nicotinic acetylcholine
receptors (AChR) and is multi-innervated with dendrites
from four large, heavily myelinated neurons descending
from the electric lobe of the brain. The non-innervated
membrane is extensively invaginated into structures
called caniculi that may be reminiscent of skeletal muscle
T tubules [5]. The electrocytes are multinucleated and
filled with a gelatinous cytoplasm with an extensive fila-
mentous network. The electrocyte itself has low internal
resistance with low resistance across the non-innervated
membrane [7]. Insulating septa, extracellular matrix com-
ponents, blood vessels, nerves, and amoeboid cells have
also been described in intercellular regions [8].
Proteins that were originally identified in the Torpedo

electric organ and subsequently studied in higher verte-
brates include agrin, dynein, chloride channel, and rapsyn
[9-12]. Also identified in the electric organ are a, b, δ,
and g AChR subunits, a and b dystroglycan, dystrophin,
syntrophin, dystrobrevin, receptor tyrosine kinase, tyro-
sine protein kinase fyn, protein tyrosine kinase fyk, and
desmin [13-23]. The electric organ has been used to
define the structure and function of creatine kinase and
AChR pore [24,25]. These proteins also are characterized
at the mammalian neuromuscular junction (NMJ) or are
components of skeletal muscle, which is consistent with
the Torpedo electric organ representing an extreme adap-
tation of muscle tissue and the NMJ. Thus, the electric
organ has served as a model to study the NMJ. However,
the number of NMJ proteins described in current mouse,
cell culture, and Drosophila studies demands a closer

look at how the innervated membrane of Torpedo elec-
trocytes relates to the NMJ.
From a developmental perspective, Torpedo electroblasts

are derived from the mesodermal layer that gives rise to
branchial arches from which the electric organ and gill
musculature form. The primordial electric organ first gen-
erates ‘muscle-like’ cells that are multinucleated and have
a single striated myofibril, reminiscent of myotubes in ske-
letal muscle. At this stage, meromyosin is expressed at
high levels and the single striated myofibril has a similar
diameter to actin-myosin myofibrilar structures compos-
ing sarcomeres [26]. As the electroblast transforms into an
electrocyte at the onset of electromotor neuron synapto-
genesis, Z-disc-like structures disassemble and degenerate
completely [27]. It is thought that the electromotor neuron
sends signals that induce the degeneration of the myofibril
structures, allowing the elongated cells to flatten into thin
electrocytes [28]. Desmin, or a light intermediate filament,
replaces the myofibril following disassembly, but keratin, a
protein typically associated with epithelium, dominates the
intracellular architecture [26,29]. Upon denervation, myo-
fibril-like structures reappear near the synapse but are
highly disorganized and short lived [28]. In addition, tran-
script evidence was shown for myoblast determination
protein and myogenic factor 5 expression in adult Torpedo
electric organ without evidence of protein expression, sug-
gesting strong post-transcriptional regulation of messenger
RNA translation and maintenance of a muscle-like pro-
gramming [30]. No synapse is observed until late phase of
electric organ development when the ventral face of elec-
troblasts develop subneural arches that have increased
levels of acetylcholinesterase (AChE) and AChRs that
reach 300 times the level in skeletal muscle [27,28,30].
From an anatomical perspective, post-transdifferentia-

tion, the electroneuroelectrocyte synapse (electroplate)
appears to maintain characteristic synaptic folds and a
high density of membrane particles as revealed by elec-
tron microscopy and freeze-etch replicas of electric
organ tissue [5,31,32]. However, the extensive nerve
terminal network, formed by four or five electromotor
neurons covers nearly the entire postsynaptic mem-
brane, differs from the minute motor neuron connection
with a single mammalian myofiber [5,18].
Despite the electric organ being used as a model for the

mammalian NMJ, current literature describes a number of
NMJ-associated proteins that have not been characterized
in the electric organ. One such protein is low-density lipo-
protein receptor-related protein 4 (Lrp4), which forms a
complex with muscle-specific tyrosine-protein kinase
receptor (MuSK) to facilitate neuronal agrin binding and
subsequent initiation of downstream signaling for tran-
scriptional activation of synaptic genes or AChR clustering
[33,34]. It is likely that agrin plays a similar role in the
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electric organ as in the NMJ, transferring communication
between the nerve and postsynaptic tissue, but its down-
stream target, MuSK, is loosely defined. The published
sequence for a tyrosine kinase receptor transcript
extracted from the Torpedo electric organ not only
encodes extracellular Ig and frizzled domains and intracel-
lular C-terminal tyrosine kinase domains like human
MuSK but also encodes a kringle-like domain that is
encoded in proteases and Ror receptor tyrosine kinases
[20,35,36]. The orthology of the Torpedo tyrosine kinase
receptor with mammalian MuSK was demonstrated by
inducing AChR clustering in the presence and absence of
agrin [37]. Furthermore, the cytoplasmic domain of MuSK
binds directly to the tetratricopeptide repeat domain of
rapsyn, supporting the presence of MuSK and possibly its
downstream effectors in the electric organ [38].
Aside from this knowledge, electrocyte components

are undefined mainly because studying the proteome of
T. californica is limited. A map of its genome does not
currently exist to computationally derive a hypothetical
protein profile and public databases contain sparse
sequence data for this species. While the Torpedo gen-
ome has not yet been reported, the genome sequence
likely would be a relatively blunt instrument to under-
stand the highly specialized structure and function of
the Torpedo electric organ. For this reason, we sought
to understand the molecular components of the electric
organ using a combined mRNA (expressed sequence tag
(EST)) and proteomics approach.
We have previously reported a preliminary proteome

based on two-dimensional matrix-assisted laser deso-
rption/ionization - time of flight/time of flight mass spec-
trometry (MALDI-TOF/TOF MS) of soluble proteins and
shotgun proteomics of insoluble electric organ fractions in
which mass spectral mapping was based on a preliminary
library composed of 607 cDNA sequences [39]. More
recently, we reported sequencing the transcriptome of T.
californica to assemble a Torpedo cDNA library composed
of 10,326 sequences assembled into 4,243 non-overlapping
contigs [40]. Here, we present a comprehensive electric
organ proteome as defined by one-dimensional SDS-
PAGE followed by nanospray electrospray ionization
quadrupole linear ion-trap tandem mass spectrometry
(ESI-LTQ MS/MS) and two-dimensional isoelectric focus-
ing (IEF) SDS-PAGE followed by MALDI-TOF/TOF MS-
based approaches of electric organ fractions in which mass
spectral mapping was performed using sequences from
10,326 Torpedo cDNA sequences and The Universal Pro-
tein Resource (UniProtKB/Swiss-Prot). Our results
demonstrate concordance between skeletal muscle, NMJ,
and electric organ proteomes. In addition, the electric
organ expresses several uncharacterized proteins that may
function at a synapse.

Results
Validation of Torpedo-specific protein identification
Tissue fractionation, gel electrophoresis, in-gel tryptic
digestion, and mass spectrometry (MS) analysis of the
electric organ provided a global proteomic profile com-
prising 435 proteins (count includes the different subu-
nits, subunit isoforms, isoforms, and types of proteins
with unique identifiers and does not include identical
proteins found in different spots). Fractionating the elec-
tric organ decreases the complexity of its protein consti-
tuents and improves detection of low-abundant proteins
and protein digestion by decreasing the number of pro-
teins resolved through electrophoresis in a single lane.
Confidently identified proteins were determined by a
combination of nanospray ESI-LTQ MS/MS spectral
searches of our in silico translated cDNA library, MALDI
TOF/TOF MS and MS/MS spectra from two-dimen-
sional gel spots, and through cross-species spectral
matches to UniProtKB/Swiss-Prot amino acid sequences
(Additional file 1) [40]. For peptides processed by ESI-
LTQ MS/MS and subsequent identification by
SEQUEST, our threshold for positive protein identifica-
tion was two independent peptides, ΔCn >0.1, a variable
threshold of Xcorr versus charge state: Xcorr = 1.9 for
z = 1, Xcorr = 2.2 for z = 2, and Xcorr = 2.5 for z = 3,
protein Xcorr >40, and a peptide probability based score
with a P value <0.01. For peptides processed by MALDI-
TOF/TOF MS and subsequent identification by MAS-
COT http://www.matrixscience.com/search_form_select.
html, our threshold for positive criteria were protein
score CI >95%, protein score >69, and proteins with iso-
electric points (PI) and molecular weights (MW) that
match the gel spot. To represent a concise proteome for
the electric organ, all accepted protein identifications
were further processed by selecting the highest scoring
identification amongst redundant proteins and the
removal of lower scoring duplicates. Isoforms and sub-
types of proteins were treated as unique identifications
and are included in the 435 proteins listed in Additional
file 1.
As an initial step to validate our data from SDS-PAGE,

we performed mass spectral mapping using known Tor-
pedo proteins. We created a validation database consist-
ing of all Torpedo protein sequences found on public
access databases (GenBank and UniProtKB) to search
raw spectra. We identified 20 out of 44 Torpedo proteins
listed on the public access databases (Figure 1, Additional
file 2). The Torpedo AChR (a, b, g, δ) and sodium/potas-
sium-transporting ATPase (Na+/K+-ATPase) subunits (a,
b) were amongst the most abundant proteins identified.
These two protein complexes are functionally related in
that the binding of a ligand to one complex also influ-
ences the activity of the other [41]. The Na+/K+-ATPase
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is essential for maintaining the electrochemical potential
of electrocytes, and activity of this ion exchanger is
required for generating electric pulses that Torpedo uses
for predation. Of the remaining 24 proteins, we do not
expect to identify 13 proteins that are expressed in brain,
in neurons, or in immune cells. We did not identify 11
listed Torpedo proteins that were previously character-
ized through study of the electric organ (Additional file
2). However, all but one of these sequences are unre-
viewed by the UniProtKB consortium. In addition, the
sequence information for a and b dystroglycan was
extremely limited on UniProtKB (a single peptide) and
this would, by definition, fall below our two peptide mini-
mum requirement for identification from our MS/MS
scans. Another protein, Torpedo receptor tyrosine kinase,
was translated in UniProtKB/Swiss-Prot from 2 small
overlapping ESTs and was in low abundance in the
cDNA library previously described (2 in 90,000 clones),
suggesting that the very low abundance underlies our
inability to identify it by either MS/MS or via our cDNA
sequencing [20]. Lastly, dystrophin has multiple isoforms
and we identified two of the isoforms (Additional file 2)
[42]. Thus, we identified 16 of 17 listed Torpedo proteins
that have reviewed sequences and are known to be
expressed in the electric organ, demonstrating the quality
and scope of our data.
Our proteome profile included two uncharacterized

open reading frames (ORFs; C1orf123 and C6orf130)
and several well characterized mammalian NMJ pro-
teins, including AChR and AChR-associated proteins.
Recent publications have characterized new components

of the mammalian NMJ and these were also identified
in our Torpedo electric organ proteome (14-3-3 protein
g, heat shock protein (HSP)90b, HSP 70 kDa protein,
laminin subunit a-2, laminin subunit b-2, laminin subu-
nit g-1, stress-induced phosphoprotein 1, dynamin 1,
vesicle-fusing ATPase, Ras-related C3 botulinum toxin
substrate 1, prostaglandin E synthase 3, guanine nucleo-
tide-binding protein G(I)/G(S)/G(T) subunit b-1, G sub-
unit b-1, subunit b-2-like1, G(s) subunit a, and Rho
GDP-dissociation inhibitor 1, Ras-related protein R-Ras2
(TC21)) [43,44]. Additionally, several presynaptic pro-
teins localized to both synaptic vesicles (synaptic vesicle
membrane protein VAT-1, synaptotagmin-B, choline
transporter-like protein 1), and the electromotor neuron
membrane were identified, showing representation of
the presynaptic apparatus of the electric organ.

Torpedo cDNA sequences with both nucleotide and
protein sequence similarity to human ORFs
Electric organ peptides mapped to the uncharacterized
human ORFs C1orf123 and C6orf130, which aligned with
high sequence similarity to Torpedo cDNA sequences,
supporting their expression in the electric organ. Human
nucleotide and protein sequences were obtained from
GenBank for alignment with translated Torpedo cDNA
sequence (Expasy translate tool) using EBI ClustalW
(default parameters with gonnet matrix). Sequence align-
ments between human ORF nucleotide and protein
sequences and Torpedo cDNA nucleotide and translated
nucleotide sequences are shown in Figure 2. In all, 79%
of amino acids in the translated Torpedo cDNA sequence

Figure 1 Identification of Torpedo proteins listed in public access databases. To validate tandem mass spectrometry (MS/MS) data against
species-specific sequences, spectra acquired via MS/MS analysis of electric organ fractions were analyzed by the SEQUEST algorithm in BioWorks
3.3.1 software, crossreferencing known and characterized Torpedo proteins listed in GenBank. Peptide acceptance criteria was set at ΔCn >0.1, a
variable threshold of Xcorr versus charge state: Xcorr = 1.9 for z = 1, Xcorr = 2.2 for z = 2, and Xcorr = 2.5 for z = 3, protein Xcorr >40, and a
peptide probability based score with a P value <0.01. Protein identifications were compared with a search against UniProtKB (Swiss-Prot and
TrEMBL) release 14.0, all species, to maintain consistency with databases used and protein accession numbers reported. Proteins identified are
categorized by the likelihood and appropriateness of detection based on protein subcellular location or on the quality of data on public access
databases.
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A.
>gi|8923540|ref|NM_017887.1|C1orf123, mRNA;  >sp|Q9NWV4|CA123_HUMAN UPF0587 protein C1orf123   
>Contig[3573] Torpedo cDNA; >Contig[3573] Torpedo cDNA frame3 translation  
Experimental Peptides

aacggcaagggcggcagccagcaccgggcggagagggctaccatggggaaaatcgcgctg
N  G  K  G  G S  Q  H  R  A  E  R  A  T  M G  K  I  A  L 
------------------------------------------------------------
caactcaaagccacgctggagaacatcaccaacctccggcccgtgggcgaggacttccgg
Q  L  K  A  T  L  E  N  I  T  N  L  R  P  V  G  E  D  F  R 

cagttgaaagcgactttggaaaatatcagcaagttgcggccggacggagaggatttccgc
Q  L  K  A  T  L  E  N  I  S  K  L  R  P  D  G  E  D  F  R
tggtacctgaagatgaaatgtggcaactgtggtgagatttcggacaagtggcagtacatc
W  Y  L  K  M  K  C  G  N  C  G  E  I  S  D  K  W  Q  Y  I 

tggtacctgaagttgaaatgtcagaattgcggtgaagtttccgataaatggcagtatgtc
W Y  L  K  L  K  C  Q  N  C  G  E  V  S  D  K  W  Q  Y  V  

cggctgatggacagtgtggcactgaaggggggccgtggcagtgcttccatggtccagaag
R  L  M  D  S  V  A  L  K  G  G R  G  S  A  S  M  V  Q  K 

acattaatgaacagcgccccactcaaaggtgggagaggaagtgccaacatgatacaaagg
T  L  M  N  S  A  P  L  K  G  G R G  S  A  N  M  I  Q  R
tgcaagctgtgtgcaagagaaaattccatcgagattttaagcagcaccatcaagccttac
C  K  L  C  A  R  E  N  S  I  E  I  L  S  S T  I  K  P  Y 

tgcaagttatgctcaagagagaactccattgatattctgaagaataccatcaagccatac
C K  L  C  S  R  E  N  S  I  D  I  L  K  N  T  I  K  P  Y  

aatgctgaagacaatgagaacttcaagacaatagtggagtttgagtgccggggccttgaa
N  A  E  D  N  E  N  F  K  T  I  V  E  F  E  C  R  G  L  E 

aatgctgaagacagtgaaagatttaagaccattgtacatttcgaatgtcggggattggag
N  A  E  D  S  E  R  F  K  T  I  V  H  F  E  C  R  G  L  E  

ccagttgatttccagccgcaggctgggtttgctgctgaaggtgtggagtcagggacagcc
P  V  D  F  Q  P  Q  A  G  F  A  A E  G  V  E  S  G  T  A 

ccagttgattttcaaccgcaggctggatttgctgcagaaggaacagaatccggaacaaaa
P  V  D  F  Q  P  Q  A  G  F  A  A E  G  T  E  S  G  T  K
ttcagtgacattaatctgcaggagaaggactggactgactatgatgaaaaggcccaggag
F  S  D  I  N  L  Q  E  K  D  W  T  D  Y  D  E  K  A  Q  E 

tttgatgaaattaatctgctggaaaaggactggaatgaatatgatgagaaaatccaagaa
F  D  E  I  N  L  L E  K D W  N  E  Y  D  E  K I  Q  E
tctgtgggaatctatgaggtcacccaccagtttgtgaagtgctga
S  V  G  I  Y  E  V  T  H  Q  F  V  K  C  -

tcggtgggaatctatgacgtcactcataagtttgttaaaatatga
S  V  G  I  Y  D  V  T  H  K F V  K  I  -

CLUSTAL 2.0.12 multiple sequence alignment

SeqA Name                     Len(aa)  SeqB Name                     Len(aa)  Score
===================================================================================
1    sp|Q9NWV4|CA123_HUMAN    160      2    Contig[3573]5'3'Frame3   512      76   
===================================================================================

sp|Q9NWV4|CA123_HUMAN       MGKIALQLKATLENITNLRPVGEDFRWYLKMKCGNCGEISDKWQYIRLMD 50
Contig[3573]5'3'Frame3      ---FGLQLKATLENISKLRPDGEDFRWYLKLKCQNCGEVSDKWQYVTLMN 47

:.**********::*** *********:** ****:******: **:

sp|Q9NWV4|CA123_HUMAN       SVALKGGRGSASMVQKCKLCARENSIEILSSTIKPYNAEDNENFKTIVEF 100
Contig[3573]5'3'Frame3      SAPLKGGRGSANMIQRCKLCSRENSIDILKNTIKPYNAEDSERFKTIVHF 97

*..********.*:*:****:*****:**..*********.*.*****.*

sp|Q9NWV4|CA123_HUMAN       ECRGLEPVDFQPQAGFAAEGVESGTAFSDINLQEKDWTDYDEKAQESVGI 150
Contig[3573]5'3'Frame3      ECRGLEPVDFQPQAGFAAEGTESGTKFDEINLLEKDWNEYDEKIQESVGI 147

********************.**** *.:*** ****.:**** ******

sp|Q9NWV4|CA123_HUMAN       YEVTHQFVKC---------------------------------------- 160
Contig[3573]5'3'Frame3      YDVTHKFVKI-TSLQLIPQPST-MDKSSDQ-TNSSSLSGICLPMQLHCVI 194

*:***:***                                         

B.
>gi|34147711|ref|NM_145063.2| C6orf130, mRNA; >sp|Q9Y530|CF130_HUMAN Uncharacterized protein C6orf130
>TFI_1_F6.T3 Torpedo cDNA; >TFI_1_F6.T3 Torpedo cDNA frame2 translation            
Experimental Peptides

ggtgacttggctgaagaaacacttaaattctggaaatagcgactcagtatcatggccagc
G  D  L  A  E  E T  L  K  F  W  K  - R  L  S  I  M A  S 
ctgaagacgaacacccaacgaaaggacgaacaaacggaaaaactaaacaaaatgactagc
L  K  T  N  T  Q  R  K  D  E  Q  T  E  K  L  N  K M  T  S

Agccttaatgaagatccagaaggaagc------agaatcacttatgtgaaaggagacctt
S  L  N  E  D  P  E  G  S  - - R  I  T  Y  V  K  G  D  L  

tctgcagacaagccactagagggcaatacctttgagatctgttatgtgcaaggtgatctg
S  A  D  K  P  L  E  G  N  T  F  E  I  C  Y  V  Q  G  D  L  

tttgcatgcccgaaaacagactctttagcccactgtatcagtgaggattgtcgcatgggc
F  A  C  P  K  T  D  S  L  A  H  C  I  S  E  D  C  R  M  G  

ttctcatgcccagagaaggaagcactggcacattgcatcagcgaagactgcaaaatgaaa
F  S  C  P  E  K  E  A  L  A  H  C  I  S  E  D  C  K  M  K  
gctgggatagctgtcctctttaagaagaaatttggaggggtgcaagaacttttaaatcaa
A  G  I  A  V  L  F  K  K K F  G  G V  Q  E  L  L N  Q  

gcagggatagcagtcttgttcaagaagaaatatggatgtgtcgaggaactacagaatcag
A  G  I  A  V  L  F  K  K K Y  G  C  V  E  E L  Q  N  Q  
caaaagaaatctggagaagtggctgttctgaagagagatgggcgatatatatattacttg
Q  K  K S  G  E  V  A  V  L  K  R  D  G  R  Y  I  Y  Y L  

aaaaaaaaagttggggatgttgcagtactacagaaagatcagagatgcatctattacttg
K  K K V  G  D  V  A  V  L  Q  K D  Q  R  C  I  Y  Y L  
attacaaagaaaagggcttcgcacaagccaacttatgaaaacttacagaagagtttagag
I  T  K  K R  A  S  H  K  P  T  Y  E  N  L  Q  K  S  L  E  

attaccaaatcattagcagcagataagcctacttatgacgatctgcagaagagcctcaag
I  T  K  S  L  A  A D  K  P  T  Y  D  D L  Q  K S  L  K  

gcaatgaagtctcattgtctgaagaatggagtcactgacctctccatgcccaggattgga
A  M  K  S  H  C  L  K  N  G  V  T  D  L  S  M  P  R  I  G  

gccatgagggaccactgcctggataatggaattttgaagatctcantgccgaagattgga
A  M  R  D  H  C  L  D  N  G  I  L  K  I  S  X  P  K  I  G  

tgtggtcttgatcgtctgcaatgggaaaatgtatctgcgatgatcgaggaggtatttgag
C  G  L  D  R  L  Q  W  E  N  V  S  A  M  I  E  E V  F  -

tgtggactggacnacctgnagtgggacaaagtttctgccataattcnagaagtctttnaa
C  G  L  D  X  L  X  W  D  K  V  S  A  I  I X  E  V  F  X  

Gcaacagacatcaaaattactgtgtacacactctgatga---------------------
E  A  T  D  I  K  I  T  V  Y  T  L  - - - - - - - -

aagcncaaatatttacaatttactgtgtnctcttttgttgaagaatntctgtggttaccg
K  X  K  Y  L  Q  F  T  V  X  S  F  V  E  E X  L  W  L  P  

CLUSTAL 2.0.12 multiple sequence alignment

SeqA Name                    Len(aa)  SeqB Name                    Len(aa)  Score
=================================================================================
1    sp|Q9Y530|CF130_HUMAN   152      2    TFI_1_G6.T3             218      55   
=================================================================================

sp|Q9Y530|CF130_HUMAN      --------------------------------------------------
TFI_1_G6.T3                CFTNLKIINCLSPSILKDPPHPSHALFSLLPSGRRYRSLKTNTQRKDEQT 50

sp|Q9Y530|CF130_HUMAN      -----MASSLNEDPEGS--RITYVKGDLFACPKTDSLAHCISEDCRMGAG 43
TFI_1_G6.T3                EKLNKMTSSADKPLEGNTFEICYVQGDLFSCPEKEALAHCISEDCKMKAG 100

*:** ::  **.  .* **:****:**:.::*********:* **

sp|Q9Y530|CF130_HUMAN      IAVLFKKKFGGVQELLNQQKKSGEVAVLKRDGRYIYYLITKKRASHKPTY 93
TFI_1_G6.T3                IAVLFKKKYGCVEELQNQKKKVGDVAVLQKDQRCIYYLITKSLAADKPTY 150

********:* *:** **:** *:****::* * *******. *:.****

sp|Q9Y530|CF130_HUMAN      ENLQKSLEAMKSHCLKNGVTDLSMPRIGCGLDRLQWENVSAMIEEVF-EA 142
TFI_1_G6.T3                DDLQKSLKAMRDHCLDNGILKISXPKIGCGLDXLXWDKVSAIIXEVFXKX 200

::*****:**:.***.**: .:* *:****** * *::***:* *** : 

sp|Q9Y530|CF130_HUMAN      TDIKITVYTL-------- 152
TFI_1_G6.T3                KYLQFTVXSFVEEXLWLP 218

. :::** ::        

Figure 2 Sequence alignments between uncharacterized human open reading frames (ORF) and Torpedo cDNA. Two human ORFs were
identified by tandem mass spectrometry (MS/MS) analysis of electric organ fractions by the SEQUEST algorithm in BioWorks 3.3.1 software,
crossreferencing our in-house Torpedo californica cDNA library translated into six reading frames. Comprehensive alignments of nucleotide and
protein sequences between uncharacterized human ORFs (blue text) and Torpedo cDNA (black text) were compiled from individual ClustalW
alignments (default parameters with gonnet matrix) for C1orf123 (a) and C6orf130 (b). ClustalW protein alignment is shown separately to
highlight protein sequence similarity with the translated cDNA sequence (Expasy translate tool) and peptides identified by mass spectral
mapping (highlighted in red). Start and stop amino acids are highlighted in yellow.
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Contig [3573] are identical to C1orf123 and 59% of
TF_1_F6.T3 with C6orf130. TF_1_F6.T3 cDNA sequence
is from a single insert and not a contig such that coverage
may be reduced by sequencing errors that were not cor-
rected for by a consensus of multiple reads like Contig
[3573]. However, peptide SLAADKPTYDDLQK is unique
to C6orf130 when queried in blastp (word size 2, PAM30
matrix, Homo sapiens) supporting the identification of
this ORF. These ORFs demonstrate that further investi-
gation of the electric organ transcriptome may advance
our knowledge of the human proteome.

Global proteomic profile classified according to
UniProtKB/Swiss-Prot annotation
To obtain a preliminary identification for each Torpedo
cDNA sequence identified in the spectral data, all
sequences were queried in blastx (Swiss-Prot sequence,
word size 3, BLOSSUM80 matrix) across all species and
then against human (See Additional file 1 for a full list of
cDNA sequences with blastx results). Only the top ranking
aligned sequence was accepted for identification of the
cDNA sequence. The blastx identification allowed cDNA
sequences to be grouped with the UniProtKB list of identi-
fications for classifying the proteins as NMJ, muscle, likely
in muscle, and metabolic proteins according to Uni-
ProtKB/Swiss-Prot annotation (Figure 3 andAdditional file
3). A total of 33% of proteins are known muscle proteins,
3% of which are located at the NMJ. A total of 36% are
involved in metabolism and 3% are known to be electric
organ specific. Ingenuity Pathway Analysis (IPA version
8.8-3204) of all UniProtKB and Torpedo cDNA identifica-
tions classified 40 molecules (P value 2.93E-09 to 1.18E-
02) involved in skeletal and muscular system development
and function, the top physiological system designated
from our list of identifications.
To summarize the electric organ proteome, we used

IPA Path Designer tool to map the annotated subcellular
location of each protein identified (Figure 4). This also
provides a virtual model of the electrocyte to assess how
it may relate to skeletal muscle and the NMJ. The virtual
electrocyte revealed several proteins believed to be mus-
cle specific or highly abundant in muscle, confirming the
muscle-like identity of the organ (Additional file 3). It
also depicted relatively intact pathways for energy meta-
bolism (oxidative phosphorylation and glycolysis), protein
processing (translation initiation, elongation, trafficking,
and proteasome degradation) and several components
involved in redox reactions and caveolar endocytosis. A
prominent feature is an abundance of cytoskeletal pro-
teins to include molecular motors, capping and folding
proteins, and focal adhesion molecules. Also notable are
a number of proteins that interact with known NMJ pro-
teins (Figure 5). Finally, the virtual electrocyte reveals
several relatively uncharacterized proteins such as

membrane proteins receptor expression-enhancing
protein 5, MIP18 family protein FAM96A, WD repeat-
containing protein 1, and matrix-remodeling-associated
protein 7.

Electric organ proteome compared to skeletal muscle
proteome to assess the degree of ‘muscle likeness’
Electric organ literature claims that a ‘muscle-like’ phe-
notype is maintained after transdifferentiation. In our
profile, several proteins are considered highly expressed
in skeletal muscle or are muscle specific to include AChR
subunits a,b,δ, and g, rapsyn, syntrophin, L-lactate dehy-
drogenase A chain, phosphoglycerate mutase 2, creatine
kinase M-type, cofilin 2, sorcin, 14-3-3 protein g, myosin
11, actin, aortic smooth muscle, transgelin, dystrophin,
dystrobrevin a, desmin, plectin 1, HSP90b, laminin subu-
nit b-2, and SR Ca(2+)-ATPase 1. As a further step to
compare the skeletal muscle versus the electric organ
repertoire of proteins, we compared the proteins identi-
fied in the electric organ presented in this paper to a
mouse skeletal muscle proteome produced in our labora-
tory using similar methods. Plotting the number of pep-
tides for each protein composing the electric organ or
skeletal muscle proteome not only visually displays the
overlap in proteins in both tissues but more importantly
displays the detectable proteins unique to each tissue,
those lying on the × and y axis corresponding to tissue
type (Figure 6). Analysis showed the distribution of these
proteins differed in biological processes and molecular
function (Table 1). Proteins composing the myofibrillar
apparatus or are involved in calcium transport are pre-
sent in the skeletal muscle proteome and absent in the
electric organ proteome, as expected given that the elec-
trocytes are non-contractile cells. However, no common
NMJ proteins were identified in the skeletal muscle pro-
teome but are amongst the highest expressed proteins in
the electric organ. This was also expected for an analysis
based on total muscle extract given the limited size and
number of endplates in skeletal muscle.

Discussion
T. californica proteome and defining the NMJ proteome
for accurate comparison
Our goal was to generate a proteomic profile of the
T. californica electric organ, both to assess its similarity
to the mammalian NMJ proteome and to provide novel
candidate proteins for localization to the NMJ. We and
others have carried out microdissection of the NMJ
region and messenger RNA profiling to characterize the
NMJ constituents, but these have proven technically
challenging and have fallen short in describing a broader
proteome [45,46].
A key resource for our one-dimensional ESI-LTQ MS/

MS and two-dimensional MALDI-TOF/TOF MS
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profiles were cDNA sequences from the electric organ
that enabled mass spectral mapping [40]. Of 435 pro-
teins we identified in the electric organ, 300 (69%)
showed ≥2 peptides that mapped to our Torpedo cDNA
sequences while the remaining 135 (31%) were charac-
terized via cross-species peptide spectral mapping to
mammalian proteins. We found that 48% of identified
proteins were highly expressed in skeletal muscle or are
muscle specific, which supports the ‘muscle-like’ lineage
of the electric organ. The proteome includes cytoskele-
tal, glycolytic, translational, and degradative proteins.
The high prevalence of glycolytic enzymes likely is
necessary to support the high metabolic load of the
organ that is required for establishing and maintaining
the membrane potential. The abundance of proteasome
and degradative enzymes is in line with high protein
turnover and degradation during synapse renewal as

well as transdifferentiation from muscle precursor cells
into the electric organ. Additionally, we identified sev-
eral proteins that are expressed by non-electrocyte cells
composing the electric organ, such as the electromotor
neuron proteins, Schwann cell proteins, and proteins of
the immune and circulatory systems.
To compare our Torpedo data to previous studies of

the mammalian NMJ, we scanned the literature for
known NMJ proteins, grouped these into three cate-
gories, and overlaid our Torpedo proteome with these
groups. The first category was limited to proteins in
which experimental knockout (loss of function) data
suggested an important functional role in postsynaptic
architecture and function (for example, disruption of
morphology) (Additional file 4; see also references cited
therein). The second category included protein-protein
networks nucleated by the key functional candidates in

Figure 3 Classification of proteins identified in electric organ fractions by tissue association or function as determined by UniProtKB
annotation. Electric organ fractions were separated one dimensionally and analyzed by nanospray electrospray ionization quadrupole linear ion-
trap tandem mass spectrometry (ESI-LTQ MS/MS). Mass spectral matching of raw spectra against UniProtKB and Torpedo cDNA library was
performed in BioWorks 3.3.1 in which the peptide acceptance criteria was set at ΔCn >0.1, a variable threshold of Xcorr versus charge state:
Xcorr = 1.9 for z = 1, Xcorr = 2.2 for z = 2, and Xcorr = 2.5 for z = 3, protein Xcorr >40, and a peptide probability based score with a P value
<0.01. All cDNA sequences were queried in blastx (standard genetic code, Swiss-Prot, default algorithm parameters except for BLOSSUM80
scoring matrix) for identification via sequence similarity with a known protein, first across all species and then against Homo sapiens selected
database. Cytosolic proteins were separated two dimensionally, analyzed via matrix-assisted laser desorption/ionization - time of flight/time of
flight mass spectrometry (MALDI-TOF/TOF MS), and identified by MASCOT. Identification criteria was set at a protein score CI >95%, protein score
>69, and proteins with isoelectric points (PI) and molecular weights (MW) that match the gel spot. Each identification was queried in UniProtKB
for annotation of tissue expression and or function then categorized by the sections composing the pie chart. (See Additional file 3 for a list of
proteins composing the pie chart.)
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category 1. Most category 2 proteins were shown to
attenuate AChR clusters when mutated, inhibited, or
deleted. Finally, the remaining category contained pro-
teins strictly concentrated at the endplate but do not
alter AChR clusters or synapse morphology (category 3).
We identified rapsyn, b-spectrin, Ras-related C3 botuli-
num toxin substrate 1, and laminin subunit b-2 from
category 1, HSP90b, HSP 70 kDa protein, a syntrophin,
14-3-3 protein g, dynamin, vesicle-fusing ATPase, a-
actinin, utrophin, and Ras from category 2, and ankyrin,
desmin, and dystrobrevin from category 3 (16/38

molecules listed). The presence of these molecules sug-
gests the neuromuscular protein machinery supporting
the cholinergic endplate coincides with the electric
organ and may serve as a model NMJ to study these
proteins.
In addition to the few Torpedo proteins characterized

at the cholinergic synapse (AChR subunits a, b, δ, and
g, ACHE, rapsyn, 14-3-3 g, syntrophin) we identified
several uncharacterized proteins in the electric organ
known to play a role in maintaining AChR clustering
and in transducing signals between the membrane and

Figure 4 Virtual Torpedo electrocyte. All identifications from UniProtKB/Swiss-Prot and Torpedo cDNA searches of fractions analyzed by
nanospray electrospray ionization quadrupole linear ion-trap tandem mass spectrometry (ESI-LTQ MS/MS) and matrix-assisted laser desorption/
ionization - time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) were mapped to cellular regions based on UniProtKB
annotations using the Path Designer tool in Ingenuity IPA 8.8-3204.
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nucleus (Figure 5). These proteins include laminin subu-
nits a-2, b-2, and g-1, HSP90b, HSP 70 kDa protein,
stress-induced-phosphoprotein 1, dynamin 1 and vesi-
cle-fusing ATPase, a-actinin, prostaglandin E synthase
3, Ras-related C3 botulinum toxin substrate 1, guanine
nucleotide-binding protein G, guanine nucleotide-bind-
ing protein subunit b-2-like1, Rho GDP-dissociation
inhibitor 1, and Ras-related protein R-Ras2. Below, we
describe each of these electric organ components as
they relate to the mammalian NMJ.

T. californica proteome related to AChR clustering
A key event in the formation of the neuromuscular junc-
tion is the clustering of AChRs to focal points underlying
motor neuron synapses. At the developing synapse, a key
protein complex involved in clustering is the laminins:
multisubunit glycoprotein complexes consisting of a, b,
and g chains, each with multiple isoforms, assembled in a
trimer of equal stoichiometry. Laminin subunits a2, b2,
and g1 are seen most frequently in mature NMJs where
they form the laminin 4 complex (also called S-merosin);
we identified each of these subunits in the T. californica
proteome. Subunit g1 facilitates the interaction between
AChR and a7b1 integrins to prime cluster formation
prior to neuronal agrin release or when agrin levels are
low [47,48]. At the mature synapse, the laminin complex

interacts with extracellular matrix (integrins and agrin)
and postsynaptic membrane components (basal cell
adhesion molecule (Bcam), a dystroglycan, and AChR) to
link the extracellular regions with the intracellular cytos-
keleton and to regulate the release of intracellular cal-
cium directed at AChR cluster formation [48-50].
Subunit b2 also assists in the development of synaptic
folds and Schwann cell placement at the synapse [51].
The laminin receptors characterized at the synapse,
Bcam and dystroglycan, were not identified but dystro-
glycan was previously characterized in the electric organ
[13,52]. However, we identified laminin receptor 1
(LamR1 or RPSA), a known binding partner for the lami-
nin complex in the electric organ (a2, b2, and g1; also
called S-merosin or laminin 2/4). Interestingly, LamR1
has not been previously reported at the NMJ [53,54].
Recent evidence supports the role of HSP90b and HSP 70

kDa protein (HSP70) as stabilizing chaperones of NMJ pro-
teins. HSP90b was shown to interact directly with rapsyn at
its tetratricopeptide repeat (TPR) domain following its
binding to surface AChR clusters. Recruitment of HSP90b
is believed to stabilize AChR-rapsyn binding to influence
AChR stability and maintenance and also may associate
with a dystrobrevin and a syntrophin [44]. HSP70 may be
a cochaperone of HSP90b along with DnaJ homolog sub-
family C member 7, HSP40, and prostaglandin E synthase 3

Figure 5 Torpedo electrocyte proteins in context of the mammalian neuromuscular junction (NMJ). Electric organ identifications are
displayed in context of the mammalian NMJ paradigm. Red shapes indicate proteins we identified in our Torpedo electric organ proteome.
White shapes are proteins we did not identify. This image was created using Path Designer in Ingenuity IPA 8.8-3204.
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(p23). p23 is involved in stabilizing the ATP-bound confor-
mation of HSP90, permitting the release of activated inter-
acting partners [55]. We identified p23 in our Torpedo
cDNA library, suggesting its role as a cochaperone with
HSP90 in the electric organ. We also identified stress-
induced phosphoprotein 1, which facilitates the interaction
between HSP90b and HSP70 [56].

Intracellular signal transduction
We identified proteins (vesicle-fusing ATPase (NSF),
dynamin, Ras-related C3 botulinum toxin substrate 1

(Rac1), G proteins) involved in agrin-dependent MuSK
activation and subsequent AChR clustering and synaptic
gene transcription (Figure 5). In this process, agrin
binds Lrp4 to activate MuSK and its subsequent interna-
lization via clathrin-mediated endocytosis and to activate
expression of MuSK interacting proteins. Dynamin 1
and NSF are involved in receptor-mediated endocytosis,
vesicle transport, and protein trafficking. NSF is essen-
tial for agrin-induced receptor-mediated endocytosis of
MuSK and activation of its downstream signaling mole-
cules Abl kinase and Rac1 in C2C12 cells, which

Figure 6 Electric organ proteome overlaps with mouse skeletal muscle proteome but shows tissue-specific protein expression. Mouse
skeletal muscle (tibialis anterior muscle or gastrocnemius muscle) and the Torpedo electric organ were fractionated and processed under similar
conditions as stated under Figure 1. Mouse skeletal muscle proteins were identified by BioWorks 3.3.1 referencing only UniProtKB/Swiss-Prot.
Electric organ (EO) and skeletal muscle proteins were compared and graphed in Microsoft Excel 2007 based on the number of peptides per
protein identified in each tissue. EO proteins are mapped (#peptides/protein) on the × axis and mouse skeletal muscle on the y axis. The lower
two graphs represent zoomed sections for visual clarity.
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promote AChR clustering [57]. In addition, dynamin
supports clathrin-coated vesicles formed upon agrin-
induced endocytosis of MuSK, which is translocated
into lipid rafts for activation and signaling.

Table 1 T. californica electric organ proteome shows
tissue-specific proteins when compared to mouse
skeletal muscle proteome

Unique to skeletal muscle
proteome

Unique to electric organ
proteome

Development (myogenesis): Myofibrillar:

UN45B Cytoskeleton, actin M-band

Myofibrillar: ANK1

Cytoskeleton, actin Light chain part of A-band

TITIN MYL9

Z-disk Neuromuscular junction (NMJ):

ACTN2 ACES

ACTN3 ACHA

MYOTI ACHB

PP2BA ACHD

Class II myosins (A-band) ACHG

MYBPH DTNA

MYH1 HSP70

MYH3 HSP90B

MYH4 RAPSN

MYH6 NMJ-ECM

MYH7 LAMA2

MYH8 LAMB2

MYPC2 LAMC1

Light chain part of A-band Cytoskeleton:

MYL1 Cytoskeleton, actin

M-band SEPT6

MYOM1 sept7

OBSCN ACTG

Contraction ADDG

PHKG1 ACTC

MYLK2 ANK2

TNNC2 ARPC2

TNNI2 ARPC4

TNNT3 CCDC6

TPM2 COF1

ACTN4 COF2

Cytoskeleton: DNJC7

Cytoskeleton, actin FERM2

ACTS PROF2

ML12B SLMAP

MLRS TCPA

MLRV TLN2

Actin capping-binding Actin capping-binding

CAPZB CAZA2

RADI SPTB1

XIRP1 Cytoskeleton, microtubule

Cytoskeleton, microtubule DYN1

CLIP1 SIRT2

Table 1 T. californica electric organ proteome shows tis-
sue-specific proteins when compared to mouse skeletal
muscle proteome (Continued)

KINH TBB1

PBIP1 TBB2

STIM1 TBB5

TBB2A Intermediate filaments

TBB2C K1C9

Sarcoplasmic reticulum/calcium
pathways:

K1H1

AT2A2 NFH

AT2A3 NFL

CALU NFM

JPH2 Sarcoplasmic reticulum/calcium
pathways:

SRCA SORCN

CASQ1 Ion channels:

CASQ2 Chloride channel

KPB1 CICH

Ion channels: Calcium ATPase

Voltage-sensitive calcium channels AT2B1

CA2D1 AT8A1

CAC1S Hydrogen-potassium ATPase

CACB1 AT12A

Potassium channel AT1A

TM38A Sodium-potassium ATPase

Sodium-potassium ATPase AT1A3

AT1A2 AT1B1

AT1B2 Extracellular matrix (ECM):

Oxygenation (muscle): NID2

MYG FINC

ECM: CO1A1

CO6A1 CO1A2

COEA1 CO6A3

ITB1 BGH3

NID1 HPLN1

PEPD Neuronal:

PGS2 AINX

Neurogenesis: VAMP3

NDKA

NDRG2

Proteins on the × and y axis of Figure 6, indicating unique identification in
the corresponding tissue, were listed based on biological process, molecular
function, and cellular localization. See Additional File 1 for expanded names of
all abbreviated proteins.
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Several studies support the ‘signaling endosome
hypothesis’ in which neurotrophic factors initiate ligand-
mediated endocytosis of receptor tyrosine kinases into
clathrin-coated vesicles that contain activators such as G
proteins and downstream effector molecules involved in
Ras-mitogen-activated protein kinase (MAPK) signaling
[58-61]. In the electric organ, we identified guanine
nucleotide binding proteins and inhibitors that act on
Rho family of Ras-related G proteins that may be
involved in signaling endosomes. These include G subu-
nit b-1 (GNB1), subunit b-2-like1 (RACK1), G(s) subu-
nit a (GNAS1), and Rho GDP-dissociation inhibitor 1
(ARHGDIA). GNB1 composes part of the catalytic
machinery of GTPases and provides docking regions for
interacting proteins. ARHGDIA prevents the release of
GDP from Rho proteins (Rho, Rac, cdc42, TC10).
RACK1 is the receptor of protein kinase C (PKC), which
is known to inactivate Rho; PKC also phosphorylates
serine residues of AChR δ subunit to promote receptor
desensitization and disassembly [62-64]. Identification of
several proteins involved in ligand-mediated endocytosis,
activators and inhibitors of GTPases, signaling, lysoso-
mal and proteasomal degradation support the mainte-
nance of protein function across myogenic-derived cell
types.
Interestingly, Rac1 is involved in clathrin/dynamin-

independent endocytosis of AChR following binding
with bungarotoxin [65]. Rac1 functions in actin polymer
rearrangement to create compartments for AChR sur-
face sequestration and, most likely, polymerization of
the cytoskeletal network involved in vesicle transport to
the lysosome for degradation. Rac is a key mediator of
receptor surface sequestration in addition to its role in
actin polymerization and rearrangement, which controls
the number and arrangement of receptors at the synapse
to modulate synaptic transmission.
Our proteome also includes an inhibitory protein of

synaptic gene expression. The 14-3-3 g (YWHAG),
extracted from Torpedo electric organ, reduced the
expression of MuSK, AChR subunits ε and a, utrophin,
and rapsyn and resulted in aberrant NMJ morphology
[43]. It is known that 14-3-3 g interacts with the N-ter-
minus of Raf-1, HSP90 interacts with the C-terminus of
Raf-1, and Ras (RRAS2 (TC21)) binds to the Raf-1-
HSP90-p50 complex, causing the complex to translocate
to the plasma membrane and become an active kinase
for phosphorylating mitogen-activated protein kinase
kinase (MEK) [66-68]. PKC also is a target of 14-3-3 g.

T. californica proteome: limits as a NMJ model
Several critical NMJ proteins are absent from our data.
Most notable are proteins within the two major net-
works responsible for postsynaptic stabilization and
gene expression. The first network is the Agrin-MuSK-

Lrp4/Src/Rapsyn network involved in AChR cluster for-
mation and stabilization (Figure 5). The second is the
Agrin-MuSK/NRG-ErbB/MAPK/GABP network for
transcriptional activation of synaptic genes (Figure 5).
Absent molecules involved in these pathways include
downstream of tyrosine kinase 7 (Dok7), dishevelled
(Dvl), PAK, RAF-1, and extracellular signal-regulated
kinase (ERK). In addition, several Torpedo proteins with
UniProtKB/TrEMBL annotation that are expressed at
the NMJ were not detected by tandem mass spectrome-
try analysis of subcellular fractions. These include a and
b dystroglycan homologs, the receptor tyrosine kinase
similar to MuSK, and protein tyrosine kinases Fyn and
Fyk. However, we did identify dystrophin, dystrobrevin,
and syntrophin that compose the dystroglycan complex
and we did show several molecules that may be up and
downstream of receptor tyrosine-protein kinase ErbB
(neuroplastin (NPTN), Ras-related protein R-Ras2
(RRAS2) or Ras-related protein Rap-1A (RAP1A),
HSP90b).
We failed to identify relatively well characterized

mammalian NMJ proteins in our survey, including Lrp4,
MuSK, Dok7, Src and Fyn Kinase, Dvl, ErbB2, PKC
(category 1), and agrin, laminin subunits a4, a5, PAK1,
Rho, cyclin-dependent kinase 5 (cdk5), ephexin1, neure-
gulin, ETS transcription factor, Raf, MEK, MKK4, c-Jun
N-terminal kinase (JNK), and c-Jun (category 2). This
may reflect technical issues with the sensitivity of our
proteomics methods and parameters (for example, false
negative and low maximum mass range for glycosylated
peptides), challenges in mapping peptide spectral data to
the partial cDNA sequence coverage or to cross-species
transcript units, or significant differences in the struc-
ture and function of the electric organ compared to the
mammalian NMJ. Our study is based on non-targeted
proteomics and it may be possible to identify these spe-
cific proteins in the electric organ using a more targeted
approach. The literature on the Torpedo electric organ
supports the presence of agrin, a and b dystroglycan,
MuSK, and Src kinases, which strengthens the organ’s
use as a model NMJ.

Conclusions
The virtual electrocyte revealed that the Torpedo electric
organ is a resource for several uncharacterized proteins
whose function may be clarified in future studies.
Knockout and reporter assays of C6orf130, C1orf123,
matrix-remodeling-associated protein 7, protein NipS-
nap homolog 2, septin-6, prohibitin 2, GATS-like pro-
tein 2, SH3 domain-binding glutamic acid-rich protein,
and 14-3-3 protein ζ/δ in mouse skeletal muscle may
clarify their subcellular roles, which may reveal novel
components involved in AChR expression and mainte-
nance. The electric organ will continue to serve as a
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model of membrane excitability and electrogenesis as it
is abundant in AChR and the Na+/K+-ATPase channels
and may be used as a model to design a prototype
biobattery.
Based on our identification of electric organ proteins

that match proteins in the three categories of our
defined ‘NMJ proteome’ and the persistent similarity to
skeletal muscle, the electric organ can serve as a reposi-
tory of these NMJ molecules that are in low abundance
in skeletal muscle. However, the absence of several NMJ
components involved in synaptic gene expression and
AChR clustering in our model limits our ability to con-
clude that it indeed represents the mammalian NMJ
that is maintained similarly. This study offers a more
detailed understanding of the electrocyte protein reper-
toire with insight into the presence and absence of pro-
teins between these two related tissues. It reflects their
unique tissue-function specializations and insight into
evolutionary conservation and divergence between
synaptic gene expression, maintenance, and regulation.
The data raises questions whether the pathways respon-
sible for AChR clustering are required in the electrocyte
given its dense innervations and high AChR expression
or whether electromotor neurons support the postsy-
napse with different neurotrophic or signaling molecules
than mammalian motor neurons such that the neuregu-
lin-ErbB pathway is unnecessary.

Methods
Sequencing and mass spectral database indexing of T.
californica cDNA library
The 10,326 cDNA sequences utilized for proteomics
mass spectral mapping database have been previously
described [40]. All T. californica sequences were saved
as a Fasta database and indexed in BioWorks 3.3.1 SP1
(Thermo Fisher Scientific, Waltham, MA) as trypsin
digested protein sequences from the translation across
all six reading frames.

Fractionation of the electric organ
T. californica electric organ was fractionated by grinding
and homogenizing electroplax in lysis buffer (0.25 M
sucrose, 20 mM Tris pH 8.0, 25 mM KCl, 5 mM
MgCl2, Roche Mini Complete Protease Inhibitor and
PhosStop Phosphatase Inhibitor (Roche, Branchburg, NJ,
USA) [69]. Tissue homogenate was centrifuged at 627 g
(2,500 rpm) for 15 min at 4°C. The pellet (P1) was
saved for further purification and the supernatant was
centrifuged at 10,000 g for 20 min at 4°C. The pellet
(P2) was saved for further purification and the superna-
tant was ultracentrifuged at 100,000 g for 60 min at 4°C
resulting in pellet P3 and supernatant S3.
P1 was processed further by homogenizing the iso-

lated pellet in 2-3 ml lysis buffer. The homogenate was

filtered through a 100 μm nylon filter (BD, Franklin
Lakes, NJ, USA) to remove connective tissue. The fil-
trate was centrifuged at 627 g for 15 min at 4°C. This
pellet was resuspended in 2 M STM buffer (2 M
sucrose, 50 mM Tris-HCl pH 8.0, 5 mM MgCl2, Roche
Mini Complete Protease Inhibitor and PhosStop Phos-
phatase Inhibitor) and placed in an ultracentrifuge at
80,000 g for 35 min at 4°C. The resultant pellet was
resuspended in EBC buffer (50 mM Tris-HCl pH 8.0,
120 mM NaCl, 1% Triton-X 100, Roche Mini Complete
Protease Inhibitor and PhosStop Phosphatase Inhibitor).
After 15 min incubation at 4°C, the suspension was
passed through a 20-gauge needle ten times to lyse any
cells. Soluble (S1) and insoluble fractions were separated
by centrifugation at 9,000 g for 30 min at 4°C. The pel-
let (P1.1) was resuspended in EBC buffer.
P2 was resuspended in 0.5 ml HDP buffer (10 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 1 mM dithiothreitol (DTT), Roche Mini Com-
plete Protease Inhibitor and PhosStop Phosphatase Inhi-
bitor). After 30 min incubation on ice, the suspension
was sonicated (Sonifier Cell Distributer 350, Branson
Scientific Danbury, CT) on ice for five initial pulses,
paused for 30 s, then a final ten pulses (50% Duty Cycle,
Pulsed-Hold, Output Control Limit 3). The lysate was
centrifuged at 9,000 g for 30 min at 4°C. The superna-
tant was saved as S2. P2.1 was resuspended in ME buf-
fer (20 mM Tris-HCl, 0.4 M NaCl, 15% glycerol, 1 mM
DTT, 1.5% TritonX-100, Roche Mini Complete Protease
Inhibitor and PhosStop Phosphatase Inhibitor), incu-
bated for 30 min at 4°C with rocking, then centrifuged
at 9,000 g for 30 min at 4°C. The supernatant of solu-
blized P2.1 was saved as P2.1.
S1 and S3 fractions were concentrated in a speed

vacuum. P3 was suspended in EBC buffer. Each fraction
except P2.1 and S2 was desalted by passing the sample
through a BioSpin6 column before protein quantitation
using the DC Protein Assay (BioRad, Hercules, CA,
USA). Protein extracts were stored at 80°C until
electrophoresis.

Protein isolation and identification
Protein separation
Proteins within each fraction were resolved using one-
dimensional SDS-PAGE on Novex NuPage® 3% to 8%
Tris-Acetate MidiGel and 4% to 12% Bis-Tris MiniGel
Systems (Invitrogen, Carlsbad, CA, USA) according to
manufacturer’s directions such that 2.5-400 kDa pro-
teins may be isolated and prepared for ESI-MS/MS ana-
lysis. In addition, 250 μg of cytosolic proteins were
resolved by two-dimensional electrophoresis as pre-
viously described with minor differences [70]. The
immobilized pH gradient (IPG) strip was rehydrated for
12 h at 20°C and was focused at 20°C using the
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following conditions: 250 V for 15 min, 8,000 V for 2.5
h, 500 V hold. Following isoelectric focusing (IEF), the
IPG strip was incubated in equilibration buffer (6 M
urea, 50 mM Trizma preset crystals (pH 8.8), 2% SDS
(w/v), 30% glycerol (w/v), 0.002% bromophenol blue)
with 1% DTT for 20 min followed by a 20 min incuba-
tion in equilibration buffer with 2% iodoacetamide. Each
gel was fixed for 30 min in 5% acetic acid, 45% metha-
nol solution, stained with Bio-Safe Coomassie (Bio-Rad)
for 60 min, and destained in distilled water overnight.
Protein digestion
Multiple molecular weight bands and spots were manu-
ally excised from the gel (Additional file 5) and pro-
cessed for in-gel digestion with 12.5 ng/μl Trypsin Gold
(reconstituted according to manufacturer’s directions,
Promega, Madison, WI, USA) in 50 mM NH4HCO3 as
previously described [71].
Protein identification: ESI-LTQ-MS/MS
Recovered peptides from SDS-PAGE were analyzed using
nanospray ESI-LTQ MS/MS as previously described,
with minor differences [72]. Peptides were loaded onto a
C18 reverse-phase column for 10 min at a flow rate of 5
nl/min then separated at a flow rate of 250 nl/min. A 65
min linear gradient eluted peptides. The LTQ operated
in data-dependent mode to perform one full MS scan
(300-2,000 m/z) to select the five most intense peaks
through dynamic exclusion for MS/MS analysis via colli-
sion-induced dissociation (CID) with helium at 35% nor-
malized energy. Raw spectra were analyzed by the
SEQUEST algorithm in BioWorks 3.3.1 software, crossre-
ferencing our T. californica cDNA library translated into
six reading frames and The Universal Protein Resource
(UniProtKB/Swiss-Prot) release 14.0 [73]. Peptide accep-
tance criteria was set at ΔCn >0.1, a variable threshold of
Xcorr versus charge state: Xcorr = 1.9 for z = 1, Xcorr =
2.2 for z = 2, and Xcorr = 2.5 for z = 3, protein Xcorr
>40, and a peptide probability based score with a P value
<0.01. Spectral data (.raw files) were first converted into
MS2 file format (.ms2 files) using pXtract, default set-
tings, and then into PRIDE XML format using PRIDE
Converter for upload onto the PRIDE database [74-76].
Data can be found under the project name ‘Torpedo cali-
fornica Electric Organ Proteome’, accession numbers:
16,474-16,476.
Protein identification: MALDI-TOF/TOF MS
Two-dimensional IEF SDS-PAGE separated cytosolic
peptides were processed and analyzed for protein iden-
tification as previously described with the following
additional details. Data was acquired using the follow-
ing parameters: mass range 500-4,000 Da, minimum S/
N 20, mass tolerance ± 2 m/z, minimum peak match
4, maximum outlier error 10 ppm, monoisotopic mass
[70]. MS and MS/MS spectra of peptides were
searched against the UniProtKB/Swiss-Prot (release

15.0) by MASCOT using the following parameters: MS
peak filtering mass range 800-4,000 Da, minimum S/N
10, peak density filter 50 per 200 Da, maximum num-
ber peaks 65; MS/MS peak filtering: mass 60 Da to 20
Da below precursor mass, lowest precursor 707.46 Da,
peak density filter 50 per 200 Da, maximum number
peaks 65, fixed modification carbamidomethyl (C),
variable modification oxidation (M), fragment ion tol-
erance 0.3, precursor tolerance 0.5. Proteins identified
by the MASCOT algorithm were filtered based on pro-
teins identified with MS/MS spectra, protein score CI
>95%, protein score >69, proteins with PI and MW
that match the gel spot. All .dat files of spectral data
were also uploaded to the PRIDE database under the
same project title as ESI-LTQ-MS/MS data stated
above.
Lipid raft assay of fraction
To isolate membrane proteins localized to lipid rafts,
membrane was isolated from 3 g of electric organ
according to the above procedure (protein separation)
with minor modifications. Tissue homogenate was cen-
trifuged twice at 627 g for 15 min at 4°C and the super-
natant passed through a 40 μm filter to clear cellular
debris. The supernatant was ultracentrifuged at 100,000
g for 60 min at 4°C to collect an insoluble pellet rich in
membrane proteins. Lipid rafts were isolated from elec-
tric organ membrane fraction following previously pub-
lished guidelines with the following modifications: the
gradient was ultracentrifuged at 100,000 g [77]. Visible
bands were collected and centrifuged at 14,000 g for 30
min. The resultant pellets were resuspended in EBC buf-
fer. Intermediate solutions were also collected and con-
centrated by vacuum centrifugation. All collected
fractions were subjected to one-dimensional SDS-PAGE
on Novex NuPAGE® 4% to 12% Bis-Tris MiniGel using
NuPAGE® MES SDS Running Buffer (Invitrogen, Carls-
bad, CA) according to the manufacturer’s instructions.
Protein bands were manually excised and processed for
ESI-LTQ-MS/MS analysis as described earlier.

Additional material

Additional file 1: Torpedo californica electric organ proteome. All
435 proteins, identified across different sample processing and mass
spectral data acquisition techniques, representing the T. californica
proteome are listed in separated tabs based on the method of
identification. Electric organ fractions were separated by SDS-PAGE and
analyzed by nanospray electrospray ionization quadrupole linear ion-trap
tandem mass spectrometry (ESI-LTQ MS/MS) or matrix-assisted laser
desorption/ionization - time of flight/time of flight mass spectrometry
(MALDI-TOF/TOF MS). For ESI-LTQ MS/MS, mass spectral matching of raw
spectra against UniProtKB and Torpedo cDNA library was performed in
BioWorks 3.3.1 in which the peptide acceptance criteria was set at ΔCn
>0.1, a variable threshold of Xcorr versus charge state: Xcorr = 1.9 for z =
1, Xcorr = 2.2 for z = 2, and Xcorr = 2.5 for z = 3, protein Xcorr >40, and
a peptide probability based score with a P value <0.01. All cDNA
sequences were queried in blastx (standard genetic code, Swiss-Prot,
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default algorithm parameters except for BLOSSUM80 scoring matrix) for
identification via sequence similarity with a known protein, first across all
species and then against Homo sapiens selected database (column C: all
species/Homo sapiens). Score of blastx alignments: black ≥200, pink = 80-
200, green = 50-80. For MALDI-TOF/TOF MS of cytosolic proteins
resolved two dimensionally, acquired data were searched against
UniProtKB/Swiss-Prot (release 15.0) by MASCOT using the following
parameters: MS peak filtering mass range 800-4,000 Da, minimum S/N 10,
peak density filter 50 per 200 Da, maximum number peaks 65; MS/MS
peak filtering: mass 60 Da to 20 Da below precursor mass, lowest
precursor 707.46 Da, peak density filter 50 per 200 Da, maximum number
peaks 65, fixed modification carbamidomethyl (C), variable modification
oxidation (M), fragment ion tolerance 0.3, precursor tolerance 0.5.
Proteins identified by the MASCOT algorithm were filtered based on
proteins identified with MS/MS spectra, protein score CI >95%, protein
score >69, proteins with isoelectric points (PI) and molecular weights
(MW) that match the gel spot.

Additional file 2: Validation of identified Torpedo proteins in
spectral data using Public Access Databases. Torpedo protein
sequences listed in GenBank were collected in a single database to
directly search Torpedo electric organ fractions with a Torpedo-specific
protein database. Results include Torpedo proteins also identified by a
search against UniProtKB, all species. UniProtKB accessions are used for
consistency. The chart categorizes proteins positively identified, not
identified that are expected to be found with a possible explanation, and
proteins not identified that are not expected to be identified. Reviewed
sequences are from the UniProtKB/Swiss-Prot database and unreviewed
sequences from UniProtKB/TrEMBL.

Additional file 3: Torpedo californica electric organ proteome
classified according to tissue expression or associated function. All
proteins identified by mass spectral mapping (listed in Additional file 1)
were queried in UniProtKB for annotation of tissue expression and or
function then categorized as electric organ (EO) specific, neuromuscular
junction (NMJ) specific, muscle specific or highly expressed in muscle,
likely expressed in muscle based on function, expressed in neurons, or
functions in metabolism and energy production. Torpedo cDNA
sequences were queried by blastx (standard genetic code, Swiss-Prot,
default algorithm parameters except for BLOSSUM80 scoring matrix) to
obtain a protein identification with high sequence similarity.

Additional file 4: Neuromuscular junction (NMJ) proteins from the
literature categorized by the degree of influence on synapse
architecture. The NMJ proteome was defined by searching the current
literature and categorizing the influence of proteins on the synaptic
structure and function. Category 1 represents mainly loss of function
resulting in aberrant acetylcholine receptor (AChR) clustering and NMJ
morphology and may result in an embryonic lethal. Category 2
represents interacting partners or dependencies with proteins in
category 1. Category 3 represents proteins that are located at the NMJ
but do not alter synapse morphology or function.

Additional file 5: Resolved Torpedo californica electric organ
fractions. T. californica electric organ fractions were resolved by one-
dimensional electrophoresis on: (a) 3% to 8% Tris-Acetate Novel
NuPage®® MidiGel and (b) 4% to 12% Bis-Tris Novel NuPage®® MiniGel.
(c) The membrane-rich protein fraction from a lipid raft assay was
resolved one dimensionally (4% to 12% Bis-Tris Novel NuPage®® MiniGel).
Protein bands were excised (shown in black), subjected to in-gel trypsin
digestion, and analyzed by nanospray electrospray ionization quadrupole
linear ion-trap tandem mass spectrometry (ESI-LTQ MS/MS) analysis.
Identification of proteins was performed using BioWorks 3.3.1 to
crosscorrelate a combination of cross-species and Torpedo cDNA MS/MS
spectral matching. (d) T. californica electric organ cytosolic fraction was
resolved two dimensionally (IPG pH 3-10 and 8% to 16% CriterionTris-HCl
Linear Gradient SDS gel). Protein spots were excised, subjected to in-gel
trypsin digestion, and analyzed by matrix-assisted laser desorption/
ionization - time of flight/time of flight mass spectrometry (MALDI-TOF/
TOF MS). Identification of proteins was performed by GPS Explorer
software to search spectra against UniProtKB/Swiss-Prot via MASCOT.
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