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Abstract

The transforming growth factor-beta (TGF-b) superfamily consists of a variety of cytokines expressed in many different
cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are
TGF-b1, mitogen-activated protein kinases (MAPKs), and myostatin. These signaling molecules play important roles in
skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these
molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress
response. However, chronic elevation of TGF-b1, MAPKs, and myostatin is linked to various features of muscle
pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-b in
various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also
discuss how the inhibition of several members of the TGF-b signaling pathway has been implicated in ameliorating
disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.

Introduction
The transforming growth factor-beta (TGF-b) superfamily
plays a crucial role in normal physiology and pathogenesis
in a number of tissues. It is important to emphasize that
downstream effects of this signaling cascade are often tis-
sue-specific, thereby dictating which target genes will be
activated in response to the transduction signal. Given its
multifaceted effects in different tissues, deregulation of
TGF-b signaling cascades can lead to a multitude of devel-
opmental defects and/or disease [1]. Several members of
the TGF-b family have been shown to play important
roles in regulating muscle growth and atrophy. The most
extensively characterized ligands, in terms of the effects on
skeletal muscle, are TGF-b1, mitogen-activated protein
kinases (MAPKs), and myostatin. In this review, we focus
on these signaling molecules in normal homeostasis and
pathological conditions affecting skeletal muscle and
describe the therapeutic avenues that have recently been
explored to target the TGF-b signaling cascade.

Overview of the TGF-b superfamily signaling cascade
The TGF-b superfamily of cytokines consists of a variety of
signaling molecules including isoforms of TGF-b (1 to 3),

bone morphogenic proteins (BMPs 1 to 20), growth and
differentiation factors (GDFs), activins (A and B), inhibins
(A and B), nodal, leftys (1 and 2), and Mullerian inhibiting
substance [1]. They are generally divided into two branches
defined by the utilization of receptor Smads (R-Smads): the
TGF-b branch, consisting of TGF-b, activin, Nodal, and
myostatin (GDF-8), signals through R-Smads 2 and 3 and
the BMP branch, consisting of BMPs and other GDFs, sig-
nals through R-Smads 1, 5 and 8. This superfamily is
known to be involved in embryonic development, adult tis-
sue homeostasis, and disease pathogenesis. Specifically, it
has been shown to control proliferation, differentiation,
apoptosis, migration, extracellular matrix (ECM) remodel-
ing, immune functions, and tumor invasion/metastasis [2].
TGF-b1 is synthesized as a precursor that is cleaved

intracellularly into an inactive complex consisting of the
mature TGF-b1 non-covalently bound to the portion of
the precursor peptide termed the latency-associated pep-
tide (LAP) [3]. This inactive TGF-b1-LAP complex forms
a larger complex with latent transforming growth factor-
binding proteins (LTBPs), which directly bind and release
TGF-b1 from the ECM. Specifically, LTBP-4 sequesters
and regulates the availability of TGF-b1 to bind with its
receptor [4]. Cleavage of TGF-b1 from the latent com-
plex is achieved through the action of proteases such as
plasmin, thrombin, plasma transglutaminases, or endo-
glycosylases, or through the physical interaction of LAPs
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with other proteins [3]. Activation occurs extracellularly
[3], and once TGF-b1 is released, it is able to interact
with and complex its type I (usually TbR-II) and type II
(usually activin receptor-like kinase (ALK) 5) receptors.
The constitutively active type II receptor phosphorylates
and activates the type I receptor, which in turn directly
phosphorylates Smad2 and/or Smad3 (which are
recruited by adaptor proteins) to initiate signal transduc-
tion through the canonical cascades [5]. Once R-Smad
has been phosphorylated, it forms a complex with the
common mediator Smad (co-Smad), Smad4, which trans-
locates to the nucleus, where it directly binds defined ele-
ments on the DNA [2]. Adding to the regulation are the
inhibitory Smads 6 and 7. Smad7 is involved in both
branches and competes with R-Smads for interaction
with the type I receptor, whereas Smad6 only participates

in the BMP pathway and competes with Smad4 for bind-
ing to Smad1 [5] (Figure 1).
TGF-b1 can also signal via induction of non-canonical

pathways including MAPK. The MAPK family consists of
isoforms of extracellular signal-regulated kinases (ERKs)
(1 and 2), c-Jun N-terminal kinase (JNKs) (1to 3), and p38
(a, b, g and δ). The mechanisms of MAPK activation by
TGF-b1 and the subsequent biological consequences are
cell-type-specific [6]. Generally in the non-Smad pathway,
the type I receptor associates with the adaptor proteins,
Shc and tumor necrosis factor receptor-associated factor
(TRAF) 6, for the activation of Ras and TGF-b-activated
kinase (TAK) 1 and subsequently, the ERK and p38/JNK
pathways, respectively [7]. However, MAPK may also
modulate TGF-b1-induced Smad signals and phosphory-
late Smad proteins independent of TGF-b1, providing
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Figure 1 Crosstalk between the canonical and non-canonical transforming growth factor-beta1 (TGF-b1) and myostatin pathways.
Once the TGF-b1 or myostatin ligands bind to the appropriate type I and type II receptors, cross-phosphorylation of the type I receptor occurs,
leading to the phosphorylation of downstream effectors. In the canonical pathway, the type I receptor phosphorylates Smad2/3, which then
binds to Smad4 and translocates into the nucleus to act as transcription factors. In the non-canonical pathway, the type I receptor
phosphorylates proteins that are involved in the activation of the mitogen-activated protein kinases (MAPKs). Activated MAPKs can then regulate
transcription factors and/or the Smad proteins through direct interactions or via downstream proteins.
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evidence for crosstalk between canonical and non-canoni-
cal TGF-b pathways [6,7] (Figure 1).
Myostatin (MSTN), predominantly expressed in skele-

tal muscle, also signals through the TGF-b branch [8]. It
is synthesized as a precursor protein that undergoes pro-
cessing by furin proteases to generate a propeptide. After
proteolytic processing, however, the biologically active
MSTN remains bound non-covalently to the propeptide,
and in this complex, the propeptide maintains its inac-
tive, latent state [9,10]. MSTN also seems to be regulated
extracellularly by other binding proteins: follistatin [9,11],
follistatin-related gene (FLRG) protein [12], and growth
and differentiation factor-associated serum protein
(GASP) 1 [13]. When not bound to its propeptide or
binding proteins, active MSTN is able to signal to target
cells by binding to the activin type II receptors, ActRIIA
or ActRIIB [14,15]. The activation of the type I receptor
(usually ALK5 and to a lesser extent ALK4) leads to the
phosphorylation of R-Smads 2 and 3 [15]. More recently,
it has been shown that MSTN is also able to induce the
activation of the MAPK signaling pathway in Smad-
dependent and -independent mechanisms [16-18], and to
inhibit the Akt/TORC1/p70S6K signaling pathway [19]
(Figure 1). For a more extensive summary of MSTN,
see [20].

Physiological role of TGF-b signaling in skeletal muscle
TGF-b1 is expressed during myogenesis, and its spatial
and temporal expression in the developing connective tis-
sue is correlated with the fiber-type composition of the
surrounding myotubes. Myotubes formed before the
expression of TGF-b1 develop into slow fibers, whereas
fast fibers form when myoblasts are adjacent to connective
tissue expressing TGF-b1 [21]. TGF-b1 has been shown to
inhibit the differentiation of fetal myoblasts but does not
affect embryonic myoblasts [22]. In mature adult muscle,
TGF-b negatively affects skeletal muscle regeneration by
inhibiting satellite cell proliferation, myofiber fusion, and
expression of some muscle-specific genes [23]. Further-
more, TGF-b1 induces the transformation of myogenic
cells into fibrotic cells after injury [24].
Not much is known about the role of the different

MAPKs in embryogenesis [25]; although, they have been
shown to play a role in myogenesis and regeneration. p38
is speculated to regulate regeneration through the activa-
tion of p21, a cyclin-dependent inhibitor that causes irre-
versible withdrawal from the cell cycle (necessary for the
differentiation of myoblasts) and through interactions
with Pax7, myogenic regulatory factors, and myocyte
enhancer factors [26,27]. JNK is proposed to inhibit myo-
genesis [28], and ERK may have multiple roles: prevent-
ing the initiation of myogenesis [29], enhancing myoblast
proliferation during the acute stages, and repressing mus-
cle-specific gene expression and myoblast differentiation,

if expression is sustained [30]. Generally, in mature mus-
cle, MAPKs mediate the transduction of diverse external
stress stimuli into intracellular signals that regulate adap-
tive cellular responses such as proliferation, differentia-
tion, self-renewal, and survival in diseased and healthy
states [2,31]. For example, MAPK levels are modulated
during exercise and aging as a stress response [31,32].
Myostatin is expressed in developing skeletal muscle

throughout embryogenesis and has been shown to be a
negative regulator of adult skeletal muscle mass by acting
on different mechanisms [20]. Genetic studies in mice,
cattle, sheep, dogs, chickens, and humans have all shown
that myostatin normally functions to limit muscle mass
[33-40]. In mice, targeted ablation of the Mstn gene
causes a doubling of skeletal muscle mass throughout the
body, as a result of a combination of muscle fiber hyper-
plasia and hypertrophy [33]. Moreover, postnatal inhibi-
tion of myostatin signaling through the delivery of
propeptides, neutralizing antibodies, antisense RNA, inhi-
bitory proteins, and soluble ActRIIB has been shown to
induce significant muscle growth when administered to
mice of different ages, demonstrating the importance of
this signaling pathway in regulating muscle homeostasis
[10,14,41-50].

TGF-b signaling and skeletal-muscle repair
After skeletal muscle injury, a well-coordinated repair pro-
cess occurs. This process includes the release of growth
factors and cytokines and the migration and proliferation
of macrophages and fibroblasts that increase the produc-
tion of ECM components; these components are degraded
as normal regeneration occurs. The inflammatory
response serves to clear myofiber debris and modulate
regeneration. The formation of new myofibers begins with
the activation of satellite cells, followed by proliferation,
differentiation, and fusion of myocytes [51] (Figure 2).
TGF-b1, a potent regulator of tissue wound healing

and fibrosis, is physiologically upregulated in regenerat-
ing skeletal muscle after injury and exercise and is
thought to participate in a transient inflammatory
response to muscle damage [51,52]. Persistent exposure
to the inflammatory response leads to an altered ECM
and increased levels of growth factors and cytokines,
including TGF-b1, which contribute to the formation of
fibrotic tissue [51,52]. Therefore, TGF-b1 is one of the
major factors promoting the transformation of myo-
blasts into fibrotic tissue after injury. Furthermore,
increased levels of TGF-b1 inhibit satellite cell activation
and impair myocyte differentiation [23,53] (Figure 2).
Interestingly, reducing the levels of TGF-b1 in various
physiological and pathological conditions associated
with muscle homeostasis and regeneration has proven
to be beneficial for several myopathic conditions [54-70]
(Table 1).
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Myostatin also impairs skeletal muscle regeneration. It
is proposed to hinder the chemotaxis of macrophages
and myoblasts [71], while simultaneously activating and
attracting fibroblasts to the site of injury. Once fibro-
blasts are within the environment of the injured muscle,
they express MSTN and differentiate into myofibro-
blasts, a process that in turn accelerates the deposition
of collagen and connective tissue, ultimately promoting
the formation of tissue fibrosis [72,73]. Furthermore,
myostatin inhibits the activation, differentiation, and
self-renewal of satellite cells [71,74,75] and the expres-
sion of the muscle regulatory factors crucial for the
regeneration and differentiation process of myofibers
[76,77] (Figure 2). Inhibiting MSTN in various myo-
pathic conditions has yielded mixed results, depending

on the disease model and mechanism of inhibition
[43,44,48,50,78-100] (Table 2).

Role of TGF-b signaling in disease pathogenesis of
inherited myopathies
Dysregulation of TGF-b signaling has been implicated in
various pathological conditions affecting skeletal muscle,
both inherited and acquired [51]. Inherited conditions
can be progressive, and therefore, there are unique phe-
notypic characteristics that may require different modes
of intervention. Indeed, increased levels of TGF-b,
MAPK, and/or MSTN have been associated with spinal
muscular atrophy and Kennedy disease [101,102], and
inhibition of MSTN improves familial amyotrophic lat-
eral sclerosis (ALS) [82,87], but this review focuses on
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Figure 2 Regulated and dysregulated muscle regeneration. In regulated muscle regeneration, a transient inflammatory response occurs
upon injury, which includes the chemotaxis of growth factors, cytokines, macrophages, and fibroblasts. This is followed by the activation and
proliferation of satellite cells. Once activated, myoblasts differentiate into myocytes, and then fuse together to form myofibers, which exhibit
central nuclei. This process is primarily orchestrated by the expression of the myogenic regulatory factors. In dysregulated muscle regeneration,
there is a persistent inflammatory response and overexpression of proteins such as transforming growth factor-beta1 (TGF-b1) and myostatin,
which promote the formation of fibrotic tissue to replace damaged myofibers.
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altered signaling in the pathogenesis of Marfan syn-
drome (MFS) and the muscular dystrophies.
MFS is an autosomal dominant systemic disorder of

connective tissue, caused by mutations in FBN1, the gene
encoding the ECM protein, fibrillin-1 [103]. A large sub-
set of patients exhibit a significant decrease in muscle
mass, often associated with hypotonia, particularly during
early childhood, and experience a life-long inability to
increase muscle mass despite physical exercise. Histologi-
cal analyses of skeletal muscle from fibrillin-1-deficient
mice and patients with MFS demonstrated a decrease in
the number and size of myofibers, accompanied by an
increase in fibrosis, fat deposition, and the number of

split fibers. Further molecular analyses revealed that an
increase in TGF-b signaling was indeed responsible for
the abnormal muscle phenotype and the impaired ability
to regenerate muscle in response to injury. Interestingly,
when TGF-b signaling was blunted via treatment with a
TGF-b neutralizing antibody or losartan, mice deficient
in fibrillin-1 exhibited normal muscle architecture and
regeneration capabilities [54].
‘Muscular dystrophy’ (MD) is a term used to describe

a group of over 30 inherited disorders characterized by
variable progressive muscle weakness and wasting
[104,105]. Genetic mutations in genes encoding proteins
spanning every subcellular aspect of the myofiber have

Table 1 Comprehensive overview of studies using agents to blunt transforming growth factor (TGF)-b signaling

Compound Mechanism of action Clinical
condition

Model organism Phenotypic findings Ref

FDA-approved medications

Losartan AT1a receptor antagonist (mostly
used for hypertension,
cardiomyopathies)

MFSb Fbn1C1039G/+ mice Improved muscle architecture, function and
regeneration

[54]

DMDc mdx mice Improved skeletal, diaphragmatic and cardiac muscle
architecture, function and regeneration

[54,55]

Muscle
Injury

Younge mice Decreased fibrosis and improved regeneration [56]

Suramin TGF-b1 receptor antagonist (anti-
parasitic, anti-neoplasic)

DMD mdx mice Decreased fibrosis and prevented decrease in grip
strength

[57]

Muscle
injury

Adultf mice Decreased fibrosis, improved regeneration and function [58-60]

Anti-fibrotic agents

Decorin Binds to TGF-b1 ligands Muscle
injury

Young mice Decreased fibrosis, improved regeneration and
functional recovery

[61]

DMD mdx mice Decreased collagen type I levels in diaphragm [62]

g-Interferon Induces Smad7 expression Muscle
injury

Young mice Decreased fibrosis, improved regeneration and
functional recovery

[63]

Pirfenidone TGF-b1 antagonist DMD mdx mice Improved cardiac function, minor alterations on the
development of fibrosis, and no improvement in

diaphragmatic function

[64,65]

Halofuginone Inhibits TGF-b-dependent
phosphorylation of Smad3

DMD mdx mice Decreased fibrosis and improved function of the heart,
diaphragm and limb muscles

[66,67]

CMDd dy2J/dy2J Decreased fibrosis and improved functional performance
but did not improve strength

[68]

TGF-b neutralizing antibody

Neutralizes TGF-b (1 and/or 2) ligands MFS Fbn1C1039G/+ mice Prevented muscle atrophy and improved regeneration [54]

DMD mdx mice Decreased fibrosis and improved regeneration [54,69]

Sarcopenia Agedg mice Failed to improve regeneration [70]

TGF-b receptor kinase inhibitor

Decoy receptor composed of extracellular
portion of TGF-b receptor II

Sarcopenia Aged mice Improved regeneration after direct intramuscular
injection

[70]

aAngiotensin II type 1 receptor.
bMarfan syndrome.
cDuchenne muscular dystrophy.
dCongenital muscular dystrophy.
eAge ≤ 3 months.
fAge 3-15 months.
gAge ≥ 15 months.
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Table 2 Comprehensive overview of studies using post-natal inhibition of myostatin

Disease Model
organism

Phenotypic findings Ref

Neutralizing antibody: binds to active myostatin and prevents receptor binding

DMDa mdx mice Improved regeneration and function, induced hypertrophy, decreased degeneration (diaphragm) and
fibrosis

[78,79]

LGMD2Cb sgcg-/- mice Improved function, induced hypertrophy but no histopathological improvement [80]

LGMD2F sgcd-/- mice Increased muscle mass, regeneration (young) and fibrosis (aged) [81]

ALSc SOD1G93A

mice and rats
Delayed onset of muscle atrophy and functional decline without extending survival [82]

Sarcopenia Agedf mice Prevented loss of body weight, muscle mass and function, and decline in physical activity, reduced
apoptosis, no change in fibrosis

[44,83]

Disuse
atrophy

Adultg mice Partially protected against but did not prevent atrophy [99]

ActRIIB-Fcd: soluble, decoy receptor binding active myostatin

DMD mdx mice Increased body weight and function, induced hypertrophy [84,100]

LGMD1C CAV-3P104L mice Induced muscle hypertrophy [85]

SMAe SMAΔ7 mice Modestly increased muscle weight and strength, decreased survival [86]

ALS SOD1G93A mice Delayed onset of disease but did not extend survival, reduced weakness after onset [87]

Cachexia Lewis-lung
carcinoma

Protected against loss of body weight and muscle mass [88]

Cachexia Colon-26
carcinoma

Protected against or restored loss of body weight, muscle mass and grip strength, and increased survival [88,89]

MSTN Propeptide: binds to myostatin and prevents release of active form

DMD mdx mice Induced hypertrophy, increased strength, improved histopathological features of limb and diaphragm,
decreased endurance, produced adverse effects on cardiomyopathy

[48,50,90]

LGMD2A Capn3-/- mice Increased muscle mass and force, no improvement in histopathological features [91]

LGMD2D sgca-/- mice Insufficient delivery of vector resulted in no hypertrophy or any change in necrosis [91]

Muscle
Injury

Adult mice Increased muscle mass, improved regeneration, decreased fibrosis [92]

Follistatin: inhibitory protein that binds to myostatin

SMA SMAΔ7 mice Improved muscle mass (during early stages of disease), motor function and extended survival [93]

ALS SOD1G93A mice Increased muscle mass (hyperplasia) and strength (not performance) but no survival extension [94]

HDAC Inhibitors: induce expression of follistatin

DMD mdx mice Induced hypertrophy, decreased fibrosis and necrosis, restored muscle architecture, increased strength and
performance

[95]

LGMD2D sgca-/- mice Induced hypertrophy and reduced fibrosis [95]

Cachexia Colon-26
carcinoma

Did not protect against loss of body weight, muscle mass or function [88,96]

Muscle
injury

Youngh mice Improved regeneration [97]

MSTN peptide: dominant negative truncated myostatin peptide that binds ActRIIB

Sarcopenia Aged mice Improved grip strength and enhanced inflammatory response after injury [98]

Muscle
injury

Adult mice Improved regeneration, decrease in necrosis [98]

Antisense RNA: binds myostatin messenger RNA and inactivates it

Cachexia S-180
ascitic tumor

Increased muscle mass [43]

aDuchenne muscular dystrophy.
bLimb-girdle muscular dystrophy.
cAmyotrophic lateral sclerosis.
dActivin type IIB receptor.
eSpinal muscular atrophy.
fAge≥ 15 months.
gAge 3-15 months.
hAge ≤ 3 months.
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been described [105]. There are currently no unifying
hypotheses integrating all forms of MDs, but various
lines of evidence suggest that repeated cycles of degen-
eration and regeneration may eventually impair the abil-
ity of satellite cells to repopulate damaged muscle [104].
Once muscle regeneration declines, there is often an
accumulation of inflammation and fibrosis, which results
in an abundance of growth factors and cytokines includ-
ing TGF-b1, as stated above [51,62,106-108]. Similarly,
the levels of decorin and biglycan, components of the
ECM that interact with cytokines such as TGF-b1, as
well as modulations of MAPK and myostatin signaling,
are altered in various forms of muscular dystrophies
including congenital MD, Emery-Dreifuss MD (EDMD)
and Becker MD [109-115]. This review will elaborate on
findings in Duchenne and limb-girdle MDs.
Duchenne muscular dystrophy (DMD) is an X-linked

disorder characterized by a complete lack of dystrophin,
which renders the myofiber membrane unstable. Inflam-
mation is thought to precede the overexpression of TGF-
b1 and actual muscle wasting [116,117]. Additionally,
other factors including ECM components, immune system
components, osteopontin, and fibrinogen are increased
and have been linked to fibrosis in patients and animal
models of DMD [52,108-110,116,118-120]. Furthermore,
increased levels of the MAPKs ERK1/2, JNK1, and p38
have also been suggested to play a role in the pathogenesis
of the skeletal and cardiac muscle phenotype in animal
models of DMD [121-123]. Insight into the different fac-
tors contributing to the fibrosis accompanying DMD has
led to various mechanisms to improve the phenotype
observed in cardiac and skeletal (diaphragm and limb)
muscles (Table 1 and 2) [52,54,64,124,125].
Limb-girdle muscular dystrophy (LGMD) describes a

group of disorders primarily affecting the shoulder and
pelvic girdle muscles, which have both autosomal domi-
nant and recessive inheritance, and involve a variety of
proteins including sarcoglycans, dysferlin, and caveolin
[105]. Studies in a Drosophila model of LGMD with g/δ-
sarcoglycan deficiency have shown that partial reduction
of the Drosophila genes homologous to Smads 2/3, Smads
1/5/7, and Smad4 improved muscle function, as shown by
increased climbing ability of the flies. Similarly, reducing
the levels of the homologue for Smads 2/3 and Smad4
improved the heart tube phenotype [125]. Not only has
this research provided a novel animal model for studying
dystrophic disease processes, but the results also indicate
that targeting the R-Smads and co-Smad may be of thera-
peutic interest. Furthermore, genetic manipulation of
LTBP-4, a latent TGF-b binding protein discussed above,
affected the severity of a mouse model of sarcoglycan-defi-
cient LGMD2C, providing evidence for an important
genetic modifier of MD. An insertion in the LTBP4 gene
reduced proteolysis and Smad signaling [4]. Thus,

targeting the latent complex of TGF-b1 opens up yet
another therapeutic avenue for inhibiting this cytokine in
various conditions affecting skeletal muscle.

Acquired myopathies implicating aberrant TGF-b
signaling in disease progression
Alterations in the expression of the TGF-b signaling cas-
cades have also been linked to acquired forms of myopa-
thies. Muscle atrophy caused by hypoxia [126],
microgravity exposure [127], starvation [128], acute daily
psychological stress [129], various models of disuse
[130-137], cancer [138,139], sporadic ALS [140], HIV
[141], and glucocorticoid steroids [142] is associated with
increased activation of MAPK, TGF-b1, and/or MSTN.
However, in this paper, we focus on sarcopenia and criti-
cal illness myopathy (CIM).
Sarcopenia refers to the physiological age-related loss of

skeletal muscle mass and function [143]. Several changes
occur with age, including a decrease in myofiber size and
number and diminished ability of satellite cells to activate
and proliferate in response to injury, leading to impaired
muscle remodeling [144,145]. The molecular mechanisms
underlying sarcopenia are largely unknown. However,
alterations in the canonical and non-canonical TGF-b sig-
naling pathways have been shown to play a role in the
pathogenesis of sarcopenia. Studies in elderly men have
demonstrated an increase in MAPK at baseline, suggesting
that aging skeletal muscle is functioning under ‘stress-like’
conditions at rest [32]. However, a different study con-
ducted in mice and humans found an age-related decrease
in ERK signaling in skeletal muscle and satellite cells, sug-
gesting a contribution to the impaired regeneration [146].
Clearly, more in-depth studies are necessary to character-
ize the role of MAPK signaling in aging. Additionally,
alterations in the canonical TGF-b pathway include an
increase in circulating TGF-b1 levels and pSmad3, which
contributes to the enrichment of connective tissue within
the ECM, creating an environment that interferes with
satellite cell activation and proliferation and subsequent
remodeling [70,145]. Other studies have shown an upregu-
lation of MSTN [147] and that inhibition of MSTN results
in an increase in muscle mass, function, and regeneration
in sarcopenic mice, suggesting an important role for this
protein in the process of age-related loss of muscle mass
[44,98] (Table 2).
CIM is characterized by generalized progressive muscle

weakness and atrophy, occurring in critically ill patients
who are hospitalized in the intensive care unit [148,149].
There are several factors thought to contribute to the
loss of muscle mass in CIM, including immobilization,
systemic inflammation, high dose steroids, and other tox-
ins [148]. The precise molecular mechanisms underlying
CIM are unknown [148]; however, constitutively active
members of the canonical and non-canonical TGF-b
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signaling pathways may contribute to the muscle pheno-
type. In fact, atrophic fibers with apoptotic features
express TGF-b ligands and receptors, p38, and down-
stream effectors of pJNK [149]. It is therefore tempting
to speculate that TGF-b inhibition may slow or halt the
progression of CIM.

Therapeutic inhibition of TGF-b signaling
Aberrant TGF-b signaling has an important role in inher-
ited and acquired myopathies. Therefore, research has
been aimed at identifying compounds that can attenuate
the increased signaling of TGF-b1, MSTN, and/or MAPK
levels in order to improve disease phenotypes.
Several compounds have been shown to reduce the

levels of TGF-b1 in myopathies. These include FDA-
approved medications with other primary clinical uses,
anti-fibrotic agents, TGF-b neutralizing antibodies, and
TGF-b receptor blockers. Most yielded favorable results,
but there are some conditions in which blunting TGF-b
signaling was not beneficial. Table 1 provides a compre-
hensive overview of existing agents targeting TGF-b sig-
naling in specific disease models.
Losartan is a widely studied, FDA-approved drug com-

monly used in the treatment of hypertension. Its ability to
attenuate TGF-b signaling in chronic renal disease, cardio-
myopathies, and MFS [54,150,151] made it an appealing
molecule in the treatment of myopathies associated with
increased TGF-b signaling. Long-term administration of
losartan to dystrophin-negative mdx mice attenuated
TGF-b signaling, decreased skeletal muscle fibrosis, and
improved muscle regeneration and in vitro and in vivo
function [54]. Furthermore, long-term administration of
losartan, in conjunction with exercise, in mdx mice
improved the cardiac muscle function and decreased fibro-
sis in the cardiac, diaphragm, and limb muscles but did
not improve limb muscle function [55]. Other mechan-
isms of TGF-b inhibition have also yielded favorable
results in the treatment of DMD and other conditions
(Table 1).
Furthermore, recent experimental evidence has identi-

fied novel therapeutic targets in the TGF-b pathway.
Molecules involved upstream (LTBP-4) and downstream
(R-Smads and co-Smad) have been shown to modulate
disease severity [4,125]. It is important to emphasize that
LTBP-4 is a specific target for TGF-b1 [4], whereas Smad
molecules incorporate a variety of different pathways,
which could potentially lead to a number of adverse
effects if they were therapeutically modified [125,152]
(Figure 1). Moreover, osteopontin, an inflammatory regu-
lator that also modulates TGF-b1, has recently been
shown to be upregulated during muscle regeneration and
in DMD [118,153-155]. Lack of osteopontin in mdx mice
improved fibrotic tissue formation and muscle function,
making osteopontin a potential therapeutic target [118].

In addition to altering TGF-b1 signaling, a number of
compounds have been shown to inhibit myostatin signal-
ing. Numerous studies breeding myostatin-null mice to
several mouse models of inherited and acquired myopa-
thies have shown various beneficial and non-beneficial
effects [81,85,88,98,156-159]. Interestingly, several studies
on myostatin-null mice alone have shown that despite an
increase in muscle fiber size, there is no increase in specific
force, which is probably due to a disturbance in mitochon-
drial metabolism [160,161]. Furthermore, myostatin-null
mice have also been reported to have brittle tendons,
which may contribute to the decrease in specific force
[162]. However, it is important to emphasize that these stu-
dies were performed in mice with a complete lack of myos-
tatin during the development of skeletal muscle. Thus,
caution is needed when extrapolating the findings obtained
from myostatin-null mice to the various compounds
targeting myostatin signaling postnatally.
There are several pharmacological compounds that

inhibit MSTN postnatally: MSTN propeptide, MSTN
peptide, inhibitory proteins (follistatin), MSTN neutraliz-
ing antibodies, histone deacetylase inhibitors, and soluble
ActRIIB. These techniques have been used in various dis-
ease models, and a detailed overview is presented in
Table 2.
The soluble receptor, ActRIIB, is currently being used

in multiple clinical trials and has been explored in var-
ious animal models including a model of DMD. It is
important to note that targeting ActRIIB could lead to
adverse side effects, because its expression is not limited
to skeletal muscle [84] and because other members of the
TGF-b superfamily besides myostatin bind to it [14].
Furthermore, myostatin can also signal through another
receptor, ActRIIA, but with lower affinity [15].
Preclinical trials with soluble ActRIIB in mdx mice

have shown that short-term (3 months) intraperitoneal
administration increased skeletal muscle mass and in
vitro function and caused a decrease in creatine kinase
levels [100]. Adeno-associated virus (AAV)-mediated
gene transfer of a soluble form of the extracellular
domain of the ActRIIB to the liver provided similar
results after 3.5 months, but no changes to cardiac mus-
cle mass were seen [84]. However, long-term (11 months)
myostatin inhibition using a recombinant AAV to over-
express myostatin propeptide in mdx mice did not
reduce the amount of fibrosis in the diaphragm, but
caused cardiac hypertrophy and impaired function in a
dose-dependent manner [50]. These results indicate that
all modes of myostatin inhibition may not be beneficial.
Similar to TGF-b1 and MSTN, perturbations of MAPK

signaling have been documented in several myopathies,
but not many studies exist examining the effects of inhibi-
tion on disease progression. Some evidence suggest that a
reduction in JNK and ERK signaling might be beneficial in
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DMD [122] and cachexia [163], respectively, but further
studies are needed to elaborate on these initial findings.
Furthermore, a number of studies have shown that inhibi-
tion of the MAPK pathway is beneficial for the cardiomyo-
pathic phenotype of various muscular dystrophies.
Specifically, it has been shown that blunting ERK or JNK
before and after onset of EDMD results in less cardiac
fibrosis and an overall improved function [164-166]. Thus,
this is a potential area of interest in designing future phar-
macological compounds, because of the potential benefits
and current lack of FDA-approved MAPK inhibitors [166].

Conclusions
Increased activity of the TGF-b superfamily plays an
important role in the pathogenesis of both inherited and
acquired forms of neuromuscular disorders. These altera-
tions cause an unfavorable environment for muscle
regeneration and promote an increase in fibrotic tissue
formation (Figure 2). Future studies will need to address
the precise timeline of alterations in TGF-b signaling in
various disease processes in order to establish the optimal
therapeutic intervention. A number of drugs (Table 1;
Table 2) are close to or currently in clinical trials. These
and future clinical trials will need to establish the safety
and efficacy of these drugs and address whether certain
clinical conditions may benefit from a multi-targeted
approach.
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