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Abstract

Background: Exploring stromal changes associated with tumor growth and development is a growing area of
oncologic research. In order to study molecular changes in the stroma it is recommended to separate tumor tissue
from stromal tissue. This is relevant to xenograft models where tumors can be small and difficult to separate from
host tissue. We introduce a novel definition of cross-alignment/cross-hybridization to compare qualitatively the
ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor and stromal expression
from mixed ‘pseudo-xenograft’ samples vis-à-vis genes and pathways in cross-alignment (RNA-Seq) and
cross-hybridization (microarrays). Samples consisted of normal mouse lung and human breast cancer cells; these
were combined in fixed proportions to create a titration series of 25% steps. Our definition identifies genes in a
given species (human or mouse) with undetectable expression in same-species RNA but detectable expression in
cross-species RNA. We demonstrate the comparative value of this method and discuss its potential contribution in
cancer research.

Results: Our method can identify genes from either species that demonstrate cross-hybridization and/or
cross-alignment properties. Surprisingly, the set of genes identified using a simpler and more common approach
(using a ‘pure’ cross-species sample and calling all detected genes as ‘crossers’) is not a superset of the genes
identified using our technique. The observed levels of cross-hybridization are relatively low: 5.3% of human genes
detected in mouse, and 3.5% of mouse genes detected in human. Observed levels of cross-alignment are
practically comparable to the levels of cross-hybridization: 6.5% of human genes detected in mouse, and 2.3%
of mouse genes detected in human. We also observed a relatively high percentage of orthologs: 40.3% of
cross-hybridizing genes, and 32.2% of cross-aligning genes.
Normalizing the gene catalog to use Consensus Coding Sequence (CCDS) IDs (Genome Res 19:1316–1323, 2009),
our results show that the observed levels of cross-hybridization are low: 2.7% of human CCDS IDs are detected in
mouse, and 2.4% of mouse CCDS IDs are detected in human. Levels of cross-alignment using the RNA-Seq data are
comparable for the mouse, 2.2% of mouse CCDS IDs detected in human, and 9.9% of human CCDS IDs detected in
mouse. However, the lists of cross-aligning/cross-hybridizing genes contain many that are of specific interest to
oncologic researchers.
(Continued on next page)
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Conclusions: The conservative definition that we propose identifies genes in mouse whose expression can be
attributed to human RNA, and vice versa, as well as revealing genes with cross-alignment/cross-hybridization
properties which could not be identified using a simpler but more established approach. The overall percentage of
genes affected by cross-hybridization/cross-alignment is small, but includes genes that are of interest to oncologic
researchers. Which platform to use with mixed xenograft samples, microarrays or RNA-Seq, appears to be primarily
a question of cost and whether the detection and measurement of expression of specific genes of interest are likely
to be affected by cross-hybridization or cross-alignment.

Keywords: Microarray, RNA-Seq, Cross-hybridization, Cross-alignment, Tumor microenvironment, Xenograft,
Pathway analysis
Background
It is well understood by oncologists that tumor growth and
metastasis depend on changes in the tumor microenviron-
ment or stroma. Stromal changes have been the focus of
numerous research publications and have led to insights in
both tumor development and promising new avenues for
treatment [1-7].
In order to study molecular changes in stroma from tissue

samples, it is necessary to separate tumor tissue from stromal
tissue. Without this separation we have sample heterogen-
eity, which is well known to severely limit the conclusions
that can be made about the specificity of molecular changes
and their biological causes [5,7-11]. This separation can be
difficult in contexts where tumors are small or not well dif-
ferentiated. For example, in mouse tumor xenograft models,
human cancer cells are grown in immune-suppressed mice
[12-15]. These models are popular in oncologic research for
studying mechanisms of tumor growth and metastasis, as
well as drug response. In such studies, secondary tumors (at
sites of metastasis) are often quite small and difficult to sep-
arate surgically from the surrounding stroma. Hence, mouse
xenograft samples consist of a mixture of human tumor and
mouse stromal tissues, and the task of separating tumor tis-
sue from stromal tissue is a critical one.
Historically, the tumor-stromal separation step has been

solved in two different ways: either by laser capture micro-
dissection (LCM; [14,16,17]) of the tissue samples or in
silico dissection of data from undissected samples [17,18].
LCM is very time consuming, and specialized equipment is
required to obtain a sufficient quantity of biological mater-
ial for profiling. If the sample is in suspension, cell-sorting
methods can be used to isolate specific cells, although this
requires a suitable biomarker for the cell type(s) of interest.
The main drawback of cell-sorting with respect to molecu-
lar profiling is that the act of separation itself can alter the
expression of molecular markers [10,19,20]. In silico dissec-
tion can be used successfully to assign expression levels to
different tissues; however, these methods may have diffi-
culty with cross-hybridization of human chip probes with
homologous mouse genes – and vice versa [21-23].
A potential solution is the use of high-throughput RNA
sequencing (RNA-Seq) data to measure expression. RNA-
Seq is a relatively new, but very promising method used to
detect and measure the abundance of RNAs [2,4,24] using
modern DNA sequencing technologies [1,2,4,6,25]. RNA-
Seq does not depend on genome annotation for prior probe
selection and avoids biases introduced during hybridization
of microarrays [8,26]. However, RNA-Seq does depend on
alignment of reads to a reference sequence [12,14,24], and
current wet-lab RNA-Seq protocols and strategies require
lengthy library preparation procedures.
An alternate method for identifying cross-hybridization/

cross-alignment would be to profile ‘pure’ human and
mouse samples using both mouse and human platforms.
Genes detected when examining pure human tissue with a
mouse platform, and vice versa, are defined as cross-
hybridizers/cross-aligners. This method should identify
genes whose expression fluctuates from undetectable to
detectable or change their detectable levels when going
from a same-species to a cross-species platform. Interest-
ingly, we found that by using a more conservative defin-
ition, but a more complex approach – using a titration
series to identify genes whose expression shifts from un-
detectable to detectable – we identified genes that could
not be identified using only ‘pure’ species samples.
We report on a qualitative comparison of the abilities

of RNA-Seq and microarray data to determine tumor
(human) and stromal (mouse) expression from mixed
samples in terms of cross-alignment (RNA-Seq) and
cross-hybridization (microarrays). We use titration data
from experiments designed to create pseudo-xenograft
samples, in triplicate, involving total RNA from mouse
and human combined in different proportions and ana-
lyzed by both microarrays and RNA-Seq.

Methods
RNA sources
Samples consisted of normal mouse lung and human
breast cancer cells (the human samples consisted entirely
on pre-established human cell lines, and did not include



Figure 1 (See legend on next page.)
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Figure 1 Human and mouse genes detected by microarrays. a. Human and mouse genes detected by microarrays. Percentage of genes, on
average, within each sample type detected by the microarray chips. Blue bars represent the percentage of human genes that are detected in the
human microarray chip; yellow bars represent the percentage of mouse genes detected in the mouse microarray chip. b. Human and mouse
Ensembl genes detected by RNA-Seq. Percentage of genes detected, on average, within each sample type by RNA-Seq. Blue bars represent the
percentage of human genes detected by aligning to the human reference; yellow bars represent the percentage of mouse genes detected by
aligning to the mouse reference.
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any human subjects); these were combined in fixed pro-
portions to create a titration series of 25% steps. The titra-
tion data assembles a series of “pseudo-xenograft” samples
containing both human and mouse components. MDA-
MB-231 human breast carcinoma cell line was obtained
from the American Type Culture Collection, and
maintained according to the supplier’s instructions. RNA
was isolated from three independent cultures of sub-
confluent MDA-MB-231 cells in the exponential phase of
growth. NOD/SCID gamma mice were obtained from The
Jackson Laboratory, and normal lung tissue was harvested
from three independent age-matched mice. All animals
were maintained in accordance with the guidelines of the
Institutional Animal Care and Use Committee at the
University of Miami.
RNA was extracted from cultured MDA-MB-231 cells

and normal lung tissue using Trizol Reagent (Invitrogen)
according to the manufacturer’s instructions. Concentra-
tion and yield of RNA samples were determined using a
NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies). RNA integrity was determined by analysis
on an Agilent 2100 Bioanalyzer (Agilent Technologies)
following the manufacturer’s recommendations. Only
samples with a RIN score greater than 7.0 were used for
the subsequent molecular analysis.

Microarrays
Samples were prepared according to the manufacturer’s
instructions, and analyzed using HumanWG-6_V3_0_R1
and MouseWG-6_V2_0_R0 Expression BeadChips
(illumina, Inc.). Samples consisted of total RNA combined
in the following proportions (human/mouse): 100/0, 75/25,
50/50, 25/75, and 0/100. Raw expression data was
background corrected, quantile normalized, and log2
transformed using the GeneSpring GX software. Probesets
with detection p-values less than 0.05 in two of three
independent replicates were considered as “present” and
included in further analysis.

RNA-Seq
mRNA (200 ng) was fragmented at 70 uC for 5 minutes in
a fragmentation buffer (Ambion), and converted to first-
strand cDNA using Superscript III (Invitrogen); followed by
second-strand cDNA synthesis using Escherichia coli DNA
pol I (Invitrogen). The double stranded cDNA library was
further processed by Illumina Genomic DNA Sample Prep
Kit. It involved end repair using T4 DNA polymerase,
Klenow DNA polymerase, a T4 Polynucleotide kinase
followed by a single “A” base addition using Klenow 39 to
59 exo2 polymerase, and was ligated with Illumina’s adaptor
oligo mix using T4 DNA ligase. The adaptor-ligated library
was size-selected by separating on a 4% agarose gel and cut-
ting out the library smear at 200-base-pairs (bp) (625 bp).
The library was PCR-amplified by Phu polymerase (Strata-
gene) and purified by Qiaquick PCR Purification Kit
(Qiagen). The library was quantified with Quant-iT
Picogreen dsDNA Assay Kit (Invitrogen) on a Modulus
Single Tube Luminometer (Turner Biosystems) following
the manufacturer’s instructions. The resulting library (10
nM) was used to prepare flowcells with approximately
30,000 clusters per lane. Sequencing of all libraries was
performed on an Illumina Genome Analyzer IIx yielding
82,447,146 single-end 36-base reads using CASAVA (v.1.3).
The resulting reads were mapped using the TopHat

[14,27] spliced-read mapper to the human genome (hg19)
and the mouse genome (mm9) obtained from the University
of California, Santa Cruz (UCSC) Genome Browser [18,28].
Additionally, the Ensembl [10,13] human and mouse
transcriptomes were also supplied to TopHat. Protein-
coding genes with at least 5 uniquely aligned reads [16,21]
within their respective gene region were considered as being
“present” [2,4,19]. We also experimented with aligning –
using the BWA aligner [25] – to the transcriptome se-
quences directly as opposed to the entire genomic reference
(Additional file 1: Figures S6 and S7) to gauge any potential
advantages or changes in alignment patterns. However we
found no perceived benefit as the transcriptome alignment
patterns followed the genomic ones, albeit at lower levels.

CCDS data
Consensus Coding Sequence (CCDS) [29] annotation data
was obtained from the CCDS project FTP repository at
NCBI. CCDS data was used to normalize the gene catalog
in both the microarray and RNA-Seq analyses. For human,
25,504 CCDS IDs were employed; for mouse, 22,131
CCDS IDs were employed in the analysis. The human
microarray chip contained 48,811 probes; of these we were
able to summarize 21,636 CCDS IDs, of which 16,579 are
unique ids. The mouse microarray chip contained 45,282
probes; we summarized them into 20,209 mouse CCDS
IDs, of which 13,518 are unique. In review, the human
microarray chip contained only 65.0% of current human
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Figure 2 Human and mouse CCDS Ids detected by microarrays. a. Human and mouse CCDS IDs detected by microarrays. Percentage of
CCDS IDs within each sample type detected by the microarray chips. Blue bars represent the percentage of human CCDS IDs that are detected in
the human microarray chip; green bars represent the percentage of mouse CCDS IDs detected in the mouse microarray chip. b. Human and
mouse CCDS IDs detected by RNA-Seq. Percentage of CCDS IDs detected within each sample type by RNA-Seq. Blue bars represent the
percentage of human CCDS IDs detected by aligning to the human reference; green bars represent the percentage of mouse CCDS IDs detected
by aligning to the mouse reference.
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CCDS IDs; the mouse microarray chip contained only
61.1% of current mouse CCDS IDs.
Cross-hybridization & cross-alignment
We define a gene which cross-hybridizes (or cross-aligns)
from mouse to human (a mouse crosshyb, or mouse
cross-aligner) as one which exists in the set defined by
((B ∪ C ∪ D) – A); where “A”, “B”, “C”, and “D” are defined
as follows: “A” is the set of all genes detected when the
pure mouse RNA sample was hybridized onto mouse
chips (or aligned to the mouse genome); “B” is the set of
all genes detected when the 25% human & 75% mouse
RNA samples were hybridized onto mouse chips (or
aligned to the mouse genome); “C” is the set of all genes
detected when the 50% human & 50% mouse RNA sam-
ples were hybridized onto mouse chips (or aligned to the
mouse genome); and finally, “D” is the set of all genes
detected when the 75% human & 25% mouse RNA sam-
ples were hybridized onto mouse chips (or aligned to the
mouse genome). Accordingly, a gene that cross-hybridizes
Figure 3 Detection by both technologies. Symmetrical Venn-diagrams o
mouse. ‘A’ is the 100% human sample, ‘B’ is the 75% human and 25% mou
25% human and 75% mouse sample, and ‘D’ is the 100% mouse sample. T
all samples.
(or cross-aligns) from human to mouse (a human crosshyb,
or human cross-aligner) is defined analogously.

Results
Intraspecies and interspecies detection
Figure 1a and b show the percentages of human and
mouse genes detected by microarray and by RNA-Seq in
each triplicate of samples using a disjoint gene catalog, i.e.,
the gene list used in the microarray analysis is the entire
gene inventory on the chip, and the gene list used in the
RNA-Seq analysis is the complete Ensembl protein-coding
gene catalog. Figure 2a and b show the comparable results
using the CCDS ID catalog for analysis in both technolo-
gies. The percent detected is lower overall for the micro-
array data, i.e., lower within the same species but also
lower across species. One can also see that the rate of
cross-hybridization of human genes onto the mouse
microarray chip is larger relative to the rate of cross-
hybridization of mouse genes onto the human microarray
chip. A priori we expected that intraspecies detection
(human cell line sample hybridized on a human microarray
f CCDS ID’s detected by both RNA-Seq and microarrays in human and
se sample, ‘C’ is the 50% human and 50% mouse sample, ‘D’ is the
he middle region is the number of CCDS IDs that are detected across



Figure 4 Gene levels of cross-hybridization. Cross-hybridizing detected genes from the disjoint gene catalog using the microarray platform.
(a) Percentage of human genes that are detected in each sample using the human microarray chip. (b) Percentage of mouse genes that are
detected in each sample using the mouse microarray chip. (c) genes that cross-hybridize are identified by subtracting the genes detected in a
homogeneous tissue sample (the “A” set) from the union of the mixed tissue samples (B,C, &D).
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chip, or the human cell line sample RNA-Seq reads
mapped onto the human reference; the mouse tissue sam-
ple hybridized on a mouse microarray chip, or mouse
tissue sample RNA-Seq reads mapped onto the mouse ref-
erence) would decrease monotonically as the percentage of
same-species material decreased (Additional file 1: Figures
S4 and S5); however, this was not the case. In all four cases
(mouse tissue on mouse chip, human cell line on human
chip, mouse tissue mapped to mouse reference, human cell
line mapped to human reference) only the human cell line
on the human chip case shows a monotonically decreasing
detection rate with decreasing human cell line percentage.
For example, the detection of mouse genes by alignment to
the mouse reference with the RNA-Seq data actually shows
the highest level of detection in samples that are 50%/50%
mouse/human cell line. These results may partly be
explained by cross-hybridization and/or cross-alignment,
i.e., if there is some cross-hybridization and/or cross-
alignment then it is possible that heterogeneous samples
(mixtures of human and mouse) will have higher detection
rates than homogeneous samples (pure mouse and human).
We considered using a much simpler but broader def-

inition of cross-hybridization/cross-alignment. The idea
is to define a human cross-hybridizer as a gene detected
in a 100% human sample with a mouse microarray, and
a mouse cross-hybridizer as a gene detected in a 100%
mouse sample with a human microarray. The definitions
from cross-alignment would be analogous. We expected
that these definitions would lead to lists of genes that
would be a superset of the lists we had found, because this
simpler definition should identify genes either detected or
undetected by same-species methods and detected by
cross-species methods, while our definition only identifies
genes undetected by same-species methods and detected
by cross-species methods. However, we found that neither
list was a proper subset of the other; for example, 45.3%
(Additional file 1: Table S6) of genes we defined as human
cross-aligners by our definition also appeared as a human
cross-aligner by the simpler, ‘pure’ sample approach.
Additional file 1: Tables S6-S10 contain the full overlap
percentages for genes and CCDS IDs detected using both
definitions.

Detection by technology
The CCDS gene catalog was employed so that we may
directly compare detection by the two technologies. We



Figure 5 Gene levels of cross-alignment. Cross-aligning genes detected from the disjoint gene catalog using RNA-Seq. (a) Percentage of
human genes that are detected in each sample when aligning to the human reference. (b) Percentage of mouse genes that are detected in each
sample when aligning to the mouse reference. (c) genes that cross-align are identified by subtracting the genes detected in a homogeneous
tissue sample (the “A” set) from the union of the mixed tissue samples (B,C, &D).
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used the full set of CCDS IDs obtained from NCBI:
25,504 human CCDS IDs and 22,131 mouse CCDS IDs.
It should be noted that the microarray chips only
contained 65.0% of the current human CCDS IDs and
61.1% of the mouse CCDS IDs. Additional file 1: Table
S2 details the levels of detection by each technology at
each sample. RNA-Seq is able to detect more unique
CCDS IDs by itself than the microarray chips in the het-
erogeneous samples: in human, RNA-Seq is able to
uniquely detect, on average, about 48.8% of CCDS IDs
while the microarray chips are able to uniquely detect
only 4.7%; however both technologies detect about
46.5% of the same CCDS IDs. The detected numbers are
similar in mouse: RNA-Seq is able to uniquely detect
53.1% of CCDS IDs, while the microarrays are able to
uniquely detect 5.4%; both technologies are able to de-
tect 41.5% of the same CCDS IDs (see Additional file 1:
Figure S1).
The detection in the Homogeneous samples also fol-

lows the same pattern within a species (Venn Diagrams
in Additional file 1: Figure S2): for the 100% human
sample, RNA-Seq uniquely detects 41.5% of unique
human CCDS IDs, microarrays uniquely detect 7.8%,
and both detect 50.7% of human CCDS IDs. For the
100% mouse sample, RNA-Seq detects 51.0% of mouse
CCDS IDs, microarrays detect 3.8%, and both detect
45.2% of mouse CCDS IDs. However, RNA-Seq detects a
substantially greater number of CCDS IDs in the 100%
sample of the opposite species: in the 100% mouse sam-
ple, RNA-Seq is able to detect 82.7% of human CCDS
IDs, while microarrays only detect 7.1% and 10.1% are
detected by both. The same is true for the 100% human
sample: RNA-Seq is able to detect 77.5% of mouse
CCDS IDs, while microarrays are able to detect only
12.2% of mouse CCDS IDs and only 10.2% are detected
by both.
For the 100% human sample, 16,463 CCDS IDs are

detected by both RNA-Seq and microarrays; of these
6,833 are uniquely detected by RNA-Seq, 8,350 are
detected by both technologies, and 1,280 are uniquely
detected by microarrays. For the 100% mouse sample,
15,696 mouse CCDS IDs are detected by both RNA-Seq
and microarrays; of these 8,008 are uniquely detected by
RNA-Seq, 7,093 are detected by both technologies, and
595 are uniquely detected by microarrays. The symmet-
rical Venn Diagrams (n = 5) in Figure 3 illustrates a de-
tailed breakdown of the detection numbers by both
technologies in each sample and for each species.



Figure 6 CCDS levels of cross-hybridization. Cross-hybridizing CCDS IDs detected using the microarray platform. (a) Percentage of human
CCDS IDs that are detected in each sample using the human microarray chip. (b) Percentage of mouse CCDS IDs that are detected in each
sample using the mouse microarray chip. (c) CCDS IDs that cross-hybridize are identified by subtracting the CCDS IDs detected in a
homogeneous tissue sample (the “A” set) from the union of the mixed tissue samples (B,C, &D).
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Levels of cross-hybridization and cross-alignment
Figure 4a shows the percentage of human genes from
each sample that are detected on the human microarray
chip, while Figure 4b shows the analogous information
for mouse genes detected in the mouse microarray chip.
Figure 4c displays the percentage of detected genes that
represent cross-hybridization from human to mouse,
and also the percentage of genes that represent cross-
hybridization from mouse to human. The determination
of cross-hybridization is described in the Methods
section. Briefly, genes that cross-hybridize from human
to mouse are defined as follows. We consider all genes
that are detected on the human chip in 2 of 3 independ-
ent replicates of a mixed tissue sample (any combination
of mouse and human). We then subtract any genes that
are detected on the human chip in 2 of 3 independent
replicates of a homogeneous sample (all human). Genes
that cross-hybridize from mouse to human are defined
similarly. In this way we identify as cross-hybridizing all
genes that are detected in mixed human & mouse samples,
but not detected in the pure human & mouse samples.
Figure 5a shows the percentage of human genes that

are detected using RNA-Seq in the human reference,
while Figure 5b shows information analogous to Figure 5a,
but for mouse genes detected in the mouse reference.
Figure 5c displays the percentage of detected genes that
represent cross-alignment from human to mouse, and
also the percentage of cross-aligning genes from mouse
to human. Our definition of cross-alignment is also de-
scribed in the Methods section. In brief, the cross-
aligning genes from human to mouse are established as
follows. We consider all the genes that are detected in
the human reference and transcriptome mappings, in 2 of
3 replicates of a mixed tissue sample. We then subtract any
genes that are detected in the human reference and tran-
scriptome mappings in 2 of 3 independent replicates of the
homogeneous sample (all human). Cross-alignments from
mouse to human are defined similarly.
The observed levels of cross-hybridization in the micro-

array chips in the case of a disjoint gene catalog are rela-
tively low: 5.3% of human protein coding genes detected
in the mouse sample, and 3.5% of mouse protein coding
genes detected in the human samples. When we analyze
the data using the normalized CCDS ID catalog (Figure 6
and Additional file 1: Figure S3) the levels of cross-
hybridization are also low: 2.7% of human CCDS IDs are



Figure 7 CCDS levels of cross-alignment. Cross-aligning CCDS IDs detected using RNA-Seq. (a) Percentage of human CCDS IDs that are
detected in each sample when aligning to the human reference. (b) Percentage of mouse CCDS IDs that are detected in each sample when
aligning to the mouse reference. (c) CCDS IDs that cross-align are identified by subtracting the CCDS IDs detected in a homogeneous tissue
sample (the “A” set) from the union of the mixed tissue samples (B,C, &D).
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cross-hybridizing with mouse tissue, and 2.4% of detected
mouse CCDS IDs are cross-hybridizing with human. This
is consistent with the microarray chip manufacturer’s
intent to design gene probes that are species specific, i.e.,
the chips will detect the gene segment of interest in either
mouse or human, but do not detect genes in both species.
With RNA-Seq, using a disjoint gene catalog, the observed
levels of cross-alignment are practically similar to the
levels of cross-hybridization in the microarray chips: 6.5%
of human protein coding genes are detected using the
mouse reference, and 2.3% of mouse protein coding genes
are detected using the human reference. Utilizing the
CCDS data (Figure 7), the levels of cross-alignment are
very different for the human set: 9.9% of detected human
CCDS IDs are cross-aligning with mouse tissue; however,
only 2.2% of detected mouse CCDS IDs are cross-aligning
with human. This is in contrast to the cross-hybridizing
results in which the levels were comparable for both
human and mouse set. We posit that the difference is due
to the gene model completeness in the mouse transcrip-
tome relative to that of the human transcriptome [26] as
well as the higher dynamic range of RNA-Seq [24].
The observed levels of cross-hybridization and cross-
alignment are statistically significantly different (test of
proportions; p < 0.05), with significantly lower human
cross-hybridization than cross-alignment, and signifi-
cantly higher mouse cross-hybridization than cross-
alignment. In practical terms for all cases except human
CCDS cross-alignment the percentages seem quite
close and the strong statistical significance is likely due
to the very large number of genes detected (i.e., very
large sample sizes). Lists of cross-aligning and cross-
hybridizing genes for human and mouse can be found
in Additional files 2 and 3 respectively.

Orthologs
We examined the number of human-mouse orthologs
present in the cross-hybridizing and cross-aligning gene
lists. Human-mouse ortholog data was obtained from
the Mouse Genome Database (MGD; [27]). The MGD
database catalogues 17,673 gene-orthologs between hu-
man and mouse. We accumulated all the cross-aligning
genes from the disjoint catalog analysis and obtained
1,840 cross-aligning genes. Using these 1,840 cross-
aligning genes (human genes detected in the mouse
tissue, and mouse genes detected in the human cell line)
from the disjoint RNA-Seq results, we identified 593
human-mouse orthologs in the MGD catalog. That is,
from the cross-aligning genes, 32.2% were orthologs. For
the CCDS data, we identified 16,679 mouse CCDS IDs



Figure 8 Orthologs. Outer bands are human (hs) and mouse (mm) chromosome ideograms. CCDS density across both genomes is depicted in
the blue and purple tracks. Orange marks are cross-alignments and cross-hybridizations detected by RNA-Seq; green marks are cross-alignments
and cross-hybridizations detected by microarrays. Arcs connect orthologous CCDS IDs that belong to both the cross-alignments and
cross-hybridizations sets for each technology – RNA-Seq and microarrays.
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and 16,902 human CCDS IDs in the MGD database; of
these, 16,292 were perfectly paired as human-mouse
orthologs. Using the 2,530 cross-aligning human CCDS
IDs along with the 481 cross-aligning mouse CCDS IDs,
we identified 1,934 human-mouse orthologs: 1,566
CCDS IDs identified from the human cross-aligning set,
and 368 identified from the mouse cross-aligning set. In
total, 61.9% of the detected human cross-aligning CCDS
IDs and 76.5% of the detected mouse cross-aligning
CCDS IDs were human-mouse orthologs.
In the microarray analysis, we collected 4,171 cross-
hybridizing genes from the disjoint catalog analysis
(human genes detected in the mouse tissue, and mouse
genes detected in the human cell line), and identified
1,682 orthologs in the MGD catalog. That is, from the
cross-hybridizing genes, 40.3% were orthologs. In the
CCDS analysis, we collected 699 cross-hybridizing
human CCDS IDs and 531 mouse CCDS IDs; from
these, we identified 499 orthologs present in the human
set, and 419 present in the mouse set. In total, 71.4% of
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the detected human cross-hybridizing CCDS IDs and
78.9% of the detected mouse cross-hybridizing CCDS
IDs orthologs.
Of those orthologs found by the RNA-Seq protocol,

80.6% were detected only in human, 17.3% were
detected only in mouse, and 2.1% were detected in both.
For microarrays, 53.9% of the orthologs were detected
only in human, 45.1% were only detected in mouse, and
1.0% was detected by both. The relatively high percent
of orthologs in the detected sets helps explain why, as
noted previously, we sometimes observed the highest
percentage of genes detected from mixed species sam-
ples as opposed to single species samples.
Figure 8 contains a Circos [28] plot that displays the

results of the normalized CCDS analysis in both the
human and mouse genomes. Outer bands represent
chromosome ideograms for the human genome (right)
and the mouse genome (left). The blue and purple tracks
showcase CCDS density for each genome and each
chromosome. Levels of cross-alignment and cross-
hybridization are presented as orange and green marks
in the third inner-most track: orange marks are those
CCDS IDs identified by RNA-Seq, and green marks are
those CCDS IDs identified by microarrays. The links in
the middle of the diagram correspond to the human-
mouse orthologs that were identified by each technology:
red links represent orthologs detected by RNA-Seq and
grey links represent orthologs detected by microarrays.
Figure 9 Enriched cancer gene pathways. Pathway analysis was perform
biological pathways over-represented by the genes in each human and mo
genes and biological pathways appear as cross-hybridizing & cross-aligning
Known cancer genes and pathways
We examined the cross-hybridizing and cross-aligning
gene lists from both the disjoint gene catalog analysis and
from the CCDS analysis for genes known to play a role in
cancer, or of current interest to researchers in oncology.
Cross-hybridizing and cross-aligning genes in our studies
include PDGF-B, b-Raf, Beta-catenin, erbB2, NF-kB,
MDM2, Claudin, VEGF-R, Notch2, Cyclin B, HSP90 and
Ubiquitin. These genes are of particular interest because
xenografts are a common laboratory tool in oncology and
there is interest in not only expression in tumors, but also
in the expression in the stroma. Data from mixed samples
will be insufficient for determining whether genes that
cross-hybridize and cross-align are being expressed in
tumor, stroma, or both. Figure 9 contains several of these
genes and the platforms on which they were detected. Full
lists of cross-hybridizing and cross-aligning genes are pro-
vided in the Additional file 1.
Suppose a sample of mixed tumor and stroma is arrayed

on a human platform, with the intent of detecting only
tumor-related genes. Genes detected in mouse tissue
using human platforms could be perceived as being
expressed in tumor, when in fact they are expressed in
stroma or are not expressed at all. In our experiments we
have found such genes. These include Angiotensin 1-
converting enzyme gene (ACE), which has been shown to
have possible mitogenic and angiogenic effects in cell line
and animal models of breast cancer [13], and heparanase
ed using MetaCore software from GeneGo Inc. We examined
use cross-hybridizing and cross-aligning CCDS lists. Distinctly different
depending upon the platform and tissue type.
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(HPR), which has been proposed as a target for the devel-
opment of breast cancer directed gene therapy [16]. Genes
from the WNT pathway also appear, such as WNT and
Axin, that have been implicated as contributing to breast
cancer cell proliferation [19]. Conversely, suppose a sample
of mixed tumor and stroma is arrayed on a mouse platform
with the intent of detecting only stromal genes. Genes
detected in the human cell line using mouse platforms
could be perceived as being expressed in stroma, when in
fact they are expressed in tumor or not expressed at all. An
example of such a gene in our experiments is SHC binding
protein 1 (SHCBP1), which is regulated by c-Myc and the
androgen receptor, and is involved in cell proliferation and
growth [22]. Another such gene is Histone H1, which is im-
plicated in breast cancer cell proliferation [30].
For the pathway analysis we used the MetaCore soft-

ware (GeneGo Inc.) to examine biological pathways
over-represented by the genes in each cross-hybridizing
and cross-aligning list from both the disjoint catalog
analysis and the CCDS analysis. This pathway analysis
revealed pathways involved in TGF-beta regulation, cyto-
skeleton remodeling, regulation of epithelial-mesenchymal
transition (EMT), DNA damage, cell adhesion, and FGFR
Table 1 Enriched pathways in disjoint catalog analysis

Human

Cross-alignment Cross hybridization

1 Cytoskeleton remodeling: keratin
filaments

Protein folding and maturation:
POMC processing

2 Signal transduction: cAMP signaling Normal and pathological: TGF-
beta mediated regulation of cell

proliferation

3 Development: regulation of epithelial
to mesenchymal transition (EMT)

Cytoskeleton remodeling: TGF,
WNT and cytoskeletal

remodeling

4 Cell adhesion: gap junctions Signal transduction, Erk
interaction: inhibition of Erk

5 Development: transcription regulation
of granulocyte development

Development: melanocyte
development ang pigmentation

6 Cytoskeleton remodelling: regulation
of actin cytoskeleton by Rho GTPases

Translation: non-genomic
(rapid) action of androgen

receptor

7 Cell adhesion: Histamine H1 receptor
signlaing in the interruption to cell

barrier integrity

G-protein signaling : Rap1A
regulation pathway

8 Development: beta-adrenergic
receptors signaling via cAMP

Development: GDNF family
signaling

9 Cytoskeleton remodeling: reverse
signaling by Ephrin B

DNA damage: role of SUMO in
p53 regulation

10 Regulation of lipid metabolism:
regualtion of lipid metabolism by

niacin and isoprenaline

Muscle contaction: relaxin
signaling pathway

Enriched GeneGo pathway maps for human and mouse. Gene lists for pathway ana
cross-hybridization (microarrays) and cross-alignment (RNA-Seq).
signaling. Select pathways for both analyses are listed in
Table 1 (disjoint catalog) and in Table 2 (CCDS). Full
pathway results are provided in the Additional file 1.
Distinctly different genes and biological pathways

appear as cross-hybridizing/cross-aligning depending
upon the platform and tissue type. The cross-hybridizing
human genes represent TGF-beta signaling, androgen
regulation, and DNA damage, while cross-aligning
human genes represent EMT, keratin filaments, and gap
junctions. Similarly, cross-hybridizing mouse genes
represent HP1 transcription, thrombopoetin processes,
and WNT signaling, while cross-aligning mouse genes
represent DNA damage, hedgehog signaling, and FGFR
signaling. Figure 10 shows the top scored pathway for
the cross-aligning human CCDS analysis: regulation of
epithelial-mesenchymal transition (EMT) [31,32]. Regu-
lation of EMT is of great interest to cancer researchers,
particularly those interested in metastasis, as EMT is a
recognized mechanism for initiating metastasis of epi-
thelial cancer cells [33]. The EMT process may facilitate
the generation of cancer cells with the mesenchymal
traits needed for dissemination as well as the self-
renewal properties needed for initiation of secondary
Mouse

Cross-alignment Cross hybridization

Cytoskeleton remodeling:
neurofilaments

Neurophysiological process:
Dopramine D2 receptor

transactivation of PDGFR in CNS

DNA damage: ATM/ATR
regulation of G2M checkpoint

Transcription role of heterochromatin
protein 1 (HP1) family in
transcriptional silencing

Cell cycle: role of Nek in cell
cycle regulation

Development: hedgehog and PTH
signaling pathways in bone and

cartilage development

Cell cycle: spindle assembly
and chromosome separation

Cytoskeleton remodeling:
neurofilaments

Development: hedgehog
signaling

Development: Gastrin in
differentiation of the gastric mucosa

Mechanisms of CFTR
activation by S-

nitrosoglutathione (normal
and CF)

Blood coagulation: Blood coagulation

Development: FGFR signaling
pathway

Development thrombopotein-
regulated cell processes

Muscle contraction: regulation
of eNOS activity in endothelial

cells

Neurophysiologiacal process: ACM
regulation of nerve impulse

GFTR folding and maturation
(normal and CF)

Development: WNT5 signaling

DNA damage: role of SUMO in
p53 regulation

Transport: Alpha-2 energenic receptor
regulation of Ion channels

lsysis were obtained from the disjoint gene catalog analysis for both



Table 2 Enriched pathways in CCDS analysis

Human Mouse

Cross-alignment Cross hybridization Cross-alignment Cross hybridization

1 Development: regulation of
epithelial to mesenchymal (EMT)

Protein folding and maturation:
POMC processing

Cell cycle: role of Nek in
cell cycle regulation

Signal transduction: activin A signaling
regulation

2 Cytoskeleton remodeling: Keratin
filaments

Normal and pathological TGF-
beta mediated regulation of cell

proliferation

Cell cycle: the
methaphase checkpoint

Transcription role of heterochromatin
protein 1 (HP1) family in trancriptional

silencing

3 Cardia hypertrophy NF-AT signaling
in cardia hypertrophy

Signal transduction, Erk
interactions: inhibition of Erk

Cytoskeleton
remodeling:

neurofilaments

Cytoskeleton remodeling: neurofilaments

4 Cell adhesion: gap junctions Development: melaconyte
development and pigmentation

ATP metabolism Dvelopment: thrombopoietin regulated cell
process

5 Cell adhesion: hestamine H1
receptor signaling in the interruption

of cell barrier integrity

Cytoskeleton remodeling: TGF,
WNT and cytoskeletal remodeling

Cell cycle: spindle
assembly and
chromosome
separation

Neurophysiological process nNOS signaling
in neronal synapases

6 Signal transduction: cAMP signaling Develeopment A2A receptor
signaling

dCTP/dUTP metabolism Development: role of HDAC and calcium/
calmodulin dependent kinase (CaMK) in

control of skeletal of myogenesis

7 Immune response: MIF-
neuroendocrine macrophage

connector

Development transcription
regulation of granulocyte

development

Apoptosis and survival:
DNA damage induced

apoptosis

Protein folding: membrane trafficking and
signal transduction of G-alpha heterotrimeic

G-protein

8 Development transcription:
regulation of grabulocyte

development

Cytoskeleton remodeling Alpha-
1A andrenergic recepto-

dependent inhibition of PI3K

Transcription: androgen
receptor nuclear

signaling

Development: role of activin A in cell
differentiation and proliferation

9 Cell adhesion: edothelial cell
contacts by junctional mechanisms

Muscle contraction: relaxin
signaling pathway

Neurophysiological
process: ACM

regulation of nerve
impulse

Development: WNT5A signaling

10 Atherosclerosis: role of ZNF202 in
regulation of expression of genes

involved in Atherosclerosis

Immune response: lectin induced
complement pathway

Development WNT
signaling pathway

Development: PIP3 signaling in cardiac
myocytes

Enriched GeneGo pathway maps for human and mouse. Gene lists for pathway analysis were obtained from the CCDS ID analysis for cross-hybridization
(microarrays) and cross-alignment (RNA-Seq).
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tumors. There is accumulating evidence that EMT and
mesenchymal-related gene expression are associated
with aggressive breast cancer subtypes and poor clinical
outcome [34]. Many of the genes from our lists that
appear in this and other pathways, have been implicated
in tumor-stromal interactions and/or are related to stro-
mal responses to invasion. These include PGDF [35],
MMP2 [36], Tubulins [37], and the WNT signaling path-
way [38]. We also computed the overlap of our human
and mouse gene lists against the curated gene set in the
MSigDB [39] gene set repository (Additional file 1:
Tables S10-S13). This analysis identified signatures from
multiple biological processes with relevance to cancer
research including drug targets, chromosome mainten-
ance, cellular proliferation, and therapeutic response.

Discussion
When a mixed sample is analyzed using platforms spe-
cific to one species, it is possible that tissue from the
other species will be detected, contaminating the
assessment of which genes are present, or their levels of
expression [40]. This is confirmed by our results demon-
strating that although the overall levels of cross-
hybridization and cross-alignment may be low, the
specific genes that are affected are relevant to cancer
research. Our cross-hybridization/cross-alignment lists
contain a few thousand genes, some of which are known
to play roles in biological processes related to cancer.
Affected processes include EMT, Wnt signaling, DNA
damage, and TGF-beta signaling.
The lists of affected genes and processes vary by species

and platform. This is relevant to researchers in making de-
cisions about how to process samples (LCM or no LCM?)
and what tools to use to measure expression (microarray
or NGS?). It is clear that such decisions are influenced not
only by time and cost, but also by their impact on expres-
sion measurements. We have examined one context
relevant to oncologic research, i.e., breast cancer pseudo-
xenografts, and we surmise that examinations of other
contexts will prove valuable to the research community.



Figure 10 EMT Pathway. The top scored GeneGO pathway map (lowest p-value) for the human cross-aligning CCDS set is a development
pathway: regulation of epithelial to mesenchymal transition (EMT). Upward thermometers with a red color are up-regulated genes, and
downward blue thermometers indicated down-regulated genes.
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Conclusions
Oncology studies involving xenografts can be very useful
in identifying genomic changes in both stroma and tumor
that accompany the onset of disease and metastatic
growth. Due to the small size of xenografts from meta-
static tumors, and the expense of LCM, investigators who
are interested in changes specific to stroma, or specific to
tumor, may choose to select a gross sample (a mixture of
stroma and tumor) and use a genomic platform that is
specific to one species, either mouse or human.
The concern in this context is cross-hybridization (for

microarrays) or cross-alignment (for RNA-Seq). Our
results, using a definition of cross-hybridization/cross-
alignment which should only identify genes with
undetectable expression in same-species platforms but
detectable expression in cross-species platforms - indicate
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that the overall percentage of genes affected by cross-
hybridization and cross-alignment is small for both plat-
forms. However, this percentage does include genes
that are of interest to oncologic researchers, as they have
known or purported roles in cancer progression and
metastasis. The specific genes that cross-hybridize/cross-
align are specific to the platform used to detect expres-
sion. As such the question of which platform to use with
mixed tissues from xenografts – microarrays or high-
throughput RNA sequencing – appears to be primarily a
question of cost and the specific genes of research
interest.
Accession code
NCBI Gene Expression Omnibus: Microarray and RNA-
Seq data has been deposited with accession number
GSE40892.
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