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Abstract

In the context of translational and clinical oncology, mathematical models can provide novel insights into
tumor-related processes and can support clinical oncologists in the design of the treatment regime, dosage,
schedule, toxicity and drug-sensitivity. In this review we present an overview of mathematical models in this
field beginning with carcinogenesis and proceeding to the different cancer treatments. By doing so we intended to
highlight recent developments and emphasize the power of such theoretical work.
We first highlight mathematical models for translational oncology comprising epidemiologic and statistical models,
mechanistic models for carcinogenesis and tumor growth, as well as evolutionary dynamics models which can help to
describe and overcome a major problem in the clinic: therapy resistance. Next we review models for clinical oncology
with a special emphasis on therapy including chemotherapy, targeted therapy, radiotherapy, immunotherapy and
interaction of cancer cells with the immune system.
As evident from the published studies, mathematical modeling and computational simulation provided valuable
insights into the molecular mechanisms of cancer, and can help to improve diagnosis and prognosis of the disease,
and pinpoint novel therapeutic targets.
Introduction
Cancer is still one of the leading causes of death in the
world and major efforts have been undertaken to improve
diagnosis and therapy of common cancer types. Recently
developed technologies (i.e. next generation sequencing)
give us unprecedented opportunities to study individual
cancer samples at the molecular level and to identify
genomic variants and rearrangements [1]. This in-
formation will build the basis for the stratification of
patients, and for personalized or precision medicine.
The increasing complexity of the generated data utilizing
various high-throughput technologies for characterizing
the genome, epigenome, transcriptome, proteome, me-
tabolome, and interactome pose considerable challenges
and therefore plethora of bioinformatics methods and
tools for the analysis have been developed [2]. However,
the real value of the disparate datasets can be truly
exploited only if the data is integrated and will then enable
one to comprehensively study molecular mechanisms
of cancer cells.
* Correspondence: zlatko.trajanoski@i-med.ac.at
Biocenter, Division of Bioinformatics, Innsbruck Medical University, Innrain 80,
6020 Innsbruck, Austria

© 2013 Gallasch et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
waiver (http://creativecommons.org/publicdom
stated.
One possibility for data integration is the use of
mathematical models. Modeling has been successfully
applied in physiology for many decades but only recently
the quality and the quantity of biomolecular data became
available for the development of causative and predictive
models. Due to their importance in cancer mathematical
models have also been in the focus of theoretical investiga-
tors. For example application of theoretical techniques
and the postulation of the “two hit” hypothesis in the early
70s led to the identification of tumor-suppressor genes
[3]. Later, in a landmark paper it was shown that cancer
results from evolutionary processes occurring within
the body [4].
In the context of translational (i.e. from bench to bed-

side, or in other words: transforming scientific discoveries
arising from laboratory to clinical applications) and clinical
oncology, mathematical models can provide novel insights
into tumor growth and progression, into tumor-related
processes such as angiogenesis, the immune response,
and the interaction with the tumor microenvironment,
and into the development of drug resistance. Furthermore,
modeling can support the clinical oncologists in the design
of the treatment regime, dosage, schedule, toxicity and
drug-sensitivity. Common treatments against the different
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited. The Creative Commons Public Domain Dedication
ain/zero/1.0/) applies to the data made available in this article, unless otherwise

mailto:zlatko.trajanoski@i-med.ac.at
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Gallasch et al. Journal of Clinical Bioinformatics 2013, 3:23 Page 2 of 8
http://www.jclinbioinformatics.com/content/3/1/23
types of cancers include surgery, radiation therapy,
chemotherapy, targeted therapy or combinations of those
to limit the progression of malignant disease, eradicate
tumor cells and prolong survival. The information
gained from mathematical models can also help in the
development and efficacy of clinical trials and treatment
protocols, and can accelerate the progress of clinical
research in fighting cancer.
To the best of our knowledge there is currently no

review study on mathematical models focusing on
translational and clinical oncology applications except
for a similar attempt made by Swierniak et al. [5] few
years ago. We therefore initiated this work to provide
an overview of the field and stimulate the discussion
and the development of novel models. While mechanistic
models have proven extremely valuable and provided
novel insights, there are not considered here and we
refer the readers to recent reviews [6-8]. Given the wealth
of published studies using mathematical models in cancer,
we by no means intended to provide a comprehensive
picture. Rather, we selected several topics we believe
are of relevance for the readers. Wherever possible, we
refer to additional reviews in order to guide interested
researchers.
We first highlight mathematical models for translational

oncology comprising epidemiologic and statistical models,
mechanistic models for carcinogenesis and tumor growth,
as well as evolutionary dynamics models [9], which can
help to describe and overcome a major problem in the
clinic: therapy resistance. Next we review models for
clinical oncology. It should be noted that a survey of
application of modeling results in clinics was beyond
the scope of this review. Rather, we provide an overview
of the models with a special emphasis on therapy in-
cluding chemotherapy, targeted therapy, radiotherapy,
immunotherapy and interaction of cancer cells with the
immune system. Table 1 shows the specific categories
and the publications used in this work.
Table 1 Categories and mathematical models in
translational and clinical oncology reviewed in this paper

Translational oncology Clinical oncology

Biological processes Treatment options

Carcinogenesis Chemotherapy

[3,10-17] [61-70]

Tumor-growth Targeted therapy

[18-27] [58,72,73,75-78]

Clonal evolution Radiotherapy

[37,38,41-46] [79-81]

Therapy resistance Tumor immune-cell interaction/
immunotherapy

[47-59] [82-88]
Mathematical models for translational oncology
Carcinogenesis and tumor-growth models
Early models that aimed to explain the dynamics of
cancer progression were based on experimental and
epidemiological data, which indicated that the cancer
incidence is often rapidly increased with age and simple
patterns could be observed at the population level.
Fisher and Hollomon [10] presented a multicellular
model in which mutations occur in different cells
within the same cell population and only the combin-
ation of all mutations leads to cancer development. As
an alternative to this theory, Nordling [11] suggested
that mutations must occur sequentially in the same cell
for transformation into cancer cell.
Most mathematical models of cancer progression

descend from Armitage and Doll’s [12] multistage theory,
which include major concepts for how to think about
incidence, carcinogenesis, and progression. The theory
states that carcinogenesis progresses through series of
genomic alterations in a single cell and the age-specific
incidence of cancers is predicted to increase with a power
of age that is one less than the number of alterations.
Two other studies, using data comparing inherited and
noninherited cases in colon cancer [13] and retinoblast-
oma [3], provided additional empirical evidence for the
multistage theory. Knudson used a statistical analysis of
the incidence of retinoblastoma in children to explain
the role of tumor suppressor genes in sporadic and
inherited cancers. This work was later extended to a
two-stage stochastic model for the process of cancer
initiation and progression [14], which lead to important
subsequent work [15,16] that helped with characterization
of other suppressor genes such as APC in colon cancer
and TP53, which is mutated in several human tumors.
Even though these models provided accurate descrip-

tions of cancer incidence data, they were unable to relate
the data with the functional changes associated with
tumor progression. Since then the understanding of the
molecular mechanisms underlying tumor initiation and
progression has improved [17] and mechanistic models
that use biological knowledge and biophysical laws to
quantify and predict cancer progression were developed.
The growth and development of solid tumors occurs

in two stages – avascular and vascular. The early
spatio-temporal models [18,19] of avascular tumor
growth describe the interactions between tumor cell
population and nutrients and calculate the nutrient
concentrations as a function of tumor spheroid radius
that is changing due to the rate of cell proliferation.
Significant progress was made with the development of
new models [20,21] that introduced the interrelated
concepts of cell movement and pressure.
Since tumor induced angiogenesis i.e. the growth of a

network of blood vessels, is a crucial component of solid
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tumor growth, the basic models have been expanded
to account for tumor growth during angiogenesis and
the increase of tumor availability associated with the
expanding vasculature. In order to make a transition
from avascular to vascular growth, tumors may secrete
diffusible substances called tumor angiogenic factors
(TAF). The earliest continuum models of tumor angio-
genesis [22] describe the growth of a capillary network
in terms of capillary tip densities and capillary sprout
densities in response to TAF. The mathematical models
in angiogenesis have mostly focused on describing
endothelial cell migration and proliferation through the
extracellular matrix [23-27]. A comprehensive overview of
models in this area can be found in [28]. Mathematical
modeling of blood flow in tumor-induced capillary net-
works has been described in more recent studies [29-31].
The concept that the successful formation of a tumor

depends on vascularization has resulted in developing
cancer therapies designed to inhibit the tumor vasculature
in order to deprive the tumor from oxygen and nutrients.
Several models have focused on exploring the efficiency
of such antiangiogenic treatments [32-34]. Using methods
of optimal control theory to analyze drug dosing and treat-
ment strategies these studies showed that the combination
with other forms of therapy would be beneficial.

Clonal evolution models and therapy resistance
An important conceptual breakthrough in understanding
cancer lies in Darwinian and ecological theories: cancer
progression is an evolutionary process that results from
accumulation of genetic and epigenetic variations in
somatic cells [35,36]. Experimental evidences and recent
advances in genetic sequencing technologies – that
allowed identification of the genetic alterations in a can-
cer cell - have revealed the complexity and heterogeneity
of cancer progression and have stimulated the use of
evolutionary-based approaches in the study of cancer.
Several methods of population dynamics and evolu-

tionary game theory were applied to account for the
elementary principles of evolution that lead to tumor
initiation and progression. In the earliest models, mutations
accumulate in a population of constant or variable size,
and they consider only one or two mutations [37,38].
Newer models are now being used to investigate how
the sequence and timing of mutations and the environ-
mental conditions influence tumor progression [39,40]. An
in-depth review of models that describe the evolutionary
dynamics of cancer can be found in [41].
Several studies have focused on the waiting time to

cancer development, which may be defined as the time
from the first presence of neoplasm, until a critical number
of hits (driver mutations) are accumulated and initiate
the growth of carcinoma. Beerenwinkel et al. [42] devel-
oped one of the first models that was based on genomic
studies of colorectal cancer patients. They related the
waiting time to the population size, mutation rate, and
the advantage of the driver mutations and showed that
selective advantage of mutations has the largest effect
on the evolutionary dynamics of tumorigenesis. In a
similar manner, Bozic et al. [43], by fitting their model
to glioblastoma and pancreatic cancer data, estimated
that driver mutations give an average fitness advantage
of 0.4%.
Another characteristic of evolutionary processes is the

influence of the local cellular environment on the tumor
progression. The progress of tumor is characterized not
only by the genetic and epigenetic changes accumulating
in the cells, but also by the dynamic interactions between
cells within the tumor and between the cells and the
constantly changing microenvironment. The microenvir-
onment provides a selective fitness landscape that includes
competing for limited resources and active intracellular
(initiation of cell proliferation and cell death) and extracel-
lular control mechanisms (the immune system) that aim
to restore homeostasis.
There are several studies that utilize mathematical

modeling to predict and quantify the interactions of the
tumor cells with the surrounding environment during
tumor progression [44,45]. Gatenby et al. [46] developed
a model of carcinogenesis according to which the tumor
cells have to overcome six microenvironment barriers
that appear as tumor cells proliferate. They proposed
that the nature and sequence of the alterations during
carcinogenesis are determined by the specific microenvi-
ronmental properties that prevent proliferation within
changing adaptive landscapes.
An important clinical problem in cancer research that

can be analyzed using modeling techniques is the
development of resistance to targeted therapies. Resistance
to drugs may develop as a consequence of genetic events
such as point mutations or gene amplifications. The
emergence of resistance to therapy as a result from a
single mutational effect has been first introduced in a
model of Coldman and Goldie [47]. More recent studies
have also used point mutations to explain the evolutionary
dynamics of drug resistant cancer cells [48-51]. Other
models studied gene amplification as one of the mecha-
nisms that has a strong influence on the evolution of
drug resistance [52-56].
Foo et al. [57] designed a methodology that can be

used to investigate optimal drug dosing schedules to
avoid resistance conferred by one (epi)genetic mutation.
In a recent study, Diaz et al. [58] showed that tumors
became resistant to anti-EGFR antibodies as a result of
emergence of resistance mutations in KRAS and other
genes that were present in clonal subpopulation within
the tumors before the initiation of the treatment. Ana-
lyzing data from 20 melanoma patients who received
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targeted therapy, Bozic et al. [59] found that simultaneous
administration of two drugs is much more effective
than sequential therapy. The improved understanding
of the evolutionary dynamics of cancer provided by these
models can have practical implications in the design
and administration of new cancer therapeutics.
In summary, using the overwhelming amount of

generated knowledge in tumor biology, mathematical
modelers have succeeded in formalizing this knowledge
and make it usable for simulations. Moreover, the pub-
lished models represent a unique basis for testing novel
hypotheses which are otherwise difficult or even impossible
to test. For example, it is very difficult to obtain samples
from early cancer stages or longitudinal samples in order
to study the development of tumor heterogeneity. The
models presented above enable researchers to address
questions which were previously not possible and by
using iterative cycles of simulations and experimentation
ultimately lead to novel knowledge (Figure 1). Moreover,
the maturity of the tools and the availability of data in
public databases are additionally supporting the trans-
lation of this knowledge into clinical practice.

Mathematical models for clinical oncology
Chemotherapy and targeted therapy
Chemotherapy is widely used therapy against cancer.
Proliferating cells undergo different phases during the
cell cycle including DNA replication and cell division
and different chemotherapeutic compounds are affecting
cells in different phases. The greatest challenge associated
with chemotherapy is that not only cancer cells but also
normal dividing cells are affected. In contrast, targeted
Clinica
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Figure 1 Cycles of experiments and modeling for gaining new knowl
mathematical modeling and simulations and require multiple cycles of iter
cancer therapy [60] is aimed at specific molecular targets
and is therefore more effective and has fewer side effects.
Fister et al. [61] developed a model that try to solve

the problem of maximizing the effect on cancer cells
but also maximizing the survival of the host cells. The
mathematical model shows that if shorter periods of
treatment are used it is possible to use higher doses of
the drug and destroy more cancer cells without causing
excess damage to the host cells. A more complex model
is the cellular automaton model of Byrne et al. [62]. It
is a multi-scale model that has a vascular layer, a cellular
layer and an intracellular layer. With this model it is
possible to get detailed spatio-temporal information about
the tumor and the healthy tissue. In general three results
are possible with the model; the tumor is eliminated,
the tumor continues grow, or an oscillation. It is possible
to combine different treatments in one model. The model
of de Pillis et al. [63] based on a previous model [64]
combines different treatments and shows that if the
chemotherapy is stopped a system with a undetectable
tumor can return to a high tumor state.
The combination of different treatments is one possi-

bility to eliminate the patient’s tumor. Jackson et al. [65]
introduced two different types of cells and investigated
the tumors response to different chemotherapeutic
strategies. It was possible to estimate the largest size of
a tumor that can be eradicated by a bolus injection.
With only one cell population the results of bolus and
continues drug were similar. With two populations, one of
them drug resistant, the continuous infusion increased
the time to cure. This indicates that it is important to
tailor treatment strategies.
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Another interesting aspect is the use of growth factors
in the model from Panetta and Adam [66]. They showed
that the use of growth factors in their model increases
the cell killing up to 20%. Based on the model of Anderson
and Chaplain [27] McDougall [29] developed a model
where the blood viscosity, pressure drop and mean capil-
lary radii can be varied of the surrounding vessels of a solid
tumor can be analyzed. The model shows that if there are
highly interconnected vessels around the tumor there is a
low drug delivery to the tumor itself. It shows that it is
important to consider the vasculature around the tumor to
find the optimal chemotherapy strategy.
The strategy of chemotherapy in combination with

other treatments is being increasingly used. Powathil
addressed this in recent publications [67-69] and showed
ways to simulate and improve protocols of chemotherapy.
It was demonstrated that the cytotoxic effect is dependent
on many factors like timing of the drug delivery, time
delay between the doses, heterogeneities of the cell cycle,
the spatial distribution of the tumor and the surrounding
microenvironment. It is noteworthy that these issues have
been also investigated in older studies, e.g. using models
of phase-specificity of chemotherapeutic drugs published
in the 1990s [70]. In this section different methods
were shown to model chemotherapy and effects that
can lead to a better treatment strategy.
Most targeted cancer therapies use monoclonal anti-

bodies directed against tumor-specific surface proteins
or small-molecule drugs against intracellular targets
(e.g. tyrosin kinases) [71]. Billy et al. [72] developed a
model that simulates a treatment on the angiogenesis
of tumors by gene therapy. The gene therapy is delivered
by adenoviruses and influences, the antagonist of vascular
endothelial growth factor, endostatin. The simulation
showed that there is a critical treatment dose which is
important to improve the efficacy.
TGF-β is a cytokine that has an immunosuppressive

effect. In the model of Kirschner et al. [73] it was shown
that a treatment with initial delivery of double stranded
RNA into tumor cells that is cut by the enzyme Dicer
into 21–23 segments known as siRNA inhibits TGF-β
production and leads to a controlled oscillatory tumor
behavior. Using a combination of experimental data and
a mathematical model about the resistance against the
monoclonal antibody panitumumab based on the Luria-
Delbrück model [74], Diaz et al. [58] tested the develop-
ment of mutations conferring resistance to the antibody.
The simulation results suggested a combination of therap-
ies where at least two pathways will be required. The
use of ex-vivo activated alloreactive cytotoxic-T-
lymphocytes (CTL) is another possibility to direct target
the tumor. Kronik et al. [75] developed a mathematical
model to investigate the effect of directly administrated
CTL to glioblastomas. They showed that most sensitive
parameters were the death rate of CTLs, the initial size of
the tumor and the maximal growth rate.
Nanda et al. [76] developed a mathematical model

simulating the drug imatinib mesylate that was approved
in 2002 by the FDA for use in newly diagnosed cases
of chronic myelogenous leukemia. The results show
that a high dosing level from the beginning is optimal.
Another interesting aspect of targeted therapy is the
use of oncolytic viruses. Wein et al. [77] showed in
their model that a single intratumoral injection in a
solid tumor is not enough to effectively spread the
virus. Also important is the suppression of the immune-
mediated clearance of the virus. In the work of Mok et al.
[78] two additional modifications are shown through
mathematical modeling of herpes simplex viruses first
the decreasing of the binding affinity of the virus and
second the effective diffusion coefficient of the virus
through degradation of the tumor extracellular matrix.

Radiotherapy
The aim of radiotherapy is to destroy the tumor cells
but not the host cells. This is possible if the tumor cells
are more sensitive to irradiation than the host cells.
Mathematical modeling can show strategies and improve
treatment protocols to obtain an optimal patient treat-
ment. In this sense Rockne et al. [79] present a model to
investigate the response to various schedules and dose
distribution on a virtual tumor. The advantage in the
mathematical simulation is that the effect of radiation
can be observed continuously. The model suggests that a
radiation dose on daily basis is more effective than several
treatments per day.
Another important aspect is the general response of

cells to radiation. Richard et al. [80] used a cellular
automaton model to investigate these mechanisms after
low doses of radiation. Enderling et al. [81] developed a
model that simulates the recurrence after radiotherapy. In
the 2D simulations it was shown that if pre-malignant
cells reside in the breast post-surgery and survive radio-
therapy this cells could be the reason for a recurrence.

Tumor immune-cell interaction and immunotherapy
The immune system plays an important role in tumor
progression. Immune processes with different components
like chemokines, cytokines or different cell types that
work together are highly complex and intertwined.
Mathematical modeling has already provided deeper
insights and helped to get fundamental knowledge and
improve patient’s treatment. For example De Boer et al.
[82] developed a detailed model where they were able
to show tumor regression and tumor growth dependent on
the antigenicity of tumor-immune interaction. Tumour-
infiltrating cytotoxic lymphocytes (TICLs) play an import-
ant role in tumor-immune interaction. Matzavinos et al.
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[83] developed a spatio-temporal model to investigate
the interaction of TICLs and tumors. It is possible to
simulate the spatio-temporal dynamics of TICLs in a
solid tumor. Kirschner et al. [84] developed a model
that includes immunotherapy with cultured immune
cells that have anti-tumor reactivity and additionally
IL-2. In simulations a total eradiation of the tumor was
only possible with the immune therapy. In the model of
de Pillis et al. [85] the cytolytic effectiveness of tumor
specific T-cells was the most sensitive parameter. Follow-
ing the simulation results the efficacy of the CD8+ T cells
and the response to immunotherapy was correlating.
One therapy against superficial bladder cancer is the

treatment with Bacillus Calmette-Guerin (BCG). Rentsch
et al. [86] showed with their mathematical model that the
dose of BCG and the treatment interval have a positive
correlation of tumor extension. Wei [87] investigated this
immunotherapy with a mathematical model and showed
that the infection rate and the growth rate of the tumor
are the most important parameters for a successful
treatment. Rihan et al. [88] investigated the effect of
adoptive cellular immunotherapy and found out that
only a combination of the treatment with IL-2 can be
used to clear the tumor.
In summary, major contributions for clinical oncology

have been made by the modeling community. However,
although many models were designed and tested for
clinical applications, the use in routine setting is sparse.
One way to overcome this is to develop models for very
specific applications and rigorously test the performance
and the predictive power. Furthermore, the use of the
available knowledge should be also part of the decision
process. We envision a computational decision support
system which is using clinical data, molecular data, publicly
available data, as well as simulation results of mathematical
models to reach a decision for therapeutic strategy.

Conclusion
In this review we presented an overview of mathematical
models for translational oncology and clinical oncology
beginning with carcinogenesis and proceeding to the
different cancer treatments. By doing so we intended to
highlight recent developments in the field and emphasize
the power of this theoretical work. As demonstrated
in a number of studies, mathematical modeling and
computational simulation can provide valuable insights
into the molecular mechanisms of cancer, can improve
diagnosis and prognosis of the disease, and pinpoint
novel therapeutic targets. As can be seen in Figure 1, it
is often difficult to attribute the generation of new
knowledge either to the modeling or to the experimental
work. Regardless the origin, the insights obtained from
such cycles of experiments and modeling can improve
our understanding of the complexity of cancer progression
and eventually be used to stop or at least slow down
the processes of tumor initiation, evolution and resistance
to therapies.
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