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Abstract

Background: Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer
expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer.
However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R
package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present
a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm,
identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset.

Results: We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently
selects more-informative features than do differential expression or variance-based feature selection approaches,
and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to
prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the
identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate
cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also
demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms
disrupted in individual tumours.

Conclusions: We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in
selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated
subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential
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expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the
discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to
discover mechanisms underpinning heterogeneity in cancers.
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Background

Within a type of cancer, tumours are frequently hetero-
geneous at the molecular level. Some of this diversity
may describe cancer subtypes, but even within a sub-
type, individual primary and metastatic lesions often dif-
fer from one another. Modern microarrays can measure
the expression of >10° protein coding or noncoding fea-
tures, thereby capturing an important dimension of this
diversity. Until recently, statistical analysis of expression-
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microarray data typically focused on the recognition of
molecular subtypes and discovery of characteristic bio-
markers; instances of within-subtype heterogeneity (out-
liers) were either removed from the analysis, or more
rarely explored as a source of information on rare
events. Cancer outlier profile analysis (COPA) was devel-
oped to identify transcripts up-regulated in only a small
subset of cancer samples [1], and has successfully been
used to identify recurrent TMPRSS2 gene fusions in
prostate cancer.

The original outlier detection method implemented a
data transformation in which the median of each ex-
pression feature across all samples is scaled to 0.0 and
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the mean absolute deviation to 1.0. Features are then
ranked based on their value at the 75th, 90th or 95th
percentiles. The COPA method has been integrated into
Oncomine [2], but its use is limited to Oncomine data-
sets. The only independent implementation of COPA is
available as a package in R [3]. This implementation
assigns outliers by applying a flat threshold to the
COPA score of all features, instead of looking at the
range of expression of each individual feature to deter-
mine a feature-specific threshold. Genes are grouped
into mutually exclusive gene pairs, and ranked accord-
ing to the number of tumour samples in which either of
the genes is an outlier. This R implementation was
developed to identify expressed oncogenic gene fusions
according to the original publication of the method [1],
but in practice fails to capture the full complexity and
sensitivity of that analytical approach, instead providing
a very circumscribed implementation for detection of
oncogenic gene fusions.

Within our research program on cancer networks [4-6]
we identified the need for a more-flexible extension of
outlier profile analysis that supports (i) the independent
analysis of our own microarray data, without limitation to
datasets available through Oncomine; (ii) sensitive
feature-specific threshold selection (more in line with the
original COPA method) to account for variation in fea-
ture expression; (iii) the generation of outlier profiles for
custom analysis for which the mutually exclusive gene
pairs output of the COPA R package is not suitable; and
(iv) the identification of outlier profiles not only for over-
expressed features, but for under-expressed features as
well. Beyond these, considerable potential exists for
extending outlier profile analyses more broadly to further
types of use.

Here we present a modified COPA analysis program,
mCOPA, which incorporates statistical refinements to
outlier detection, including improvements in the calcula-
tion of percentiles [7,8] and thresholds for outlier identi-
fication [9-11]. Additionally, we identify under-expressed
outlier genes, a category identified in neither the original
method nor the later R package.

To assess the performance of mCOPA as a feature-
selection algorithm applicable to microarray datasets, we
evaluated the utility of features selected by mCOPA in
separating clinically defined cancer subtypes represented
in expression microarray data. We evaluated the quality
of features selected by mCOPA and by three other algo-
rithms (COPA, differential expression (DE) analysis, and
variance analysis) on 12 publicly available datasets. Qual-
ity was assessed based on the ability of feature sets to
cluster samples into recognised subtypes. As it has been
shown that clustering performance varies greatly de-
pending on the dataset and the clustering method [9],
we evaluated four different clustering methods: K-means
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[12], PAM [13], clues with CH strength index, and clues
with the Silhouette (Sil) strength [14].

We also perform a detailed analysis of one of these
12 datasets (the dataset of Tomlins et al [15]), dem-
onstrating the application of mCOPA in conjunction
with pathway mapping and functional analysis. The
results of our comparison and detailed analyses pro-
vide guidelines for the efficient use mCOPA, and high-
light novel ways in which this approach can be applied
to analyse and interpret microarray data. The mCOPA
software is freely available from www.bioinformatics.
org.au/mCOPA.

Methods
Data format and algorithm
mCOPA takes as input a matrix of preprocessed micro-
array data, with rows representing features and columns
containing sample data. The first columns contain data
from the normal samples, followed by the tumour sam-
ples. Example input and output files are included with
the application, and a flowchart of the workflow is pro-
vided in the user manual. The COPA transformation [1]
is the first step of the workflow. Using the transformed
COPA scores, the 25th, 75th and the user specified
upper and lower percentile values (for example, but not
limited to 90th or 95th and 5th or 10th percentiles) of
features are calculated separately for tumour samples
and normal samples.

We define over-expressed outliers as features that have
a COPA-transformed value greater than the 75th per-
centile plus 1.5 times the inter-quartile value (calculated
from the tumour samples). Under-expressed outliers are
defined as features with a COPA-transformed value less
than the 25th percentile minus 1.5 times the inter-
quartile value (calculated from the tumour samples)
[16]. This procedure can result in outliers in both nor-
mal and tumour samples, so we apply the following cri-
teria to filter the initial outlier set in order to (i)
maximise the difference between normal and tumour
profiles, and (ii) remove any outliers that occur in nor-
mal samples:

1. We require the feature to be an outlier in at least
one tumour sample;

2. We require that the feature is not an outlier of the
same direction (up or down) in any normal samples
(i.e. for up-regulated outlier features, it cannot be an
up-regulated outlier in any of the normal samples,
but it can be a down-regulated outlier in normal
samples); and

3. We require the log2 of the absolute value of the fold
change between the nominated percentile values of
tumour samples and normal samples to be larger
than 2.
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In theory the outlier analysis and subsequent filtering
does not prevent probes from being detected in different
samples as over- and under- expressed outliers, however
in practice we rarely observe this to occur, and no out-
liers are detected in both directions in the Tomlins data
we analyse in detail below.

Evaluation of feature selection

To evaluate the ability of features selected by mCOPA to
cluster clinically defined cancer subtypes, and compare
the results with other feature selection methods, 12 can-
cer datasets [15,17-27] (see Additional file 1 — Public
datasets for details and accession numbers of these data-
sets) were downloaded from ArrayExpress [28] or GEO
[29] when not available from the former. Subtypes for
cancer samples in each dataset were defined by clinical
annotation. Cancer subtypes with three or fewer samples
were removed from the datasets.

Normalisation was verified by box-plot (to determine
if data were median-centered). Non-normalised datasets
were converted to ExpressionSet objects using Biobase.
We applied a log2 transform and then normalised using
the normalize function of the Affy Package in R. [30].
Finally, we examined the distribution of every dataset to
ensure all data were appropriately and consistently nor-
malised. DE analysis was performed using the Limma R
package [31] with an adjusted p-value threshold of 0.01
for selecting features. For mCOPA, the 90th and 10th
percentile values were used for selecting over- or under-
expressed outlier features. Over- and under-expressed
outlier outputs of mCOPA were combined into a single
feature list to represent mCOPA outliers similar to DE
analysis output, which contains both over- and under-
expressed outputs. COPA outputs were ordered according
to 90th percentile values, and the top-ranked features
(constituting a set of over-expressed outliers) were
selected to give a feature set equivalent in size to the
mCOPA output. The variance method of feature selection
ranks features according to their variance in expression;
1000 features with the largest variances were selected for
this evaluation.

The features selected by the four methods were then
passed to four clustering methods: K-means (KM), PAM,
and Clues with the CH strength index or the Silhouette
(Sil) strength index. The Stats package from R was used
for K-means clustering, with the settings of 20 repeats
and “MacQueen” algorithm. The Cluster package [32] of
R was used for PAM clustering method with default set-
tings. The Clues package [14] of R was used with the
CH or Sil estimators for cluster numbers and with the
default settings. For K-means and PAM, the number of
clusters was specified, whereas Clues automatically
determines the number of clusters using the CH or Sil
strength index.
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The quality of the clustering was measured by the
Adjusted Rand Index (ARI) [33]. The ARI corrects for
bias that might occur in clusters due to chance, given
the relative sizes of subtype groups. ARI falls between
“1” and “-17; ARI = 1 indicates a perfect clustering, and
ARI = 0 a clustering no better than chance. ARI can be
smaller than zero, indicating an anti-correlation, thus
low-quality clustering result. Given a dataset of n sam-
ples S = [X1, ..., Xn] with the two partitions K =
[K1,...,Kd] and L = [L,...Lc], the adjusted Rand index
is computed as:

() R G)E ) e
2GS (][22 ()

Index — Expected Index

ARI =

= Maximum Index — Expected Index

where 3 ;i n; represents the number of sample pairs in
the same cluster in K and in the same cluster in L. Y ; n;
represents the number of samples in each cluster in K,
and ); n; the number of samples in each cluster in L.
Each of the four feature selection methods was com-
bined with each of the four clustering methods, resulting
in 16 ARI scores for each of the 12 data sets. Since nor-
mal distribution of these data cannot be assumed, we ap-
plied the parameter-free Kruskal-Wallis test [34] to
identify statistically significant differences in the ARI
scores of the evaluated methods.

The Mclust package [35] for R was used to generate
ARI scores from partitions of clustering methods. The
pgirmess package [36] of R was used for the Kruskal-
Wallis test to compare the ARI scores obtained in the
previous step, using a threshold of p<0.05.

Analysis of the Tomlins et al. prostate cancer dataset
mCOPA was applied to the dataset of Tomlins et al
2007 [15] to generate lists of over- and under-expressed
outliers. The processed prostate cancer dataset [15] was
downloaded from ArrayExpress (id: E-GEOD-3325).
Probe IDs (first column) and expression values (last col-
umns) were extracted from each sample file and written
into a matrix format. Only normal epithelial, tumor-
adjacent normal, pre-invasive neoplasm (PIN), prostate
cancer (PCA) and metastatic (MET) samples were
included in this analysis. Probes and samples with more
than 40% missing values were excluded from this ana-
lysis. Any remaining missing values were imputed using
the ImputeMissingValuesKNN module from GenePat-
tern, with k set to 10.

A matrix file with 16572 rows and 87 columns was
used in the analysis (Demolnput.txt available from the
mCOPA website [37]). The microarray annotation file
was downloaded from GEO (access number: GPL2013).
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The toptable command of the Limma package in R was
used for output analysis results. An adjusted p-value of
0.01 was set as the threshold. All probes in the toptable
output file with an adjusted p-value of less than 0.01
were chosen as DE probes, and the corresponding ex-
pression data were then extracted and used as input for
the following clustering analysis. 90th and 10th percent-
ile values were used in the mCOPA up- and down-
regulated outlier selection, and columns of the output
lists containing the expression values of up- and down-
regulated outlier probe lists were extracted and merged
into a single file for the following clustering step. The
HierarchicalClustering module of the GenePattern pack-
age [38] was used for clustering. Pearson correlation was
chosen as the column and row similarity measure, and
pairwise average linkage was used as the linkage method;
no log transformation, row centering, row normalisation,
column centering or column normalisation was
performed.

Following the clustering of the samples based on the
selected features, the metastatic cluster was selected and
separate up- and down-regulated outlier feature lists were
generated using the getSubtypeProbes.pl function of the
mCOPA package. These two feature lists were then con-
verted into gene lists based on the array annotation file.
Outlier profiles for the samples from the metastatic sub-
type were then used to generate sample-specific outlier
lists. Pathway analysis in the software package MetaCore
from GeneGo Inc. was then used to analyse these outlier
lists.

Results and discussion
Implementation
Our implementation of mCOPA is a set of Perl scripts
available at www.bioinformatics.org.au/mCOPA. The
mCOPA method takes normalised expression values in
matrix format as input, with each line representing a fea-
ture, each column representing a sample, and normal
samples followed by tumor samples. The user also needs
to indicate the number of normal samples (#) in the
dataset (present as the first # columns of samples), and
nominate the percentile values used for up- and down-
regulated outlier detection (see Methods, and user docu-
mentation available on the mCOPA website [37]. If the
experiment has no normal samples, the first » samples
provided in the file will be treated as the control set for
the experiment, and used in the place of normal sam-
ples. Two output files are produced, one for up- and one
for down-regulated outlier features. Details on use of
this application and example data are available online.
mCOPA has been designed to select outliers as fea-
tures that may be used in subsequent downstream ana-
lysis (as demonstrated in the analysis of the Tomlins
et al. (2007) dataset), functionality absent from the
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earlier R implementation, which outputs only mutually
exclusive outlier pairs. Additionally, the earlier R imple-
mentation of COPA does not use established definitions
of outliers (i.e., based on the feature specific distribution
of values). Instead, it applies a hard-coded threshold
which calls any feature an outlier in samples in which its
COPA score exceeds 5, regardless of the distribution of
these scores across all the samples, whereas our method
applies sensitive, feature specific criteria to determine if
features are outliers in a given sample. The COPA im-
plementation in the Oncomine database only ranks
genes, with no threshold applied to clearly define which
genes are outliers. The additional restriction that it can
only be applied to datasets within Oncomine reduces its
use as a general analytical tool.

The mCOPA package can be applied to any given ex-
pression dataset in which two conditions are defined, al-
though here we discuss its application to cancer
expression data containing normal and cancer samples
as the two conditions. In cases where there are no nor-
mal samples available, a subset of disease samples could
be substituted for the normal samples and used as a
control set to contrast with the samples of interest. For
example, mCOPA could be used to identify outliers in
aggressive tumours but not indolent tumours, or in
high-grade tumours but not low-grade tumours.

In addition to lists of outlier features, mCOPA pro-
vides outlier profiles: strings composed of 1, -1 or 0, in-
dicating the samples in which a given feature is either an
over-expressed outlier, under-expressed outlier or non-
outlier. Further, there is a function getSubtypeProbes.pl
in the mCOPA package, which can identify which fea-
tures are outliers only in a given set of samples. This
function is useful in studying a subtype of cancers once
clinical data are integrated or the samples are clustered.

Feature selection: clustering

We systematically evaluated the performance of features
selected by mCOPA relative to those selected by DE,
variance (i.e. selecting the most-variable probes [39,40])
or the original COPA algorithm in the task of clustering
cancer subtypes. We selected 12 expression datasets for
which cancer subtypes had been determined based on
clinical annotation, not by molecular profile (see Meth-
ods Section and Additional file 1). To minimise the pos-
sibility of certain clustering methods favoring particular
feature selection approaches, we evaluated clustering
performance of the different feature sets using four clus-
tering approaches. Clustering quality scores (ARI values)
for the 12 datasets are presented in Table 1. The
mCOPA method achieved the highest score for 7 out of
the 12 datasets, consistently providing more-accurate
clustering performance. None of the four clustering
algorithms achieved significantly better performance
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Table 1 ARIs of four feature selection methods combined with four clustering methods across 12 datasets

Feature Datasets* (Details presented in Additional file 1 — Public datasets)

zlel:i::?:; Pr C Mn R1 R2 NPh  Lm R3 B T Br L
method

COPA+CH 0.12 0.04 0.69 0.20 0.64 0.15 0.23 0.38 0.06 0.05 0.16 045
COPA+KM 0.30 0.16 0.53 0.62 033 0.31 0.25 0.54 0.09 0.23 0.12 041
COPA+PAM 0.13 0.18 0.60 0.90 0.81 0.36 0.26 0.57 -0.02 0.31 0.12 0.35
COPA+SIL 0.04 0.08 0.69 0.20 0.30 0.15 0.33 043 0.06 0.05 0.07 0.55
DE+CH 0.17 0.15 0.21 0.24 0.53 0.36 0.38 0.28 0.21 0.52 0.12 044
DE+KM 0.29 0.15 0.51 0.75 0.59 0.34 0.38 0.65 0.27 0.63 0.12 0.54
DE+PAM 0.35 0.13 0.24 0.79 0.76 0.34 0.26 0.56 0.11 0.46 0.16 043
DE+SIL 0.17 0.15 033 0.24 0.53 0.14 0.38 0.28 0.21 0.52 0.12 044
mCOPA+CH 0.29 0.15 0.60 0.55 040 0.35 0.38 0.39 0.06 0.52 0.1 0.30
mCOPA+KM 046 0.01 0.79 0.68 048 0.36 0.45 0.85 0.00 0.63 0.08 0.62
mCOPA+PAM 0.47 0.10 0.55 0.82 0.54 0.45 044 049 0.03 0.50 0.20 044
mCOPA+SIL 0.29 0.14 0.60 0.61 040 0.35 0.38 0.39 0.06 0.52 0.1 0.30
VAR+CH 0.14 0.08 0.69 0.32 0.34 0.28 0.38 0.57 0.02 0.26 0.13 045
VAR+KM 0.16 0.16 047 0.81 047 0.23 0.34 0.64 0.09 0.15 0.17 041
VAR+PAM 0.17 0.16 0.88 0.81 043 0.02 0.26 0.61 0.10 0.06 0.15 0.33
VAR+SIL 0.14 0.08 0.69 0.89 0.34 0.28 0.38 0.57 0.02 0.12 0.13 0.59

Note: the ARI scores in italicized bold indicate the best performing method for each dataset. Datasets in bold indicate those in which mCOPA provided the most

informative feature selection for the clustering of clinical subtypes.

*Datasets: Pr (Prostate: GSE6099); C (Cervical: GSE7410); Mn (Melanoma: GSE7553); R1 (Renal: GSE11024); R2 (Renal: GSE11151); NPh (Nasopharangeal: GSE12452);
Lm (Lymphoma: GSE12453); R3 (Renal: GSE15641); B (Brain: GSE15824); T (Thyroid: GSE29265); Br (Breast: GSE29431); L (Lung: GSE32036).

than the others (Kruskal-Wallis test), although K-means
tended to perform slightly better than the others
(Figure 1A). We therefore compared ARI scores of the
four feature-selection approaches using only K-means
for clustering, in order to evaluate the feature-selection

algorithms. Combined with K-means, mCOPA was the
best-performing feature selection algorithm (Figure 1B)
although the Kruskal-Wallis test did not find the distri-
bution of ARI scores to be significant at the acceptance
threshold.
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While the ARI provides an objective index for com-
paring clusters with known clinical groups, there are
some problems with this approach. Some datasets do
not cluster well and score very low values; in particu-
lar, GSE7410 (Cervical), GSE15824 (Brain) and
GSE29431 (Breast) have very low ARI scores and the
highest score for these datasets is lower than the low-
est score across the many of the other datasets (see
Additional file 2). We analysed each experiment separ-
ately to determine if feature-selection approaches
showed significantly different ARI scores in experi-
ments where they achieved the best performance
(Additional file 3). mCOPA produced significantly dif-
ferent results in five of the experiments, and in all but
one of these cases, it was the top-performing method.
Likewise, DE was the best performer in two of the
three experiments in which it produced significantly
different ARI scores. For the other two methods, sig-
nificance was associated with poor performance only.
What this analysis highlights is that datasets are highly
variable in terms of the accuracy with which they can
be clustered, and no one method works the best in all
cases. However, mCOPA consistently selects features
that support the most-accurate clustering, making it
an attractive feature selection approach for clustering
samples.

Feature selection: different features and different biology
Features selected by the four approaches are usually dis-
tinctly different (Additional file 4). We examined overlap
between features selected by mCOPA, DE and variance
approaches, and found little overlap: on average, two-
thirds of the features selected by mCOPA are unique to
that method, although the proportion of overlapping fea-
tures varies depending on the number of differentially
expressed features with p-values smaller than 0.01.

We next asked whether the different feature sets cor-
respond to unique biology. After mapping features to
GO terms using DAVID [41,42], we observe a similar
trend: features selected by mCOPA map to GO terms of
which 62% on average are unique to the mCOPA feature
set, and are not enriched in the DE- or variance-selected
feature sets (Additional file 5). This semantic analysis
demonstrates that mCOPA unveils a different kind of
biological functionality than is found by DE or variance.
Typically, fewer ontology terms map to mCOPA fea-
tures, and thus capture more-focused functions. In those
cases for which mCOPA exhibits a low degree of func-
tional uniqueness, all feature selection methods show
the same lack of unique biology, i.e. in some datasets all
feature-selection approaches converge on a consistent
biological signature. Interestingly, these are the datasets
with the most mapped functions, not the fewest. Where
fewer GO terms are associated with feature sets, the
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individual methods tend to show distinctly different bio-
logical properties. Given that mCOPA focuses on out-
liers present in only a few samples, we propose that the
exploration of such heterogeneity contributes to the abil-
ity of feature sets selected by our method to distinguish
cancer subtypes, and demonstrate how outlier analysis
achieves such specificity in a detailed analysis of prostate
cancer data (below).

Application: Tomlins et al. 2007

To explore the performance of mCOPA in more detalil,
we applied our method to the prostate cancer dataset of
Tomlins et al. [15]. We examine the ability of outlier
features to cluster the subtypes present in this dataset,
explore outliers that are unique to one of the resulting
clusters (corresponding to metastatic tumours), analyse
sample-specific outliers, and integrate semantic analysis
to identify genes that are potential novel tumour sup-
pressors in prostate cancer.

Both the mCOPA and DE feature sets (see Additional
file 6) clearly separate the normal samples (blue) (Figure 2).
mCOPA, however, separates the metastatic samples
(red cluster, Figure 2A) from other pathological sam-
ples (green cluster, Figure 2A), whereas the DE genes
put all these subtypes into one large cluster (black
cluster, Figure 2B).

As we had previously observed that feature sets cor-
responded to genes with different functions or that
participate in different processes, we performed
DAVID functional analysis of differentially expressed
and outlier genes from the Tomlins et al data [15] in
order to compare and contrast the insights provided
by these two approaches. The most significant func-
tional clusters for under-expressed outliers involved
apoptotic signaling and signal transduction, and regula-
tion of cell adhesion. Significant functional clusters of
down-regulated DE genes involved vesicle and mem-
brane proteins, and oxidative metabolism. Over-
expressed outliers were characterised by clusters in-
volving mitotic cell cycle and protein complexes, while
up-regulated DE genes had clusters involving cadherin
signaling and the cytoskeleton. The different biology
revealed by DE and outlier features in this analysis are
consistent with differences in Gene Ontology analysis
observed in our more general analysis of expression
datasets (above).

Pathway analysis of outliers in the metastatic cluster

Outlier analysis lends itself to a different kind of path-
way analysis than traditionally applied to differentially
expressed gene sets. Whereas pathway analysis of a set
of differentially expressed genes can provide insight into
mechanisms that are disrupted generally across tumour
samples, outliers are, by definition, disrupted only in a
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Figure 2 The clustering result comparison for mCOPA and differential expression (DE) analysis. (A) mCOPA produces three clusters:
normal samples (blue), tumour samples (green), and metastasis samples (red). (B) DE also produces three clusters: normal samples (blue), a small
cluster of tumour samples (green) and a large cluster of mixed tumour and metastatic samples. Misclassified samples are highlighted.

very small number of tumours (see Figure 3). This
means that the traditional application and interpretation
of pathway enrichment results is not appropriate for
outlier sets. Instead, outlier lists can be used to infer
mechanisms that are specifically disrupted in single

Count of outliers present in a given number of samples
5.65

ml
m2
m3
m4
ms5
w6

w7

Figure 3 Analysis of the number of samples sharing a given
outlier. Most outlier features are outliers in only a small number of
metastatic samples, with very few outliers shared across more than
three samples. Very similar proportions are observed when sample
counts for either under- or over-expressed outliers are considered
separately. Counts are only shown for those outliers that occur in
the metastasis cluster. A further 201 outliers map exclusively to
non-metastatic samples.

tumour samples, or in small sets of samples. We suggest
two approaches:

1. Outlier lists for subtypes can be used to perform
pathway enrichment, identifying pathways disrupted
by outliers in that subtype; outliers in each pathway
can then be mapped back to the samples in which
they occur to determine if (i) pathway disruption is
general within the subtype (i.e. many samples within
the subtype contribute different outliers to the
pathway, implying that different molecular
mechanisms nonetheless result in disruptions to the
same pathway), or (ii) pathway disruption is specific
to one or more samples within the subtype (ie. all the
outlier genes mapped to a specific pathway come
from a small number of samples within the subtype).

2. Outlier lists for each sample in an experiment can be
extracted from the outlier profiles generated by
mCOPA. These lists of over- and under-expressed
outliers can then be used to identify significant
pathways disrupted in each sample. Pathways can
then be compared across samples to determine if
samples converge on a common pathway, or contain
specific and unique pathway disruptions.

Following the first approach, we analysed pathway en-
richment in the set of outliers associated with the meta-
static prostate cancer cluster (red cluster, Figure 2). The
two most significantly expressed pathways were EGFR
signaling (p-value 4.55e-7), and PTEN signaling (p-value
2.49e-5). The EGER signaling pathway contains six over-
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expressed outliers (EGFR, GRB2, PDPK1, PKC-theta,
c-Myc, and FAK1), and one under-expressed outlier
(ERBB2 also known as HER2). Each over-expressed out-
lier is found in one or two metastatic tumour samples,
with only one tumour containing two over-expressed
outliers in this pathway. Over expression of EGFR and
components of its signaling pathway such as c-Myc are
well known to be associated with metastasis [43-46].
Here, we are able to identify specific tumours with strong
over-expression of different components of this pathway,
indicating that through different genetic mechanisms,
nearly half of our metastatic samples show hits to this
pathway. Interestingly, only one metastatic tumour sam-
ple (MET_HR_10) shows strong loss of expression of
ERBB2 (HER2), a gene often associated with promoting
cell proliferation, particularly in breast cancer [47,48]. It
is known, however, that loss of expression of ERBB2 is a
feature of metastatic sites in breast cancer that is other-
wise ERBB2 positive [49] and further that loss of ERBB2
expression has been strongly associated with progression
to metastasis in osteosarcoma [50].

The PTEN signaling pathway presents another interest-
ing case study for the use of outlier analysis, and contains
five over-expressed outliers (EGFR, PDPK1, RHEB?2,
FAK1, GRB2). PTEN is a known tumour suppressor, and
loss of PTEN function is associated with cancer progres-
sion [51,52]. PTEN normally inhibits integrin-mediated
survival and migration [53]. Interestingly however, the out-
lier effect we observe in the PTEN pathway is not loss of
the tumour suppressor, but very strong over-expression of
a signaling factor downstream of integrin, FAK1 (PTK2),
which is usually inhibited by PTEN [54]. While PTEN ex-
pression has not been lost, over-expression of its substrate
has the potential to flood the inhibitory interaction be-
tween PTEN and FAK1, thus enabling the integrin signal-
ing pathway to escape PTEN inhibition in two specific
metastatic tumours. This observation, and the previous
example, illustrates the power of combining outlier ana-
lysis and pathway analysis to identify heterogeneous dis-
ruptions within a cancer subtype. Such sample-specific
observations will become increasingly valuable as clinical
tools for molecular-targeted therapies in cancer treatment.

Following the second approach outlined above, an outlier
list was extracted for each metastatic prostate cancer sam-
ple in the Tomlins dataset. Samples show high variability
in the number of over- and under-expressed outliers they
contain (ranging from 4 to 196 outliers). While 40% of all
outlier features are present in only one metastatic tumour
sample, fewer than 2% of the outliers are present in five or
more samples (see Figure 3). Thus outliers represent fea-
tures that reflect the unique molecular characteristics of
tumours rather than general molecular characteristics.

Pathway enrichment analysis of the 20 outlier feature
sets for the Metastatic tumours reveals an interesting
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pattern (see Additional file 7 and an extracted part of
the supplementary figure shown in Figure 4). Many
pathways, such as the first two shown in Figure 4 (Cell
cycle spindle assembly, and Regulation of telomere
length) are significantly enriched (i.e. p value < 0.01, thus
—log(p value) >2) in the outliers of a single sample (here,
MET_HR_1 and MET_HR_13 respectively), and very
few pathways (such as Apoptosis and survival through
TNF4 signaling and Growth hormone signaling via
PI3K/ AKT) are disrupted more-generally (in this case,
in three and six metastatic tumour samples respectively).
This alternative approach to pathway enrichment,
where outliers from individual tumour samples are ana-
lysed instead of sets of broadly differentially expressed
genes, generates highly specific insight into the biology
of individual tumours, and demonstrates how our
mCOPA method can be used to generate sample-, or
patient-specific interpretations from high-throughput
experimental results. Given that most cancer treatments
work only for a subset of patients [55-57], approaches
such as this provide important insights into the molecu-
lar differences that may underpin such differential re-
sponse to treatment. Analysis of pathway disruption at
the level of individual samples presents an important
contribution to the development of more-personalised
approaches to molecularly targeted therapeutics.

Identification of tumour suppressors

The original COPA method was used in conjunction with
a set of known oncogenes to identify up-regulated onco-
genic outliers. Because our extension to the method iden-
tifies down-regulated outliers as well, we investigated
whether mCOPA might identify tumour suppressors. A
set of 727 cell cycle regulators containing many known
and potential tumour suppressors was extracted from the
Gene Ontology Database [58]. Of 223 down-regulated
outliers, 12 genes are annotated cell cycle regulators. A
search in the Cancer Gene Index database (https://wiki.
ncinih.gov/display/cageneindex/) showed that four of
these 12 genes are known tumour suppressors in prostate
cancer (RBL2, CDK6, TP63, BIRC2), while five (SON,
PAFAHI1B1, PDCD4, RBBP8, DBC1) have been reported
to be tumour suppressors in other cancers. The remaining
three genes (FZR1, CDC14B, HEXIM1) represent poten-
tially novel tumour suppressors.

We reviewed the annotation available for these three
genes in Uniprot, and examined their expression profiles
in Oncomine. The Fizzy-related protein homolog Fzr
encoded by FZR1 plays a role in the degradation of posi-
tive regulators of cell cycle, and prevents entry into mi-
tosis following DNA damage. TCGA datasets in
Oncomine reveal that FZR1 has a significant loss of copy
number in prostate, ovarian, lung, gastric, endometrial
and breast cancers. Its expression is significantly reduced
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generally affected in 15% and 30% of metastatic samples respectively.
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Figure 4 Details of outlier pathway analysis highlighting the differences between pathways significantly disrupted in individual
samples. In the first two pathways, only a single sample shows significant pathway enrichment, whereas the last two pathways are more-

in 46 experiments. A similar trend is seen with the
HEXIMI gene, which encodes protein HEXIMI, a tran-
scriptional regulator that acts as a general transcription in-
hibitor. This gene has significant copy number loss in
prostate, ovarian, breast, colorectal and endometrial can-
cers, and is significantly under-expressed in 101 experi-
ments collected in Oncomine. The third candidate
tumour suppressor we uncovered, CDC14B, codes for the
protein Dual-specificity protein phosphatase CDC14B, an
essential regulator of the G2 DNA damage checkpoint. It
does not show significant loss of copy number in TGCA
prostate cancer data, but does show significant loss in
breast, ovarian, renal, lung and endometrial cancers, and
is significantly under-expressed in 84 experiments. To-
gether these analyses demonstrate that these three genes
are credible as potential tumour suppressors; they are sub-
ject to copy-number loss in a wide range of cancers, and
are significantly under-expressed in a large number of
microarray experiments.

Conclusions

Here we have shown how mCOPA-derived cancer out-
lier profiles can be used to interpret cancer microarray
data. We evaluated outlier profiles as a feature-selection

method for clustering clinically defined cancer subtypes,
and compared the performance of mCOPA to three
other outlier selection approaches. mCOPA consistently
selects features that are more informative. We hypothe-
sise that this is because of the properties of outlier ex-
pression profiles, which capture the different molecular
processes and networks disrupted in individual tumour
samples. Approaches such as differential expression ana-
lysis, which identify features that are consistently differ-
ent across cancer samples compared with normals, do
not reveal this biological heterogeneity. Given the lack of
overlap between genes and corresponding biology tar-
geted by the feature selection methods we examined, we
propose that researchers should explore multiple
complimentary approaches, including mCOPA, in ana-
lysing high-throughput data, so as to exploit more fully
the range of biology to which these approaches give pri-
vileged access.

Application of our method to the Tomlins et al. dataset
[15] highlights the strength of our approach. We demon-
strate the use of mCOPA to select features capable of ac-
curately clustering cancer subtypes; we also show that
these features represent distinct biology when compared
with features selected by differential expression analysis.
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We show how outliers can be used in conjunction with
functional analysis to select interesting candidate genes,
including novel tumour suppressors. Finally, in applying
pathway analysis to outlier genes from the metastatic sam-
ples, we show how mCOPA can highlight molecular net-
works implicated in very small subsets of tumour samples,
and even individual tumours. Such variations point to
mechanisms that may underpin individual differences in
tumours, and reveal specific elements of regulation and
pathway perturbation.

mCOPA provides a new tool for the understanding of
cancer heterogeneity and individual differences as cap-
tured in expression array experiments. Additionally, as
most existing microarray studies have used differential
expression analysis, the opportunity exists to use outlier
tools such as this to reanalyze and reinterpret existing
data with far greater granularity. Sample-specific analysis
requires new ways of interpreting results, and the inte-
grated methods we apply here demonstrate such new
approaches. In combination with well-structured experi-
mental design and clinical annotation, sample-specific
analysis creates an opportunity to identify the mechan-
isms underlying rare disease subtypes and map these
variations to individual differences in etiology and treat-
ment response. mCOPA provides insight into the unique
transcriptional landscape and molecular networks of in-
dividual patients or samples, and represents one of a
new breed of bioinformatics tools designed to provide
the analytical capability required for computational ana-
lysis in personalized medicine.
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