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Sex differences in a mouse model of multiple
sclerosis: neuropathic pain behavior in females
but not males and protection from neurological
deficits during proestrus
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Abstract

Background: Multiple sclerosis (MS), a demyelinating disease of the central nervous system, is one of the most
prevalent neurological disorders in the industrialized world. This disease afflicts more than two million people
worldwide, over two thirds of which are women. MS is typically diagnosed between the ages of 20–40 and can
produce debilitating neurological impairments including muscle spasticity, muscle paralysis, and chronic pain.
Despite the large sex disparity in MS prevalence, clinical and basic research investigations of how sex and estrous
cycle impact development, duration, and severity of neurological impairments and pain symptoms are limited. To
help address these questions, we evaluated behavioral signs of sensory and motor functions in one of the most
widely characterized animal models of MS, the experimental autoimmune encephalomyelitis (EAE) model.

Methods: C57BL/6 male and female mice received flank injection of complete Freund’s adjuvant (CFA) or CFA plus
myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) to induce EAE. Experiment 1 evaluated sex differences of
EAE-induced neurological motor deficits and neuropathic pain-like behavior over 3 weeks, while experiment 2
evaluated the effect of estrous phase in female mice on the same behavioral measures for 3 months. EAE-induced
neurological motor deficits including gait analysis and forelimb grip strength were assessed. Neuropathic pain-like
behaviors evaluated included sensitivity to mechanical, cold, and heat stimulations. Estrous cycle was determined
daily via vaginal lavage.

Results: MOG35-55-induced EAE produced neurological impairments (i.e., motor dysfunction) including mild paralysis
and decreases in grip strength in both females and males. MOG35-55 produced behavioral signs of neuropathic
pain—mechanical and cold hypersensitivity—in females, but not males. MOG35-55 did not change cutaneous heat
sensitivity in either sex. Administration of CFA or CFA + MOG35-55 prolonged the time spent in diestrus for 2 weeks,
after which normal cycling returned. MOG35-55 produced fewer neurological motor deficits when mice were in
proestrus relative to non-proestrus phases.

Conclusions: We conclude that female mice are superior to males for the study of neuropathic pain-like behaviors
associated with MOG35-55-induced EAE. Further, proestrus may be protective against EAE-induced neurological
deficits, thus necessitating further investigation into the impact that estrous cycle exerts on MS symptoms.
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Background
Multiple sclerosis (MS) is an autoimmune demyelinating
disease of the central nervous system (CNS) that afflicts
twice the number of women as compared to men [1].
Sex has been shown to impact both the pathology and
severity of MS. While the immune response associated
with MS is more robust in women, the pathology and
prognosis for men are generally associated with more
progressive neurodegeneration [2]. Despite this large sex
disparity in disease prevalence and severity, the impact
of estrous cycle and correlated alterations in circulating
ovarian hormones (estrogens/progestogens) on MS has
yet to be fully characterized. Limited reports indicate
that clinical manifestations of MS (e.g., weakness, numb-
ness, tingling, and tiredness) tend to increase when ovar-
ian hormones are low and decrease when they are high
[3-5]. Additionally, pregnancy-associated remission of
symptoms is believed to be associated with increased cir-
culating ovarian hormones [6,7].
Although neurological deficits such as muscle weak-

ness, spasticity, and paralysis are considered canonical
symptoms of MS, chronic pain is a symptom frequently
experienced by patients which can antedate other neuro-
logical impairments. Pain is considered a primary factor
in the suffering and poor quality of life experienced by
MS patients, with an overall prevalence of approximately
63% [8-11]. Cardinal features of neuropathic pain in
multiple sclerosis include hypersensitivity to cutaneous
mechanical and thermal stimuli in the distal extremities
[10,12-14]. Sex differences in pain symptoms of MS is
an understudied area of research, and the literature
yields limited and conflicting results. Some clinical stud-
ies suggest that pain is worse in females [15,16], while
others report no differences [17-19].
The serendipitous advent of animal models mimicking

the pathology and symptoms of MS has allowed basic
researchers to investigate disease progression, sympto-
mology, and therapeutic interventions. These widely uti-
lized models include the experimental autoimmune
encephalomyelitis (EAE) and Theiler’s murine enceph-
alomyelitis virus (TMEV) models. Research evaluating
sex differences in both models have yielded variable re-
sults, undoubtedly influenced by a number of factors in-
cluding autosomal genotype of murine strains and the
immunization agent/protocol used [20-23]. Although a
number of studies characterize manipulation of ovarian
hormones in these models, we were unable to find a single
study evaluating natural estrous cycle and corresponding
alterations in motor impairments, disease progression, or
any other behavioral measure. Preclinical animal models
of MS virtually ignore the question of neuropathic pain-
like behaviors in males versus females with the exception
of two reports indicating that allodynia and/or hyperalge-
sia is more pronounced in females [22,24].
The present study was designed to investigate the effects
of sex and estrous state on the development, duration,
and severity of neurological deficits and neuropathic pain-
like behavior in a mouse EAE model induced by myelin
oligodendrocyte glycoprotein 35–55 (MOG35-55) [25]. The
MOG35-55 EAE model has previously been shown to pro-
duce robust and reproducible motor dysfunction, demye-
lination, and neuropathic pain-like behaviors [26-28]. We
hypothesized that while both males and females would
demonstrate development of neurological impairments
(i.e., motor dysfunction) typical of EAE, females would
show more severe neuropathic pain-like behaviors.
Based on the clinical findings of reduced MS symptoms
during the luteal phase and remission of MS symptoms
during pregnancy, we further hypothesized that these
symptoms would be attenuated during the proestrus
phase, when circulating ovarian hormones peak.

Methods
Animals
This study used 80 C57BL/6 mice purchased from Charles
Rivers (Indianapolis, IN, USA), aged 12–14 weeks when
the studies began. Mice were housed four to a cage, main-
tained in a temperature- and humidity-controlled environ-
ment on a 14/10 h light/dark cycle (lights on 4:00 a.m.,
lights off 6:00 p.m.). Since the estrous phase is stimulated
by the presence of male pheromones [29,30], male and fe-
male cages were interspersed with each other. We did not
control for pheromone exposure as the primary purpose
was to keep female mice cycling; however, care was taken
to spatially intersperse cages of females with equal num-
bers of cages housing male mice. Food and water were
available ad libitum. Animals were allowed a minimum of
1 week to habituate to the facility prior to their entrance
into the study. All animal procedures were approved by
the Institutional Animal Care and Use Committee of the
University of Kentucky, followed the guidelines for the
treatment of animals of the International Association for
the Study of Pain, and conducted in full compliance with
the Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC).

General experimental methods
Two experimental studies were completed. Experiment 1
was designed to characterize sex differences observed in
the EAE model induced by immunization with MOG35-55

(detailed protocol below). In this study, female and male
C57BL/6 mice were immunized with complete Freund’s
adjuvant (CFA) (females, n = 13; males, n = 10) or CFA +
MOG35-55 (females, n = 11; males, n = 11) and evaluated
behaviorally for neurological motor deficits and alterations
to tactile and thermal stimulations for 21 days post-
immunization. Experiment 2 evaluated the impact of
estrous cycle on neurological motor impairments and
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responses to tactile and thermal stimulation in the EAE
model. In experiment 2, female C57BL/6 mice were im-
munized with either CFA (n = 17) or CFA +MOG35-55

(n = 18) and evaluated for 43 days post-immunization.
Estrous cycle was determined daily via vaginal lavage
from day −7 through day 43 (detailed protocol below).
To evaluate the duration of neuropathic pain-like be-
havior in the EAE model, a randomly chosen subset of
animals from experiment 2 (CFA, n = 8; CFA +MOG35-55,
n = 9) were tested for an additional period, from days 60–
90 post-immunization.
All animals were weighed and evaluated daily for al-

terations in neurological motor function using a clinical
assessment scoring system as previously described [31]
(experiment 1: day −2 through day 21; experiment 2:
day −7 through day 43, days 60, 75, and 90). Baseline
grip strength, as well as mechanical and cold stimula-
tions, was evaluated on day −2 for both experiments 1
and 2. Baseline thermal responses were measured on
day −1 for both experiments. Immunization with either
CFA or CFA +MOG35-55 occurred on days 0 and 6. Al-
terations in grip strength and responsivity to mechanical
and cold stimulation were evaluated on days −2, 1, 3, 5,
7, 9, 11, 13, 17, and 21 in both experiments and contin-
ued on days 25, 29, 35, 42, 60, 75, and 90 for animals in
experiment 2. Heat sensitivity was assessed on days −1,
4, 10, and 16 in both experiments and continued with
days 28, 34, and 43 in experiment 2. Following the in-
duction of EAE, which produces mild to moderate
motor dysfunction, mice were given access to DietGel®
76A (Clear H2O®, Portland, OR, USA) in the bottom of
cages to ensure that they maintained body weight. In ex-
periment 1, males and females were tested concurrently
but on different behavioral testing platforms that had
been thoroughly cleaned with MB-10 (Quip Laboratories,
Inc., Wilmington, DE, USA).

Induction of EAE
EAE was induced with an immunization protocol utilizing
MOG33-55 (AnaSpec Inc., Fremont, CA, USA), which
leads to T cell infiltration in the central nervous system,
in combination with pertussis toxin (List Biological La-
boratories, Campbell, CA, USA), an agent which en-
hances EAE severity and disease onset (for review, see
[32]). MOG33-55 was emulsified in a 1:1 solution of 1×
phosphate-buffered saline (Fisher Scientific, Pittsburgh,
PA, USA) and CFA. CFA was prepared at a concentra-
tion of 5 mg/ml of mycobacterium tuberculosis (Voigt
Global Distribution, Lawrence, KS, USA) in incomplete
Freund’s adjuvant (IFA, Sigma-Aldrich, St. Louis, MO,
USA). On the afternoon of day 0 following behavioral
assessment, MOG35-55 (150 μg, s.c. per flank) was bilat-
erally injected (100 μl) at the flank of each hindlimb
under light isoflurane (1.5%–3% in oxygen; Butler Schein,
Dublin, OH, USA) anesthesia (experiment 1) or gentle
manual restraint (experiment 2). A booster injection of
MOG35-55 (150 μg, s.c. per flank) was administered on day
6. Pertussis toxin was injected (200 ng/200 μl, i.p.) on days
0 and 2. Age- and sex-matched controls received identical
treatment but were immunized with CFA only. Emulsifi-
cation of MOG35-55 in CFA is necessary for the immuno-
logical response observed in canonical EAE models [33].
Therefore, although CFA is known to produce an inflam-
matory and pain response, this control group was critical
as it allowed for differential pain behavior to be attributed
to MOG35-55 rather than CFA immunization, thereby
increasing our understanding of behaviors associated
with the pathophysiology of experimental autoimmune
encephalomyelitis.

Behavioral assessment of sensory and motor functions
Fluctuations in room noise, vibrations, and temperature
were minimized so as to facilitate acclimation and re-
sponse reliability. Prior to sensory testing, the mice were
acclimated for 30 min/day for 3 days to individual Plexi-
glas (10.16 × 10.16 × 25.4 cm) chambers. These boxes were
placed on either an elevated stainless steel wire mesh (for
tests of cold and mechanical sensitivity) or a Plexiglas
floor (for tests of heat sensitivity). An additional habitu-
ation period of at least 30 min was provided before data
collection on each testing day. Mechanical testing was
performed prior to cold testing, and a minimum of 1 h
was allowed between tests. Heat testing and cold/mechan-
ical testing were conducted on alternating days to avoid
sensitization. All behavioral measurements and injections
were performed by a single experimenter (EJR). Animals
were assigned numbers which did not indicate group con-
dition. Coded testing sheets were used throughout behav-
ioral testing to keep the experimenter blind to condition.

Mechanical sensitivity
Mechanical sensitivity was assessed using a digital elec-
tronic von Frey Anesthesiometer (model Alemo 2450;
IITC Life Science, Woodland Hills, CA, USA), connected
to a 90-g probe equipped with a flexible tip. The tip was
applied to the plantar surface of the paw until paw with-
drawal. Duplicate determinations were measured for each
paw and averaged. A minimum inter-trial interval of
2 min was allowed to elapse between evaluations of paws.
The testing took place in the following order: right, right,
left, and left.

Cold sensitivity
Cold allodynia was assessed following the application of
an acetone drop to the plantar surface of the hind paw as
previously described [34]. Acetone was loaded into a syr-
inge barrel, and air bubbles were cleared from the syringe
prior to acetone application. One drop of acetone
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(approximately 10–12 μl) was applied through the mesh
platform onto the plantar surface of the hind paw. Care
was taken to gently apply the bubble of acetone (and not
the tip of the applicator) to the plantar skin. The duration
of time the animal shook, licked, or completely lifted its
paw off the floor was recorded. The duration of paw with-
drawal was recorded with a 60-s cutoff. Three observa-
tions were taken for each paw and averaged. A minimum
inter-trial interval of 5 min was allowed to pass between
observations for each pair of paws (i.e., right and left). The
testing took place in the following order: right, left, right,
left, right, and left.
Heat sensitivity
Mice were tested for sensitivity to heat using a radiant
heat paw-withdrawal (Hargreaves) device [35]. The ther-
mal stimulus consisted of a radiant heat source (8 V, 50-
W lamp, Ugo Basile, Comerio, Italy) positioned under the
glass floor directly beneath the hind paw. When triggered,
a timer was activated, and light passed through a small
aperture at the top of a movable case. One day before test-
ing, voltage intensity was adjusted to standardize the aver-
age paw withdrawal latency at 10 ± 2 s. At specified time
points, paw withdrawal latencies were measured in dupli-
cate for each paw. A minimum inter-trial interval of 5 min
was allowed between evaluations of the paws. Testing took
place with the following order: right, right, left, and left. If
the mouse did not respond within 30 s, the heat was dis-
continued to prevent tissue damage.
Neurological motor function
We monitored animals as they walked across a flat plane
and checked their righting reflex after turning them
over. Responses were scored according to the following
clinical assessment scale [31]: grade 0, absence of clinical
signs; grade 1, hanging tail or impaired righting; grade 2,
mild paresis of one hind limb; grade 3, paresis of two
hind limbs; and grade 4, full paralysis of one or two hind
limbs/moribund.
Neuromuscular function
Neuromuscular function of the forelimbs was tested with
a grip strength meter (Columbus Instruments, Columbus,
OH, USA). The meter was positioned horizontally, and
the mice were held by the tail and lowered toward the ap-
paratus. The mice were allowed to grasp the smooth metal
grid (forelimbs only) and were then pulled backward in
the horizontal plane. The force applied to the grid at the
moment the grasp was released was recorded as the peak
tension (Newtons). Grip strength was measured in tripli-
cate and averaged.
Estrous cycle and vaginal lavage
Estrous cycle was monitored daily for female mice in ex-
periment 2, from 7 days before through 43 days after
MOG33-55 and/or CFA. Vaginal lavage was performed
between 6 and 8 a.m. using gentle manual restraint. Ani-
mals were returned to their home cages following lavage
and allowed approximately 2 h prior to behavioral evalu-
ations, sufficient time to allow any stress-induced anal-
gesia to subside. To collect vaginal cells, a glass Pasteur
pipette (14.6 cm, Fischer Scientific, Pittsburg, PA, USA)
that had been pulled over a flame to create an angled tip
with a narrow opening was used. The tip of the pipette
was fire-polished and examined under a microscope to
confirm it was free of jagged edges. The pipette was at-
tached to a bulb and filled with 100–200 ul of 0.9% sa-
line (Sigma-Aldrich). The pipette tip was gently pressed
against the vaginal opening, and the saline was slowly
forced into the vagina (approximately 5–7 s) and with-
drawn over several repetitions to obtain a representative
sample of vaginal cells. Samples were placed in a 96-well
plate, and classification was made using a Nikon Diaphot
300 microscope (Melville, NY, USA). On rare occasions,
lavage did not yield enough cells for classification, and
this is reflected in varying degrees of freedom in the sta-
tistics for experiment 2 comparing behavioral measures
across estrous phases. The cycle stage was classified as
estrus (cornified), proestrus (nucleated cells), diestrus
(leukocyte cells), or metestrus (mixture of cells from
various stages) as previously described [36,37]. Early
time points in the study (prior to day 14) were associ-
ated with prolonged diestrus which resulted in decreased
numbers of animals within estrus, proestrus, and metes-
trus as would have been present otherwise with normal
cycling.

Statistical analyses
Data were analyzed using analysis of variance (ANOVA)
for repeated measures, two-way or one-way ANOVA as
appropriate.

Experiment 1
Three-way repeated measures (RM) ANOVAs were per-
formed to determine the effect of sex (females vs. males)
and treatment (MOG35-55 vs. CFA) over time. Following
these analyses, two-way RM ANOVAs were performed
to examine the effects of treatment (MOG35-55 vs. CFA)
and time (Table 1). In cases where a main effect of treat-
ment or interaction of treatment by time was observed
with the two-way RM ANOVA, one-way ANOVAs were
subsequently performed, comparing the treatment con-
ditions at each time point. Area under the curve (AUC)
transformations were performed on days 7–21 (mechan-
ical/cold) and days 10–16 (heat) to correspond with the
first behavioral assessment following the final MOG35-55



Table 1 Statistics for experiment 1

Measure Two-way RM ANOVA (treatment × time) Three-way RM ANOVA
(treatment × sex × time)Females Males

Figure Figure

Clinical
scores

Figure 1A Day: F23,506 = 25.1, P < 0.001 Figure 1B Day: F23,437 = 14.3, P < 0.001 Day: F23,943 = 37.1, P < 0.001

Treatment: F1,22 = 9.0, P < 0.01 Treatment: F1,19 = 8.6, P < 0.01 Treatment: F1,41 = 16.9, P < 0.001

Day × treatment: F23,506 = 3.2,
P < 0.05

Day × treatment: F23,437 = 2.2,
P < 0.01

Sex: F1,41 = 0.5, P = 0.4

Treatment × sex: F1,41 = 0.2,
P = 0.6

Day × treatment: F23,943 = 2.8,
P < 0.01

Day × sex: F23,943 = 1.3, P = 0.2

Day × sex × treatment: F23,943 = 0.4,
P = 0.8

Grip
strength

Figure 1C Day: F9,198 = 3.3, P < 0.001 Figure 1D Day: F9,171 = 3.7, P < 0.001 Day: F9,369 = 5.8, P < 0.001

Treatment: F1,22 = 2.0, P = 0.17 Treatment: F1,19 = 7.3, P < 0.05 Treatment: F1,41 = 8.2, P < 0.01

Day × treatment: F9,198 = 1.2, P = 0.3 Day × treatment: F9,171 = 1.3,
P = 0.2

Sex: F1,41 = 32.7, P < 0.001

Treatment × sex: F1,41 = 0.7,
P = 0.4

Day × treatment: F9,369 = 1.9,
P < 0.05

Day × sex: F9,369 = 1.2, P = 0.2

Day × sex × treatment: F9,369 = 0.6,
P = 0.7

Weight Figure 1E Day: F22,484 = 16.0, P < 0.001 Figure 1 F Day: F22,418 = 49.7, P < 0.001 Day: F22,902 = 54.4, P < 0.001

Treatment: F1,22 = 0.2, P = 0.6 Treatment: F1,19 = 0.06, P = 0.8 Treatment: F1,41 = 0.2, P = 0.6

Day × treatment: F22,484 = 0.8,
P = 0.5

Day × treatment: F22,418 = 0.6,
P = 0.9

Sex: F1,41 = 1.4, P = 0.2

Treatment × sex: F1,41 = 0.005,
P = 0.9

Day × treatment: F22,902 = 0.6,
P = 0.7

Day × sex: F22,902 = 3.2, P < 0.01

Day × sex × treatment: F22,902 = 0.7,
P = 0.6

Mechanical
thresholds

Figure 2A Day: F9,198 = 4.2, P < 0.001 Figure 2B Day: F9,171 = 2.0, P < 0.05 Day: F9,369 = 4.8, P < 0.001

Treatment: F1,22 = 13.8, P < 0.01 Treatment: F1,19 = 1.3, P = 0.2 Treatment: F1,41 = 10.2, P < 0.01

Day × treatment: F9,198 = 4.5,
P < 0.001

Day × treatment: F9,171 = 0.5,
P = 0.8

Sex: F1,41 = 7.3, P < 0.05

Treatment × sex: F1,41 = 1.6,
P = 0.2

Day × treatment: F9,369 = 2.8,
P < 0.01

Day × sex: F9,369 = 0.8, P = 0.5

Day × sex × treatment: F9,369 = 1.1,
P = 0.3

Acetone
withdrawal

Figure 2C Day: F9,198 = 14.5, P < 0.001 Figure 2D Day: F9,171 = 7.0, P < 0.001 Day: F9,369 = 20.2, P < 0.001

Treatment: F1,22 = 6.5, P < 0.05 Treatment: F1,19 = 0.02, P = 0.8 Treatment: F1,41 = 2.7, P = 0.16

Day × treatment: F9,198 = 8.2,
P < 0.001

Day × treatment: F9,171 = 0.6,
P = 0.6

Sex: F1,41 = 22.5, P < 0.001
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Table 1 Statistics for experiment 1 (Continued)

Treatment × sex: F1,41 = 3.4,
P = 0.07

Day × treatment: F9,369 = 4.3,
P < 0.001

Day × sex: F9,369 = 1.6, P = 0.13

Day × sex × treatment: F9,369 = 5.2,
P < 0.001

Heat latency Figure 2E Day: F3,66 = 0.06, P = 0.9 Figure 2F Day: F3,57 = 1.8, P = 0.14 Day: F3,123 = 1.052, P = 0.3

Treatment: F1,22 = 0.7, P = 0.3 Treatment: F1,19 = 0.2, P = 0.5 Treatment: F1,41 = 0.01, P = 0.8

Day × treatment: F3,66 = 1.8,
P = 0.15

Day × treatment: F3,57 = 0.2,
P = 0.8

Sex: F1,41 = 2.1, P = 0.14

Treatment × sex: F1,41 = 0.9,
P = 0.3

Day × treatment: F3,123 = 1.5,
P = 0.19

Day × sex: F3,123 = 1.1, P = 0.3

Day × sex × treatment: F3,123 = 0.3,
P = 0.8

AUC Figure 2G Mechanical thresholds: one-way
ANOVA: F3,41 = 11.1, P < 0.001

Figure 2H Acetone withdrawal: one-way
ANOVA: F3,41 = 13.2, P < 0.001

Heat latency: one-way ANOVA:
F3,41 = 0.8, P = 0.4 (Figure 2I)

Treatment conditions: CFA (females n = 13, males n = 10), CFA +MOG35-55 (females n = 11, males n = 11). AUC area under the curve.
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immunization through the final testing day. AUC trans-
formations were performed to differentiate the effects of
MOG35-55 from those of the CFA control condition and
to graphically illustrate changes observed in female
MOG35-55 mice relative to same-sex controls and male
mice from both treatment conditions (Figures 1 and 2).

Experiment 2
Data were analyzed with a two-way RM ANOVA com-
paring treatment (MOG35-55 vs. CFA) and time. For the
data of Figure 3, due to the difference in animal num-
bers (BL–43 days: n = 17–18/group; 60–90 days: n = 8–
9/group, see ‘Methods’ section), separate analyses were
conducted for each of these two time intervals (Table 2).
If the two-way RM ANOVA revealed a main effect of
treatment or treatment-by-time interaction, then one-
way ANOVAs were performed to compare treatment
conditions at each time point. Estrous data (classified via
vaginal lavage, Figure 4) was analyzed with two-way
ANOVAs comparing treatment condition (MOG35-55 vs.
CFA) and estrous phase (proestrus vs. non-proestrus)
(Figure 5; Table 3). When the interactions of treatment
by estrous were present, a one-way ANOVA was per-
formed followed by a Bonferroni correction. In the small
number of instances where estrous phase could not be
determined due to technical problems (9 cases out of
245), data could not be considered for the analysis sum-
marized in Figure 5 (this accounts for differences in ani-
mal numbers in the statistics shown in Table 3). AUC
transformations examining the effects of estrous phase
on neurological motor deficits and pain-like behaviors at
representative time points, randomly selected at each
week of estrous monitoring, were analyzed with a one-
way ANOVA.
The Greenhouse-Geisser correction was applied to all

RM ANOVAs, where the epsilon value from Mauchly’s
test of sphericity was <0.75, and the significance level
was P < 0.05 (the assumption of sphericity was violated).
In these cases where the Greenhouse-Geisser correction
factor was applied, degrees of freedom reported reflect
the uncorrected values. AUC data were analyzed with
one-way ANOVAs followed by Bonferroni correction.
SPSS 19.0 (SPSS Inc., Chicago, IL, USA) statistical soft-
ware was employed. P < 0.05 was considered statistically
significant.

Results
Experiment 1: sex differences in the EAE model
MOG35-55 produces neurological motor dysfunction in both
females and males

Clinical scores As illustrated in Table 1, three-way RM
ANOVA comparing sex (female vs. male) by treatment
(MOG35-55 vs. CFA) by time revealed that MOG35-55 pro-
duced greater neurological motor impairments (muscle
weakness/paralysis) relative to CFA (P < 0.001; main effect
of treatment) over the 3-week time course (P < 0.01;
treatment-by-time interaction). Although female EAE
mice began to show neurological motor deficits relative to
same-sex CFA controls on day 10, whereas male EAE
mice did not begin to show these same deficits relative to
same-sex CFA controls until day 14, this conclusion is
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Figure 1 EAE-induced neurological motor deficits are similar between 3–4-month-old female and male C57BL/6 mice. Administration of
the EAE-inducing agent myelin oligodendrocyte glycoprotein 35–55 (MOG35-55) was associated with neurological motor deficits as assessed with
a clinical scoring system in female (A) and male (B) mice. Weak effects were also observed on grip strength (C and D, but see Figure 3B for significant
effects at later time points). No differences in body weight were observed between the animals that received MOG35-55 versus CFA in either
female (E) or male (F) mice. MOG35-55 injections began on day 0. BL baseline. Values represent mean ± SEM. ★P < 0.05 compared to sex- and
age-matched CFA control (one-way ANOVA). N = 10–13/group.
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Figure 2 EAE induces mechanical and cold hypersensitivity in female, but not male C57BL/6 mice. Administration of MOG35-55 increased
sensitivity to mechanical and cold stimulation in females (A and C, respectively), but not their male counterparts (B and D, respectively) relative
to CFA sex- and age-matched controls. MOG35-55 did not alter paw withdrawal latencies in response to radiant heat in either female (E) or male
(F) mice as compared to CFA age- and sex-matched controls. Area under the curve (AUC) analyses on days 7–21 examining sensitivity to
mechanical (G) and cold (H) and days 10–16 examining thermal stimulation (I) in females (F) and males (M). MOG35-55 injections began on day 0.
BL baseline. Values represent mean ± SEM. ★★★P < 0.001, ★★P < 0.01, and ★P < 0.05 compared to sex- and age-matched CFA control (one-way
ANOVA) or comparison as indicated in AUC figures (one-way ANOVA and Bonferroni Correction). N = 10–13/group.
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tentative because we found no main effect of sex and no
interaction of sex by treatment by time (both P > 0.05;
Table 1). As illustrated in Figure 1A,B, subsequent two-
way RM ANOVAs revealed that bilateral flank injections
of CFA produced small neurological motor function defi-
cits in either females or males, such as hanging tail or im-
paired righting reflex. MOG35-55 treatment produced
greater impairments relative to CFA controls, including
mild paralysis of one or both limbs, in female (P < 0.01;
Table 1; Figure 1A) and male (P < 0.01; Table 1; Figure 1B)
mice over the 3-week evaluation period (females, P < 0.05;
males, P < 0.01; treatment-by-time interaction; Table 1).

Grip strength As illustrated in Table 1, three-way RM
ANOVA comparing sex (female vs. male) by treatment
(MOG35-55 vs. CFA) by time revealed that both female
and male EAE mice presented with decreased forelimb
grip strength when compared to the CFA controls (P <
0.01) over the 3-week time course (P < 0.05; treatment-
by-time interaction). Male mice demonstrated greater
forelimb grip strength values relative to females (P <
0.001; main effect of sex), consistent with the previous
finding that male mice have greater muscular strength
than females [38]. However, MOG35-55 did not interact
with sex: there was neither a sex-by-time interaction,
treatment-by-sex interaction, nor a sex-by-treatment-by-
time interaction (all P > 0.05; Table 1). As illustrated in
Figure 1C,D, subsequent two-way RM ANOVAs indi-
cated that MOG35-55 treatment, relative to sex-matched
CFA controls, did not significantly impact responses in
females (P = 0.1; Figure 1C), whereas an effect of treat-
ment was evident in males (P < 0.05; Table 1; Figure 1D).
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Figure 3 EAE-induced neuropathic pain-like behaviors persist for 6 weeks in female C57BL/6 mice. Administration of MOG35-55 increased
neurological motor deficits (A) and decreased forelimb grip strength (B), but did not change weight gain (C) relative to CFA controls. Female
mice that received MOG35-55 displayed decreased mechanical withdrawal thresholds (D) and increased duration of response to acetone
stimulation (E) when compared to CFA-treated controls. Response to heat stimulation did not differ between mice that received MOG35-55 or CFA
alone (F). MOG35-55 injections began on day 0. BL baseline. Values represent mean ± SEM. ★P < 0.05 compared to sex- and age-matched CFA
control (one-way ANOVA). N = 8–18/group.
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The trend of MOG35-55-induced decreases on grip
strength for females at later time points is confirmed in
Figure 3A.
Body weight Three-way RM ANOVA comparing sex
(female vs. male) by treatment (MOG35-55 vs. CFA) by
time revealed no differences in weight between MOG35-55



Table 2 Statistics for experiment 2

Measure Two-way RM ANOVA (treatment × time (BL–day 43)) Two-way RM ANOVA (treatment × time (days 60–90))

Clinical scores Figure 3A Day: F37,1221 = 21.3, P < 0.001 Day: F2,30 = 0.8, P = 0.4

Treatment: F1,33 = 21.7, P < 0.001 Treatment: F1,15 = 0.003, P = 0.9

Day × treatment: F37,1221 = 4.1, P < 0.001 Day × treatment: F2,30 = 1.7, P = 0.19

Grip strength Figure 3B Day: F13,429 = 17.9, P < 0.001 Day: F2,30 = 4.7, P < 0.05

Treatment: F1,33 = 22.6, P < 0.001 Treatment: F1,15 = 0.16, P = 0.6

Day × treatment: F13,429 = 0.9, P = 0.5 Day × treatment: F2,30 = 1.4, P = 0.2

Weight Figure 3C Day: F36,1188 = 76.3, P < 0.001 Day: F2,30 = 17.1, P < 0.001

Treatment: F1,33 = 1.0, P = 0.3 Treatment: F1,15 = 0.5, P = 0.4

Day × treatment: F36,1188 = 0.5, P = 0.9 Day × treatment: F2,30 = 0.6, P = 0.4

Mechanical thresholds Figure 3D Day: F13,429 = 5.5, P < 0.001 Day: F2,30 = 30.4, P = 0.06

Treatment: F1,33 = 20.9, P < 0.001 Treatment: F1,15 = 0.5, P = 0.4

Day × treatment: F13,429 = 2.8, P < 0.01 Day × treatment: F2,30 = 1.0, P = 0.3

Acetone withdrawal Figure 3E Day: F13,429 = 11.1, P < 0.001 Day: F2,30 = 0.5, P = 0.5

Treatment: F1,33 = 8.9, P < 0.01 Treatment: F1,15 = 0.2, P = 0.6

Day × treatment: F13,429 = 2.0, P = 0.06 Day × treatment: F2,30 = 1.6, P = 0.2

Heat latency Figure 3F Day: F7,231 = 1.8, P = 0.07 -

Treatment: F1,33 = 1.9, P = 0.17

Day × treatment: F7,231 = 0.3, P = 0.9

Treatment conditions: CFA, n = 17 (BL–day 43) or n = 8 (days 60–90). CFA +MOG35-55, n = 18 (BL–day 43) or n = 9 (days 60–90).
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and CFA controls (P = 0.6; Table 1); as expected, males did
gain weight throughout the course of the study at a more
rapid rate than their female counterparts (P < 0.01; sex-by-
time interaction; Table 1). Subsequent two-way RM ANO-
VAs comparing treatment by time also found no differ-
ences in body weight between animals treated with
A

B

Figure 4 CFA transiently increased the time spent in diestrus.
Representative traces of female mice that received either CFA (A) or
CFA + MOG35-55 (B). Note that estrous cycling resumed 2 weeks after
CFA or CFA + MOG35-55.
MOG35-55 vs. CFA (females: P = 0.6, Table 1, Figure 1E;
males: P = 0.8, Table 1, Figure 1F) over the 3-week time
course for either sex.

EAE produces mechanical and cold hypersensitivity in
female, but not male mice
No study to date has evaluated sex differences in re-
sponse to mechanical, cold, and thermal stimulation in
male and female mice using the MOG35-55-induced EAE
model.

Mechanical hyperalgesia As illustrated in Table 1,
three-way RM ANOVA comparing sex by treatment by
time revealed higher mechanical withdrawal thresholds
in males than females (P < 0.05; main effect of sex) and
in MOG35-55-treated animals compared to CFA controls
(main effect of treatment: P < 0.01; interaction of treat-
ment by time: P < 0.01). Two-way RM ANOVAs revealed
that MOG35-55 treatment decreased mechanical with-
drawal thresholds in females (P < 0.01 vs. CFA controls;
Table 1; Figure 2A) from days 11–21 post-immunization
(P < 0.001; treatment-by-time interaction; Table 1) relative
to sex-matched CFA controls; by contrast, MOG35-55 did
not decrease mechanical withdrawal thresholds in males
(P = 0.2; Table 1; Figure 2B). One-way ANOVA of AUC
for mechanical withdrawal thresholds on testing days 7–
21 visually confirms that female MOG35-55 mice presented
with lower thresholds than either males or sex-matched
female CFA controls (P < 0.001; Figure 2G).
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Figure 5 Proestrus produces protective effects in the EAE model at late time points. Neurological motor deficits (A), grip strength (C),
mechanical withdrawal thresholds (E), and responses to acetone application (G) in female mice analyzed across phases of the estrous cycle. Area
under the curve (AUC) analyses examining neurological motor deficits (B), grip strength (D), and sensitivity to mechanical (F) and cold (H)
stimulation in females analyzed across the phases of the estrous cycle. Non-proestrus includes the following phases: diestrus, metestrus, and
estrus. BL baseline. Values represent mean ± SEM. ***P < 0.001, **P < 0.01, *P < 0.05 main effect of treatment as indicated (two-way ANOVA
comparing treatment by estrous). ★★★P < 0.001, ★★P < 0.01, ★P < 0.05 comparison as indicated (one-way ANOVA and Bonferroni correction).
N = 3–16/group, except n = 2 in groups CFA proestrus and MOG35-55 proestrus on day 13.
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Cold hyperalgesia Three-way RM ANOVA comparing
sex by treatment by time revealed that cold hyperalgesia
was significantly impacted by sex, with females demon-
strating greater response withdrawal durations to acetone
application relative to their male counterparts (P < 0.001;
Table 1). A treatment-by-sex-by-time interaction suggests
that female, but not male, mice receiving MOG35-55 dem-
onstrated increased responsivity to acetone following
immunization (P < 0.001; Table 1). Two-way RM ANO-
VAs revealed that MOG35-55 increased the duration of



Table 3 Statistics for experiment 2 to determine the effects of estrous phase (proestrus vs. non-proestrus phases)

Two-way RM ANOVA (treatment × estrous)

BL Day 7 Day 13 Day 21 Day 29 Day 35 Day 42

Clinical scores, Figure 5A

Treatment F1,28 = 0.2, P = 0.6 F1, 27 = 2.0, P = 0.16 F1,30 = 1.09, P = 0.3 F1,30 = 10.3, P < 0.05 F1,31 = 8.5, P < 0.01 F1,31 = 0.5, P = 0.4 F1,31 = 2.2, P = 0.1

Estrous F1,28 = 0.2, P = 0.6 F1, 27 = 0.5, P = 0.4 F1,30 = 0.2, P = 0.5 F1,30 = 0.6, P = 0.4 F1,31 = 1.1, P = 0.2 F1,31 = 3.0, P = 0.09 F1,31 = 2.8, P = 0.053

Treatment × estrous F1,28 = 0.2, P = 0.6 F1, 27 = 0.001, P = 0.9 F1,30 = 1.09, P = 0.3 F1,30 = 0.6, P = 0.4 F1,31 = 0.2, P = 0.9 F1,31 = 3.7, P = 0.6 F1,31 = 3.7, P < 0.05

Grip strength, Figure 5C

Treatment F1,28 = 0.3, P = 0.5 F1. 27 = 2.7, P = 0.1 F1,30 = 0.09, P = 0.7 F1,30 = 11.0, P < 0.05 F1,31 = 19.8, P < 0.001 F1,31 = 5.8, P < 0.05 F1,31 = 6.4, P < 0.05

Estrous F1,28 = 0.04, P = 0.8 F1, 27 = 0.7, P = 0.3 F1,30 = 0.6, P = 0.4 F1,30 = 0.002, P = 0.9 F1,31 = 0.05, P = 0.8 F1,31 = 0.1, P = 0.7 F1,31 = 0.1, P = 0.7

Treatment × estrous F1,28 = 0.3, P = 0.5 F1, 27 = 0.06, P = 0.8 F1,30 = 2.1, P = 0.15 F1,30 = 0.5, P = 0.4 F1,31 = 0.02, P = 0.8 F1,31 = 0.009, P = 0.9 F1,31 = 0.02, P = 0.8

Mechanical thresholds, Figure 5E

Treatment F1,28 = 0.08, P = 0.7 F1, 27 = 4.2, P < 0.05 F1,30 = 0.7, P = 0.3 F1,30 = 7.4, P < 0.05 F1,31 = 25.9, P < 0.001 F1,31 = 2.0, P = 0.16 F1,31 = 3.5, P = 0.07

Estrous F1,28 = 0.9, P = 0.3 F1, 27 = 0.4, P = 0.4 F1,30 = 2.3, P = 0.13 F1,30 = 0.09, P = 0.7 F1,31 = 5.2, P < 0.05 F1,31 = 3.1, P = 0.08 F1,31 = 0.2, P = 0.6

Treatment × estrous F1,28 = 0.001, P = 0.9 F1, 27 = 0.09, P = 0.7 F1,30 = 0.1, P = 0.7 F1,30 = 1.5, P = 0.2 F1,31 = 8.7, P < 0.01 F1,31 = 2.1, P = 0.14 F1,31 = 2.6, P = 0.11

Acetone withdrawal, Figure 5G

Treatment F1,28 = 0.1, P = 0.7 F1,27 = 1.9, P =0.17 F1,30 = 4.2, P < 0.05 F1,30 = 4.2, P < 0.05 F1,31 = 5.2, P < 0.05 F1,31 = 1.0, P = 0.3 F1,31 = 7.2, P < 0.05

Estrous F1,28 = 0.01, P = 0.9 F1,27 = 0.000, P = 0.9 F1,30 = 0.01, P = 0.9 F1,30 = 0.02, P = 0.6 F1,31 = 0.001, P = 0.9 F1,31 = 0.8, P = 0.7 F1,31 = 0.09, P = 0.7

Treatment × estrous F1,28 = 0.9, P = 0.3 F1,27 = 0.06, P = 0.7 F1,30 = 0.001, P = 0.9 F1,30 = 1.2, P = 0.2 F1,31 = 0.2, P = 0.6 F1,31 = 3.7, P = 0.06 F1,31 = 6.3, P < 0.05

AUC Clinical scores: Grip strength: Mechanical thresholds: Acetone withdrawal:

one-way ANOVA: one-way ANOVA: one-way ANOVA: one-way ANOVA:

F3,44 = 8.8, P < 0.001 F3,44 = 5.3, P < 0.01 F3,44 = 5.8, P < 0.01 F3,44 = 2.8, P < 0.05

(Figure 5B) (Figure 5D) (Figure 5F) (Figure 5H)

Treatment conditions: CFA, n = 17; CFA +MOG35-55, n = 18. Estrous phase: proestrus (n = 4–18/day) or non-proestrus phases (n = 17–30/day). AUC area under the curve.
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response following acetone application to the hind
paws in female mice relative to sex-matched CFA con-
trols (P < 0.05; Table 1; Figure 2C) observed on days 13–
21 (P < 0.001; treatment-by-time interaction; Table 1); no
alterations in response duration were observed in male
mice (P = 0.8; Table 1; Figure 2D). One-way ANOVA of
AUC over testing days 7–21 confirmed that cold response
duration was greater in female MOG35-55 mice relative to
sex-matched CFA controls and males (P < 0.001; Table 1;
Figure 2H).

Heat responses Three-way RM ANOVA of heat stimu-
lation responses yielded no main effects of either sex
(P = 0.14; females, Figure 2E; males, Figure 2F; Table 1)
or treatment (P = 0.8; Table 1). AUC analysis of with-
drawal latency to thermal stimulation also failed to yield
differences (P = 0.4; one-way ANOVA; Table 1; Figure 2I).

Experiment 2: time course of EAE and effects of estrous
state
Extended time course of EAE-induced neuropathic pain-like
behavior in female mice
The time course of previous studies of neuropathic pain
in EAE models are generally limited to 1 month or less,
allowing a description of the onset and peak of hyper-
algesia, but not remission [24,28]. The one exception is a
MOG35-55 study that followed mice over a 50-day time
course; although mechanical allodynia decreased over
this time period, full remission did not occur [23]. To
determine the duration of neuropathic pain-like behav-
iors and their correlation with neurological motor im-
pairment, we repeated our measurements of sensory and
motor functions in females—this time with a time
course of 90 days—and analyzed the data with two-way
RM ANOVA.

Clinical scores As illustrated in Figure 3, MOG35-55

treatment induced neurological motor deficits (P < 0.001;
Table 2; Figure 3A). Motor impairments varied with time
(P < 0.001; treatment-by-time interaction; Table 2); be-
ginning on day 10 and lasting through day 35, deficits
re-appeared for one additional day (day 43). We note a
trend of increased neurological motor impairments in
mice receiving MOG35-55 on days 35–38 (P < 0.10 for
each comparison). Subsequent evaluations between days
60 and 90 failed to yield differences between the
MOG35-55 and CFA mice (P = 0.19; Table 2).

Grip strength MOG35-55 consistently decreased fore-
limb grip strength (P < 0.001; Table 2; Figure 3B) from
days 17–42 (P < 0.05 for each comparison), with two
earlier time points (days 3 and 11) also showing a differ-
ence. Later time points failed to yield differences in grip
strength between female MOG35-55 and CFA mice (P = 0.2;
Table 2).

Body weight MOG35-55 did not alter body weight when
compared to CFA controls (P = 0.3; Table 2; Figure 3C).

Mechanical hyperalgesia MOG35-55 decreased mech-
anical withdrawal thresholds relative to CFA controls
(P < 0.001; Table 2; Figure 3D) beginning on day 5 and
continuing through day 42 (P < 0.01; treatment-by-time
interaction; Table 2), with no differences over days 60–90
(P = 0.3; Table 2).

Cold hyperalgesia MOG35-55 increased the responsive-
ness to topical acetone application (P < 0.01; Table 2;
Figure 3E) beginning on day 7 and lasting through day
42 (P < 0.05 for each comparison), with no differences
over days 60–90 (P = 0.2; Table 2).

Heat responses Compared to the CFA controls,
MOG35-55 did not produce heat hypersensitivity (Table 2;
Figure 3F) through day 43 (P = 0.9); therefore, heat testing
was discontinued.

EAE is associated with fewer neurological motor deficits
during proestrus
Little is known about the relationship between estrous
cycle and neuropathic pain-like behaviors in animal
models of MS. To address this question, we evaluated
mechanical and cold allodynia while monitoring the es-
trous cycle. As illustrated in Figure 4, female mice that
received either CFA (Figure 4A) or CFA +MOG35-55

(Figure 4B) demonstrated prolonged periods of time
spent in the diestrus phase as classified by vaginal lavage.
This is consistent with previous reports indicating that
intraplantar CFA prolonged the leukocytic phase of the
estrous cycle [39]. Within approximately 14 days after
initial CFA or CFA +MOG35-55 administration, estrous
cycling returned to normal. The CFA-induced prolonga-
tion of diestrus resulted in unequal representation of the
estrous phases within our study. Therefore, in order to
investigate effects of the phase with the greatest hormo-
nal fluctuations, we chose to bin our analyses into proes-
trus (progesterone, estradiol, and luteinizing hormone
surge) and ‘non-proestrus’ phases (diestrus, metestrus,
and estrus). The effect of estrous phase on neurological
motor deficits and pain-like behaviors were further ana-
lyzed using two-way ANOVA. Though the treatment
condition (MOG35-55 vs. CFA) was consistent at each
time point, the animals classified as being within proes-
trus or non-proestrus was not constant. Thus, the num-
ber of animals in each of the different phases of estrous
varied at each post-immunization time point. Therefore,
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it was not possible to analyze our data by RM ANOVA
with time as the repeated measure.

Clinical scores As illustrated in Figure 5A,B, two-way
ANOVAs at each time point confirmed that MOG35-55,
compared to CFA controls, produced neurological motor
deficits, significantly on days 21 and 29 (P < 0.05;
Table 3). We found an estrous-by-treatment interaction
on day 42 (P < 0.05; Table 3), but when the same data
were subjected to a one-way ANOVA, no significance
was noted (F3,34 = 1.0, P = 0.3). One-way ANOVA of all
time points, transformed as AUC, suggests that proes-
trus was protective against neurological motor deficits in
MOG35-55 animals (P < 0.001; bottom row of Table 3);
however, this conclusion is presented with caution as we
did not find a significant main effect of estrous at any
particular time point (P > 0.05).

Grip strength MOG35-55 reduced forelimb grip strength
at several time points (day 21: P < 0.05; day 29: P < 0.001;
day 35: P < 0.05; day 42: P < 0.05; Table 3). However, grip
strength did not change with estrous cycle at any par-
ticular day (effect of estrous: P > 0.3 for all time points,
Table 3; estrous-by-treatment interaction P > 0.15 for all
time points, Table 3) (Figure 5C). Analysis of grip
strength data using AUC revealed that proestrus was asso-
ciated with lower grip strength values as compared to non-
proestrus in CFA controls (P < 0.01; one-way ANOVA;
Figure 5D).

Mechanical hyperalgesia MOG35-55 reduced mechan-
ical thresholds on days 7, 21, and 29 (P < 0.05; Table 3).
When the data was transformed as AUC, we found a
main effect of MOG35-55 (P < 0.01; Table 3; Figure 5E,F).
On day 29, two-way ANOVA revealed an effect of es-
trous (P < 0.05; Table 3) and an estrous-by-treatment
interaction (P < 0.01; Table 3; Figure 5E); however, we
caution against over-interpretation of this result since
this occurred at just one time point, and AUC trans-
formation yielded no effect of estrous over multiple test-
ing days.

Cold hyperalgesia MOG35-55 increased the response to
cold stimulation on days 13, 21, 29, and 42 (P < 0.05;
Table 3; Figure 5G). Although we found an interaction
of treatment by estrous on day 42 (P < 0.05; Table 3), the
conclusions are tentative as there was no main effect of
estrous on cold stimulation at any particular time point
(P > 0.6 for each time point; Table 3). A subsequent one-
way ANOVA revealed that cold hyperalgesia was greater
in the MOG35-55-proestrus animals as compared to
CFA-proestrus animals on day 42 (F3,34 = 3.7, P < 0.05).
When all time points were transformed as AUC, we found
a main effect of group (P < 0.05; Table 3; Figure 5H);
however, subsequent post hoc analysis did not reveal sig-
nificant differences between groups (P > 0.05 for each
comparison).

Discussion
To date, no study has rigorously characterized the ef-
fects of sex and estrous state on the development, dur-
ation, and severity of pain symptoms associated with
MOG35-55-induced EAE. Our present study addressed
this gap with behavioral assessment of sensory and
motor functions in C57BL/6 female mice for 3 months
after induction of EAE with MOG35-55 immunization
and compared select time points with males. We report
four general findings. First, in experiment 1, MOG35-55

produced neurological motor impairments in both fe-
males and males, including mild paralysis of hind limbs
and decreases in forelimb grip strength (particularly in
experiment 2). Second, MOG35-55 produced mechanical
and cold hypersensitivity only in females. Third, the dur-
ation of pain-like behavior in 3–4-month-old (at study
onset) C57BL/6 female mice in experiment 2 was
42 days. Subsequent studies using younger female mice
have yielded much longer durations of pain-like behavior
(unpublished observations from our laboratory). Fourth,
experiment 2 revealed that MOG35-55 produced less
neurological motor dysfunction when female mice were
in the proestrus phase.

Sex differences in the clinical manifestations of EAE
Multiple sclerosis is a disease dominated by female pa-
tients with a 2:1 prevalence in females relative to males.
Our study tested the hypothesis that neurological motor
impairment would be greater in females in the most
commonly utilized animal model of MS, the mouse
MOG35-55 EAE model [21,28,40]. As described previ-
ously, we found that MOG35-55 produced motor dys-
function, characterized by mild paralysis of one or both
hind limbs [28], for review see [41]. And, in agreement
with one previous study [33], we found that MOG35-55

decreased grip strength, an effect most evident 2–3 weeks
after initial immunization. This robust behavior per-
sisted in females for up to 42 days post-immunization
(Figure 3B).
Similar to the results of Okuda and colleagues, we

found that MOG35-55 produced motor impairments and
decreases in grip strength in both male and female
C57BL/6 mice, indicating an absence of sex differences
in EAE severity; however, in our study, females devel-
oped neurological deficits as reported with a clinical
scoring assessment 4 days prior to the development of
such deficits in males when the mice are compared to
same-sex CFA controls, whereas they reported no differ-
ence in onset of clinical deficits [20]. By contrast, female
SJL and ASW mice develop more severe clinical
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symptoms than males when treated with the EAE-
inducing encephalitogenic peptides myelin basic protein
(MBP) and proteolipid protein (PLP), respectively [21].
Conversely, males develop more severe neurological defi-
cits (bilateral hind limb paralysis) in the TMEV model, a
mouse model of progressive MS [22]. Further studies are
needed to determine the importance of immunization
protocol, dose of adjuvant, mouse strain, age, and other
factors on sex differences in murine models of MS.

Sex differences in EAE-induced mechanical and cold
hypersensitivity
MS is one of many disease states which show a particu-
larly high prevalence of pain in women [42], necessitating
investigation of sex-associated hypersensitivity in preclin-
ical MS models. Our study is the first to compare EAE-
associated nociception between male and female mice
using a MOG35-55 immunization protocol. For two rea-
sons, we feel it unlikely that these pain-like behaviors were
indirectly inhibited by concomitant neurological motor
deficits. First, we found that pain-like behaviors occurred
prior to the onset of clinical signs, in accordance with pre-
vious observations. Second, we observed robust nocicep-
tive responses despite motor deficits.
As observed previously by Olechowski and colleagues

[28], we found that MOG35-55, as compared to sex- and
age-matched CFA controls, produced hypersensitivity to
mechanical and cold stimulations in 3–4-month-old
C57BL/6 female mice. In females, hyperalgesia was
present up to 42 days following initial immunization,
and subsided by 60 days, with no relapse noted by day
90. Remarkably, we did not observe hyperalgesia in their
male MOG35-55 counterparts. Our results are consistent
with the finding that female SLJ/J mice in the TMEV
model of multiple sclerosis exhibited a faster onset and
greater peak of mechanical allodynia as compared to
males [22,43]. Similarly, heat hyperalgesia was more pro-
nounced in females in the PLP model of EAE in SJL
mice [24]. Our study did not reveal heat hypersensitivity,
perhaps due to different localization of the heat stimulus
in our study (hindpaw) vs. the previous study (tail and
forepaws) [24]. Olechowski and colleagues also reported
a lack of thermal hyperalgesia in MOG35-55 females that
nevertheless demonstrate robust mechanical and cold
allodynia [28].

Duration of pain-like behaviors in MOG35-55-induced EAE
To date, no study has examined neuropathic pain-like be-
haviors beyond 50 days, when minor mechanical allodynia
was noted in female subjects [23,24,28]. Here, we report
that mechanical and cold hyperalgesia may antedate, but
do not outlast MOG35-55-induced neurological motor im-
pairments. Both neuropathic pain-like behaviors and
neurological motor impairments were present up to 42 days
post-immunization, and we failed to observe a relapse;
however, further assessment beyond 90 days is needed to
determine whether our model reflects the relapsing-
remitting form of EAE.

Neurological motor impairment is dampened during
proestrus
The lack of information regarding the relationship be-
tween neurological deficits, pain behaviors, and estrous
cycle prompted our investigation of cycle-related alter-
ations in the sensory and motor disturbances associated
with EAE. In experiment 2, we observed that CFA ad-
ministration alone, or in combination with MOG35-55,
prolonged the time spent in diestrus, thereby halting
normal estrous cycling for 2 weeks—consistent with a
previous report [39]. Strikingly, neurological motor defi-
cits measured via daily clinical assessments were attenu-
ated during proestrus as compared to the other phases;
this protection was only evident with AUC transforma-
tions that allowed us to examine the more subtle effects
of estrous phase over multiple testing days. Because pro-
estrus is characterized by relatively high plasma levels of
estrogen and progesterone [44], our results are consist-
ent with the hypothesis that circulating ovarian hor-
mones decrease neurological motor deficits in female
MOG35-55 mice. Progesterone administered prior to EAE
immunization delayed onset and attenuates progression of
neurological deficits [45]. Work in the EAE models has
also demonstrated the possible role of estrogens/proges-
terone in promoting remyelination and reducing the pres-
ence of pro-inflammatory mediators (e.g., TNF-α) and
microglial activation [46-50], providing potential mecha-
nisms through which ovarian hormones may produce pro-
tection against neurological motor deficits.
We were unable to conclusively demonstrate estrous-

related alterations in pain behaviors. A veritable host of
studies have investigated sex- and hormone-related alter-
ations of somatosensation in other preclinical models of
chronic pain, with conflicting findings. Some studies re-
port greater hyperalgesic responses in females during
the proestrus phase [51,52], while others report antinoci-
ception associated with the proestrus phase [53] or with
the exogenous administration of estrogens [54-56]. More
investigations are necessary to determine how natural
and directed alterations in hormone levels may impact
EAE pain-like behaviors.
While our study is the first to report on estrous cycle

alterations in EAE-induced neurological motor dysfunc-
tion, our findings do have important commonalities with
clinical MS populations. A recent report examined men-
strual cycle effects on MS symptoms and found that
women taking oral contraceptives experienced increased
weakness, numbness, and tiredness during their menstrual
cycle when not taking oral steroids [3]. A similar study
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reported menstruation-related increases in MS symptoms,
including pain, in normal cycling women [5]. The onset of
menses is associated with low levels of estrogen and pro-
gesterone [57]; therefore, these studies collectively suggest
a worsening of symptoms when ovarian hormones are low
and, conversely, a potentially protective effect when levels
are high. These clinical studies parallel our findings in the
EAE model and point to the clinical therapeutic potential
offered from further investigations into mechanisms medi-
ating the protective and antinociceptive effects of ovarian
hormones in the EAE model.
It is well established that clinical symptoms of MS are at-

tenuated during pregnancy, likely due to elevations in estro-
gens and progesterone. This is followed by an increased
risk of postpartum relapse when levels of estrogens and
progesterone are low [6,58]. Similarly, studies in pregnant
SJL and C57BL/6 mice reported pregnancy-associated im-
provement in EAE symptoms and a subsequent increase
in postpartum relapse, concomitant with decreased estro-
gen levels [59,60]. Further, administration of estriol, an es-
trogen produced only during pregnancy, ameliorated
symptoms and lesions as assessed by magnetic resonance
imaging in non-pregnant female MS patients [61] and
clinical impairments in EAE mice [62,63]. It remains to be
investigated if pregnancy-induced remission in EAE symp-
toms would include reduction of hypersensitivity to cuta-
neous and cold stimulation, in addition to the possible
analgesic role that exogenously applied estrogens/proges-
terone may play.

Conclusions
In agreement with previous reports [24,28], for review
see [64], we conclude that the MOG35-55 EAE model in-
duces neurological motor dysfunction and neuropathic
pain-like behavior, similar to symptom profiles observed
in clinical MS populations. While male C57BL/6 mice
develop neurological motor impairments typical of the
EAE model, they fail to develop the neuropathic pain-
like behaviors observed in their female counterparts.
EAE-induced neurological motor impairments were re-
duced during the proestrus phase, a finding that war-
rants further investigations into the contributing role of
circulating ovarian hormones to EAE pathology. We
suggest that female C57BL/6 mice receive preference in
future studies of neuropathic pain-like behaviors associ-
ated with the MOG35-55 model of EAE. Care must be
taken to consider the effects that estrous cycling may
have on neurological motor deficits.
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