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Sex, stress, and epigenetics: regulation of
behavior in animal models of mood disorders
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Abstract

Women have a higher incidence of stress related disorders including depression and generalized anxiety disorder,
and epigenetic mechanisms likely contribute to this sex difference. Evidence from preclinical research suggests that
epigenetic mechanisms are responsible for both sexual dimorphism of brain regions and sensitivity of the stress
response. Epigenetic modifications such as DNA methylation and histone modifications can occur
transgenerationally, developmentally, or in response to environmental stimuli such as stress exposure. This review
will provide an overview of the various forms of epigenetic modifications observed in the central nervous system
and will explain how these mechanisms contribute to a sexually dimorphic brain. It will also discuss the ways in
which epigenetic alterations coincide with, and functionally contribute to, the behavioral response to stress across
the lifespan. Ultimately, this review will focus on novel research utilizing animal models to investigate sex
differences in epigenetic mechanisms that influence susceptibility to stress. Exploration of this relationship reveals
epigenetic mechanisms with the potential to explain sexual dimorphism in the occurrence of stress related
disorders.
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Introduction
Stress-related disorders such as major depression and
generalized anxiety affect over 20% of the American
population within their lifetime, and have an annual
prevalence approaching 10% [1]. Currently available
treatments for these disorders produce remission in only
40-60% of patients [2]. Therefore, a clear need exists for
novel therapeutic strategies that target the underlying
biology involved with vulnerability to depression and
anxiety [2]. Within the clinical populations presenting
for stress-related disorders, there is a higher incidence in
women compared to men [3]. One factor that may con-
tribute to the low response to treatment has been the
continued reliance on using male animals in preclinical
research. A recent meta-analysis of publications indi-
cated that 65% of studies in pharmacology and 55% of
neuroscience papers used male subjects exclusively [4].
Even within the uncommon cases where females were
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While females have a higher risk of developing stress-

related disorders, males are at greater risk of developing
early life social/cognitive behavior-related disorders such
as autism spectrum disorders [5] and attention deficit
disorders [6]. The consistency of the relationship be-
tween sex and age at which symptoms first occur sug-
gest some biological predetermination of risk, although
environmental experience also clearly plays a role in
modulating severity, at least for stress related disorders
[7]. To date, no genetic studies have demonstrated a
clear biological basis for any of these disorders. In light of
our inability to attribute these disorders to single poly-
morphisms within candidate genes, it is likely that these
complex disorders are due to myriad small changes in a
number of gene networks. Towards this end, a growing
body of research is investigating how epigenetic mechan-
isms may contribute to an individual’s stress response and
sex differences in brain development.
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What are epigenetic mechanisms?
Epigenetics refers to changes that alter gene transcrip-
tion in the absence of direct alterations to the genome
itself [8]. The term was originally used by Waddington
in 1942 to describe how a phenotype was produced by
an interaction of genes and their products, as it was
observed that genetic variation did not necessarily match
phenotypic variation [9]. Over time this definition has
shifted, and epigenetics is now more commonly used to
describe potentially heriable and functionally relevant
modifications of gene expression and chromatin structure
in the absence of changes in genetic composition [8,10].
There are a number of epigenetic mechanisms that

can modulate sex differences in response to stress. These
include DNA methyltransferases (Dnmts), which act dir-
ectly to suppress transcription or act in concert with
methyl-CpG binding domain (MBD) proteins that in
turn can recruit histones to modify access of transcription
factors to DNA. In addition micro RNAs are another epi-
genetic mechanism that contributes to sex differences in
the stress response and have been reviewed previously in
this journal [11]. A class of enzymes, Dnmts act by cata-
lyzing the addition of a methyl group to cytosine 5 result-
ing in the formation of 5-methylcytosine (5mC) [12]. In
mammals, DNA methylation generally occurs at CpG
islands distributed throughout gene promoter regions. In
normal mammalian development, 60-90% of CpG sites
are already methylated [12]. Addition of this methyl group
can lead to direct transcriptional silencing by occlusion of
DNA transcription factor binding sites. DNA methylation
is necessary for normal development and is involved in
such varied processes as x-inactivation, imprinting, tran-
scriptional repression, silencing of repetitive elements in
the genome and cancer development [13]. The Dnmt-
regulated epigenetic landscape is further complicated due
to the multiple classes of Dnmts present in the brain.
Dnmt 1-mediated methylation maintains methyl group
placement between progenitor and daughter cells [12].
Dnmt 3a and 3b are involved in de novo methylation, and
therefore can place methyl marks on previously non-
methylated DNA [12]. Dnmt 2 and 3-like (Dnmt 3 l) be-
long to the Dnmt family based on sequence homology
[14], but their roles in DNA methylation are poorly under-
stood and are involved in the repression of transcription
of retrotransposon elements [14] and methylating RNA
[15,16] respectively.
The majority of what is known about the functional

role of Dnmts comes from the literature on develop-
ment. Dnmt 1, 3a and 3b are necessary for normal pre-
natal development as lethality occurs in the mammalian
embryo following constitutive removal of Dnmt 1, Dnmt
3b or combined 3a/3b knockouts [17-19]. Dnmt 3a em-
bryonic knockouts can survive past birth, but die within
4 weeks [19]. Conditional knockouts using floxed mice
have allowed for examination of the role of Dnmts dur-
ing the postnatal period [20]. Specifically, during both
prenatal and early postnatal development, regulation of
DNA methylation is highly implicated in the formation
of the sexually differentiated brain [8]. Extending these
developmental time points, recent studies have begun to
examine an alternative role for these enzymes in adult
animals. For example, Dnmt expression contributes to
stress-related learning and memory [21] and the re-
sponse to stress itself [22] through transcriptional re-
pression. In general, changes brought about by Dnmts
are thought to be stable and long lasting. However, there
is recent evidence that Tet proteins act as demethylases
by converting 5mC to 5-Hydroxymethylcytosine (5hmC),
allowing the possibility for reversal of DNA methylation
[23,24] and removal of transcriptional repression that may
have functional significance.
In addition to acting directly on transcriptional targets,

Dnmts work in concert with MBD proteins to alter chro-
matin structure through recruitment of histone modifiers
[13]. The MBD protein family includes MBD1, MBD2,
MBD3 and MBD4 in addition to MeCP2, all based on
homology of the MBD amino acid sequence originally
identified in MeCP2 [13,25]. MeCP2 is an X-linked pro-
tein [26] whose mutation is implicated in the development
of Rett syndrome in humans [12]. MBD proteins, with the
exception of MBD3, bind preferentially to methylated
DNA [13]. The MBD proteins have numerous func-
tional roles, including both transcriptional suppression
and activation, as well as roles in nuclear organization,
x-inactivation and splicing [13]. Interestingly, there is evi-
dence from MeCP2 transgenic mice that mutations lead
to neuropathological defects that include reduced brain
size, motor dysfunction and seizures indicating an import-
ant role for these proteins in normal central nervous sys-
tem development [12,13]. Studies utilizing MBD1 null
mice have also indicated less severe neurological altera-
tions including reduced neurogenesis in the hippocampus
and deficits in spatial learning [13]. Transcriptional re-
pression by MBD proteins, such as MBD2 and MeCP2,
recruits histone deacetylase complexes (HDAC) and can
be altered by HDAC inhibition [13,27,28]. Currently, it is
proposed that MBD proteins, and in particular MeCP2,
act both through recruiting enzymes that modify histone
structure and by directly changing the structure of chro-
matin leading to a more condensed state [28].
Whereas Dnmt and MBD-modulated transcriptional

repression may be long lasting and potentially perman-
ent, in some cases modifications to the histone architec-
ture appear to be a more dynamic epigenetic alteration
of the transcriptome. Nucleosomes, which are composed
of DNA wrapped around an octamer histone core, are
the basic unit of chromatin [12]. Each histone has a N-
terminal tail that projects outward, making it accessible
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to modifying enzymes that adjust the structure of the
chromatin, depending upon the enzymatic process and
the amino acid at which it occurs. These enzymatic
alterations include methylation, acetylation, ubiquitina-
tion, phosphorylation and sumoylation, among others
[8]. Whereas DNA methylation generally results in tran-
scriptional suppression, histone methylation can be ei-
ther transcriptionally permissive or repressive depending
upon the type of histone, the location of the amino acid,
and the number of modifications [10]. Histone acetyl-
ation is generally thought to be an activating mark that
can lead to a relaxed chromatin state and increased tran-
scription [10]. Histone deacetylation removes acetyl
groups and can lead to a more condensed heterochro-
matic state suppressing transcription [10]. The histone
code hypothesis postulates that modifications to histone
tail residues may act in concert to create “on/off”
switches that alter transcriptional tone through physical
manipulation of the chromatin structure [29]. Specific-
ally, when in the “on” state these changes in chromatin
structure lead to enhanced transcription factor access to
the DNA that is wound around the histone core. Con-
versely, in the “off” state, the histone architecture pro-
motes more tightly wound DNA, leading to decreased
transcription factor access and suppression of transcrip-
tion. It has been hypothesized that histone modifications
differ between the sexes, and in addition to DNA methy-
lation, may serve an important function at certain stages
of development or through influences on biological pro-
cesses such as spermatogenesis [29]. There is evidence
that males and females use different methods to inacti-
vate X chromosomes in germ cells and that these strat-
egies involve different histone modifications [30].
Depending on the developmental stage at which the
alterations in chromatin structure occur, modifications
may lead to neuroanatomical changes in the organism
that last throughout its lifespan whereas other transcrip-
tional changes may be temporary and affect behavior
within specific circumstances.
Together, these epigenetic modifications potentially

allow the prenatal or postnatal environment to influence
the organism in the absence of genetic alterations. Epi-
genetic mechanisms can be transferred across genera-
tions or can have more immediate effects on the
individual. Epigenetics can lead to sex differences in
brain and body development [31] as well as sex-specific
effects of environmental influences [32]. Sex differences
in response to one such environmental influence—stress
—will be explored in the course of this review.

Epigenetic mechanisms and sexual differentiation of the
developing brain
Epigenetic modifications lead to sex differences by shap-
ing the neuroanatomy and steroid hormone receptor
distribution of the developing brain. The neonatal brain
is both masculinized and defeminized by a surge in go-
nadal hormones including testosterone [33,34]. This
surge results from expression of the sex-determining re-
gion Y (SRY) gene on the Y chromosome, which drives
testis development in the undifferentiated gonad. High
levels of circulating testosterone released by the testis
are then aromatized into estradiol within brain tissue
and this in turn organizes the brain along a male to fe-
male continuum [35]. The female brain and body are
prototypic and, in the absence of the surge in gonadal hor-
mones, both brain and body will develop as female. Also
present in females is a hormone-binding globulin, alpha
fetoprotein, that protects the brain from masculinization
by maternal estrogens [36].
One of the myriad effects of estradiol on the brain is

alteration of the expression of estrogen receptor alpha
(ERα) distribution in key brain regions linked to male
sexual behavior such as the preoptic area (POA) [37].
ERα expression levels are decreased in males compared
to females, and males show greater levels of DNA
methylation at some CpG sites along the ERα promoter
region [38]. Early postnatal (PND 2) estradiol exposure
of female pups results in a masculine pattern of ERα dis-
tribution and promoter methylation status [38]. How-
ever, in disagreement with these previous findings,
another lab exposing female pups to estradiol at the
same time point reported increased methylation status
of different CpG sites within the ERα promoter of the
POA in females compared to males [39]. Therefore, it is
likely a combination of activation and suppression at dif-
ferent sites on the promoter in males and females that
leads to a more masculinized or feminized brain to influ-
ence sexual behavior.
Activation of ER during the prenatal period leads to

the synthesis of prostaglandin E2 that in turn can per-
manently masculinize sexual behavior and the synaptic
profile of the POA [40]. In addition DNA methylation,
histone acetylation and deacetylation may also regulate
sex differences in ERα receptor expression and brain
masculinization. There are transient changes in the pat-
tern of acetylation for histone 3 and 4 in the promoter
regions of ERα and aromatase that differ in the male and
female brain during prenatal development [40]. Exposure
of male rats to an HDAC inhibitor decreased expression
of male sexual behavior in adulthood. This maintenance
of masculinization may occur through the actions of
HDACs 2 and 4 as they bind with greater frequency to
ERα and aromatase promoters in males than females [40].
Additional environmental factors such as maternal

grooming also strongly influence ERα distribution and
methylation of ERα promoter CpG islands [38]. Mater-
nal rats normally engage in greater grooming of the male
offspring’s anogenital region than female offspring [41].
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Female pups that are exposed to simulated anogenital
grooming show decreased ERα expression in the POA
compared to non-manipulated females, and increased
methylation of the ERα promoter [38]. It should be
noted that in addition to acting epigenetically on the
ERα in the POA, high attention maternal care can alter
methylation of the glucocorticoid receptor (GR) in the
hippocampus, and has been found to alter stress sensi-
tivity in adult male offspring [42]. Therefore, this envir-
onmental factor may act epigenetically in multiple brain
regions to alter sex specific sensitivity to stress, although
this hypothesis has yet to be tested.
Even though alterations in the histone landscape may

be transient, modifications occurring during critical de-
velopmental windows can permanently alter the brain.
Males and females have different spatiotemporal pat-
terns of histone methylation and acetylation in the cor-
tex and hippocampus on embryonic day 18 and at birth
[26]. Prenatal exposure to testosterone results in male-
like patterns of acetylation, but not methylation, in the
female cortex and hippocampus. Therefore, the com-
bined effects of hormones and histone modifications are
likely critically regulating transcription during this devel-
opmental window in brain regions associated with cog-
nitive and emotional processing. Given that the sex
differences in histone 3 lysine 9 (H3K9) acetylation con-
tinued to PND 6 but were not examined in adulthood,
and that the study lacks behavioral endpoints, further
research is needed to determine the role of this specific
histone modification. However, other studies have
demonstrated that the pattern of masculinization of the
principal nucleus of the Bed Nucleus of the Stria Ter-
minalis (BNSTp) is also dependent on a combination of
testosterone exposure on PND1 and H3 acetylation
[43]. Adult females have smaller BNSTp than males as
a result of cell death starting on PND 6. Testosterone
injection of females at birth can block this cell death
and lead to a masculinized BNSTp in adulthood [44].
Application of an HDAC inhibitor to males, or injec-
tion of testosterone in females on PND 0, resulted in a
feminized BNSTp in adulthood similar in size to con-
trol females. The BNST is necessary for the enhancing
effects of acute stress on cognition in males [45] and
masculinized females [44], but is not required for the
detrimental effects of the same stressor in non masculi-
nized females. Therefore, the epigenetic modifications
associated with masculinization of this region may also
contribute to developmental sex differences and the
effects of stress upon cognition, although this has not
yet been examined.
Both histone modifications and DNA methylation have

been shown to alter sexually dimorphic brain structures
during development. While these patterns of sexual di-
morphism have been examined within the context of
sexual behavior, there is a paucity of research on their
functional role in the formation of sex differences in
stress susceptibility. Future research should examine
how epigenetic modifications that alter neuroanatomy
affect vulnerability to stress in both sexes.

Epigenetic regulation of the behavioral response to
gestational and transgenerational stress
Epigenetic modifications are also involved in an indivi-
dual’s response to stress. This can be through develop-
mental [46] and transgenerational effects [32], or through
immediate effects on the organism [47] (Table 1). Variable
stressor exposure of the mother during early gestation
(PND 1–7) results in a dysmasculinzed behavioral stress
response in male offspring [48]. As adults, these males
show susceptibility to depression-associated behaviors,
including increased time spent immobile in the tail sus-
pension and forced swim tests, increased anhedonia, and
increased wariness when investigating their environment.
Further, these male offspring make cognitive behavioral
choices more similar to those of females than control
males [46,48]. Male offspring also show increased circulat-
ing levels of the stress hormone corticosterone (CORT)
and decreased GR expression in areas of the hippocampus
that undergo morphological alterations after exposure to
stress [49,50]. Gestationally stressed males had increased
corticosterone releasing factor (CRF) expression in the
central nucleus of the amygdala that has the potential to
contribute to dysregulation of the hormonal stress system
[46] as well as changes in neurotransmitter release and
circuitry with implications for other vulnerabilities such as
addiction [51] and anxiety [52]. Examination of DNA
methylation along the promoter regions for CRF and GR
found that methylation was site specifically decreased in
the CRF promoter, but increased in the GR promoter [46].
These data provide important correlational evidence that
prenatal stress can epigenetically alter the stress system
and its subsequent expression and function. These
changes reflect alterations in behavior that affect offspring
in a sex-specific manner. Some of the behavioral and tran-
scriptional alterations manifest in second generation male
mice (F2) bred from the prenatally stressed male offspring,
indicating a hereditary epigenetic mechanism of transge-
nerational transmission [32]. In particular, transcription of
HDACs was altered in male offspring bred from prenatally
stressed males such that the transcriptional profiles of
these offspring were more similar to females than control
males.
Another study examined transgenerational transmis-

sion of a stress- susceptible phenotype on the behavioral
responses of the offspring of males exposed to repeated
social defeat stress [53]. Repeated social defeat stress is an
animal model of stress-related disorders that results in so-
cial avoidance behavior, anhedonia, metabolic dysfunction



Table 1 Epigenetic modifications associated with stress

Stressor Sex Behavioral Physiological Epigenetic modifications

effects effects

Paternal Stress Male and female • Pro-depressant behavior in FST
(both sexes) [53]

• Increased basal CORT (males) [53] • Hypothesized but not examined.

• Decreased sucrose preference
(males) [53]

• Decreased VEGF (males) [53]

• Increased anxiety like behavior
(both sexes) [53]

• Increased locomotor activity
(males) [53]

• Increased social avoidance
(males) [53]

Gestational stress (PND 1-7) Male and female • Pro-depressant behavior in TST
(males F1 [46] and F2 generation [32])

• Increased CORT response to stress
(males-F1) [46]

• Decreased methylation of CRF promoter
region [46]

• Pro-depressant behavior in FST [46]
(males)

• Increased CRF expression in central
amygdala [46]

• Increased methylation in GR promoter
region [46]

• Altered navigation strategy for
Barnes maze [48]

• Decreased GR in regions of
hippocampus [46]

• Dysmasculinzed HDAC expression [32]

Early life stress
(extended separation)

Male and female • Pro-depressant behavior in FST [64] • Increased HPA activity [64] • Hypomethylation of Avp in
hypothalamus. [64]

• Decreased inhibitory avoidance [64] • Decreased neurogenesis [67] • Decreased MeCP2 binding in Avp
enhancer [64]

• Decreased spatial learning [65] • Hypermethylation of Avp in hippocampus
(males) [70]

• Hypomethylation of NR4a1 in
hippocampus (C57BL/6 males) [70]

Repeated Social defeat stress Male • Social avoidance [47] • Changes in dendritic spine
morphology in NAc [47]

• Dnmt 3a expression increased in NAc [47]

• Decreased sucrose preference [54] • Increased CRF expression in PVN of
susceptible mice [22]

• Over expression of Dnmt 3a induced pro-
depressant behaviors [47]

• Increased anxiety [54] • Decreased Bdnf in hippocampus [7 • Blocking DNA methylation was
antidepressant [47]

• Alterations in metabolic function [54] • Decreased methylation of the CRF
promoter in PVN [22]

• Increased repressive histone marks on
BDNF promoters [74]
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Table 1 Epigenetic modifications associated with stress (Continued)

Sub chronic variable stress Male and female • Decreased sucrose preference
(females) [56]

• Increased basal CORT (females) [56] • Dnmt 3a, 3b and Dnmt1 expression
increased in NAc [56]

• Pro-depressant behavior in Splash test
(females) [56]

• Altered in transcription for MBD proteins
[56]

• Decreased latency to eat in a novel
environment (females) [56]

• Transcriptional and behavioral effects
blocked by removal of Dnmt 3a
(females) [56]

• Pro-depressant behavior in FST
(females) [56, 57]
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and increased anxiety associated behavior [54]. In this
paradigm an experimental mouse is placed in the home
cage of a larger mouse pre-selected for aggressive behav-
ior. The animals are allowed to physically interact for
10 minutes before they are separated by a clear perforated
divider that allows for continuous 24-hour sensory stimu-
lus but prevents physical interaction. This process is
repeated with a novel aggressor every day for 10 days [55].
Effects in experimental animals are long lasting and be-
havioral effects have been found at least 3 months follow-
ing the social defeat stress [54]. Males that developed a
depression-like phenotype, indexed by strong social avoid-
ance behavior, were bred to females one month later.
Using a sub-maximal social defeat protocol, designed to
detect pro-susceptibility behavior, male offspring of
defeated fathers showed enhanced social avoidance com-
pared to the offspring of non-defeated controls.
Additionally, the authors compared the behavior of

offspring bred prior to or post social defeat stress. They
selectively found behavioral and hormonal changes in
the male offspring bred post defeat. These included
anxiety-associated behaviors such as decreased explor-
ation of the open arms in an elevated plus maze, and
increased depression-associated behaviors such as anhe-
donia and decreased latency to immobility in the forced
swim test. Similarly, male offspring from defeated fathers
had higher basal levels of the stress hormone cortico-
sterone than offspring bred from fathers prior to defeat
stress. Female offspring also exhibited some depression
and anxiety-like phenotypes, including decreased latency
to immobility in the forced swim test, and decreased
time spent in the open arm of the elevated plus maze
but in the absence of basal hormonal differences. To de-
termine whether transmission of the stress effects oc-
curred via epigenetic mechanisms in the sperm, the
authors used in-vitro fertilization (IVF) techniques on
defeated and control fathers. IVF was used to control for
levels of maternal care, which can contribute to offspring
stress responsiveness through epigenetic mechanisms
[42], as the females mated with defeated males could po-
tentially invest less maternal care in the offspring of
these males than they would in the offspring of control
males. While behavioral manifestations of the anxiety-
associated phenotype did not transmit transgeneration-
ally via sperm, the pro-depressant associated behavior in
male and female offspring in forced swim test was
replicated.
Maternal and paternal stress exposure is transmitted

gestationally and transgenerationally through epigenetic
mechanisms. Stressful experience by the parent may
have a greater impact on stress responses in male off-
spring than female offspring, although more research is
needed to directly test this hypothesis. The current data
suggest that female vulnerability to stress changes across
the lifespan. Females may be protected from gestational
stress compared to males and yet may be more vulner-
able to other forms of stress in adulthood [56-58]. How-
ever, the possibility also exists that current experimental
strategies are unable to detect prenatal stress effects in
females due to ceiling effects. The epigenetic mechan-
isms involved in the dynamics of female stress responses
across the lifespan along with the potential for prenatal
male vulnerability warrant further investigation. Add-
itionally, the development of new behavioral techniques
to examine sex differences in stress vulnerability is para-
mount so this issue can be adequately addressed.

Epigenetic regulation of the behavioral response to early
life stress
Early postnatal stress can lead to lifelong changes in nu-
merous behavioral domains as well as stress reactivity,
and these alterations are thought to involve epigenetic
regulation. Maternal separation is one of the most com-
mon methods used to stress animals during early post-
natal life [59]. Depending on the duration of the
separation, both stress-susceptible and stress-resilient
phenotypes can be observed. For example, daily mater-
nal separation for 15 minutes can act to inoculate ani-
mals from stress leading to a resilient phenotype termed
stress tolerance, which may promote active coping strat-
egies [59,60]. Stress inoculated animals have reduced
CRF expression in the paraventricular nucleus (PVN) of
the hypothalamus along with reduced glutamatergic in-
nervation of CRF hypothalamic neurons persisting into
adulthood [60]. These effects coincide with a persistent
increase in levels of the transcription factor neuron-
restrictive silencing element (NRSF) that suppresses
transcription of the CRF gene [60]. Additionally these
animals have increased GR expression in the hippocam-
pus and attenuation of the hormonal stress response
[61-63]. Overall, these data indicate that short periods of
early life maternal separation lead to a permanent de-
crease in excitability of the stress system through an en-
during cascade of transcriptional events. Conversely,
animals exposed to longer periods of early life stress
(3 hours) display depression-associated behavior including
greater time spent immobile in the forced swim test [64].
Additionally animals undergoing longer maternal separ-
ation display cognitive and memory deficits including
altered inhibitory avoidance [64] and decreased spatial
learning [65]. They have enhanced CORT production when
exposed to a stressor [66] and have decreased cell prolifera-
tion in hippocampus leading to a smaller overall hippocam-
pal volume [67]. Animals that are exposed to maternal
separation in the early postnatal period followed by
repeated social defeat in adulthood exhibit passive coping,
displaying submissive postures and behavior [68]. Examin-
ation of epigenetic markers across the lifespan of animals
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exposed to early life stress found that the arginine vasopres-
sin (Avp) enhancer in the PVN of the hypothalamus was
consistently hypomethylated [64]. The hypomethylation
was mediated by a loss of MeCP2 function, such that a spe-
cific CpG site in the enhancer region was not properly
methylated. These animals exhibited consistent upregula-
tion of Avp mRNA expression, along with increased basal
levels of CORT and enhanced CORT release in response
to stress. Like gestational stress, early life stress may
have more robust behavioral and epigenetic effects on
male rodents in adulthood [69]. A study that utilized a
single 24-hour maternal separation paradigm found
increased CORT levels in C57BL/6 males, but not
females, following a swim stress in adulthood. This
was mirrored by a greater methylation of the Avp
gene in the hippocampus and decreased methylation
of the Nr4a1 gene, which encodes a nuclear receptor
in the brain and has been implicated in depression
and schizophrenia in humans [70]. These studies
suggest that the same stressor may induce different
epigenetic modifications in different brain regions,
even when acting on the same genes. However, as
different time periods of maternal separation were
used, differences in methodology cannot be ruled
out as a confounding causal factor. The second study
also identified strain differences alongside sex differ-
ences in the ability of maternal separation to impact
behavior and DNA methylation; therefore genetic
background may also be a factor contributing to the
different findings of these studies.

Epigenetic regulation of the behavioral response to stress
in adulthood
Although a number of chronic stressors have been used
to induce depression-like behavior in adult rodents, few
have been used to examine any associated epigenetic
regulation. To date, the majority of studies examining
stress in adulthood utilize repeated social defeat stress
due to its face, predictive and construct validity.
Repeated social defeat stress is not amenable to females,
as they are less territorial than males and will not attack
an intruding novel animal unless under special circum-
stances such as when nursing young [71] or through use
of an aggressive territorial species known as California
mice (Peromyscus californicus) [72]. Recent work has
indicated a functional role for epigenetic modifications
in susceptibility to stress. Repeated social defeat stress
increases Dnmt 3a expression in the nucleus accumbens
(NAc) [47], a brain region associated with emotional and
reward processing [73]. Viral-mediated overexpression
of Dnmt 3a in the NAc of adult male mice increased so-
cial avoidance behavior following a subthreshold micro-
defeat [47]. Overexpression of Dnmt 3a also decreased
latency to immobility in the forced swim test [47].
Together these experiments indicate that overexpression
of Dnmt 3a is sufficient to induce depression-associated
behavior. Chronic intra-NAc infusion of RG108, a DNA
methylation inhibitor, via osmotic minipump reversed
social avoidance behavior in mice that had previously
shown susceptibility to social defeat stress. These effects
were similar to those produced by 28 days of systemic
treatment with fluoxetine [47], indicating that blocking
DNA methylation was antidepressant and suggesting
that DNA methylation is necessary for engagement in
social avoidance behavior.
DNA methylation of CpG islands along the CRF pro-

moter in the PVN of the hypothalamus also coincides
with the behavioral effects of social defeat stress. Ani-
mals that were susceptible to social defeat stress dis-
played higher levels of CRF expression in the PVN than
animals that were resilient [22]. Susceptible mice also
expressed decreased methylation of the CRF promoter at
4 specific CpG sites compared to resilient mice. Admin-
istration of an antidepressant blocked the development
of social avoidance, as well as methylation of the CRF
promoter. Social avoidance behavior in mice was also
blocked using intra-PVN infusions of short interfering
RNA (siRNA) sequences targeted to CRF. Viral-
mediated gene transfer of the siRNA did not affect social
interactions in control mice, but did attenuate social
avoidance in animals exposed to repeated social defeat
stress.
In addition to DNA methylation, other epigenetic

mechanisms contribute to the behavioral manifestations
of the social defeat stress. Chronic social defeat stress
leads to decreased expression of two brain derived
neurotrophic factor (Bdnf) transcripts in the hippocam-
pus that coincides with repressive histone activity along
the Bdnf promoter [74]. The behavioral effects of social
defeat stress can be blocked using chronic antidepres-
sant treatment, which also results in hyperacetylation of
the Bdnf promoter, possibly counteracting the stress-
induced repression. This hyperacetylation is functionally
relevant as the behavioral effects of the antidepressant
imipramine can be blocked by hippocampal-specific
overexpression of HDAC 5 [74].
Studies have begun to examine other forms of stress

during adulthood. Recent work reveals that both social
stress and chronic restraint stress alters total methyla-
tion of the GR promoter 17 in the adrenal and pituitary
glands of young adult rats [75]. Methylation was
decreased in the adrenal glands and increased in the pi-
tuitary, although there was no effect of either stressor on
methylation of the same promoter in the hippocampus,
PVN or cortex [75]. These animals did display altered
CORT responses to an acute episode of restraint stress
following the chronic stressor, suggesting that epigenetic
modifications outside of the central nervous system may
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have functional relevance. Epigenetic modifications may
be acting in concert in multiple brain regions and in the
periphery to alter stress-induced behavior in adulthood.
More work is needed to understand the functional sig-
nificance of epigenetic modifications in relationship to
stress and depression-related behaviors in adulthood, es-
pecially as females have been excluded from this line of
research.

Epigenetics and sex differences in the stress response
There is converging evidence that male animals are be-
haviorally more susceptible to prenatal and early life
stress than females [76], whereas females are more sus-
ceptible to stress after puberty [77]. Therefore, it is un-
fortunate that studies of female stress during adulthood
are so grossly underrepresented. The Russo laboratory is
currently using a subchronic variable stressor (SCVS) to
parse biological differences in the stress response
[56,57]. After stress exposure females exhibit increased
anhedonia, increased immobility in the forced swim test,
increased latency to eat in a novel environment and
decreased grooming behavior. While SCVS increases ex-
pression of Dnmt 3a in the NAc of both male and fe-
male mice, it is increased to a much larger extent in
females compared to males [47,56]. Furthermore, re-
moval of Dnmt 3a in the NAc of conditional floxed
Dnmt 3a adult female mice blocks the behavioral effects
of SCVS [56]. In addition to stress-induced elevation in
Dnmt 3a transcription in the NAc, regulation is also
observed for Dnmt 1, 3b and several MDB proteins and
Tet 1. Transcription for all of these genes in the NAc
are reversed in stressed females by removal of Dnmt 3a
[56]. Therefore, we hypothesize that Dnmt 3a may regu-
late susceptibility to stress in a sex-specific manner. In
our current model, we are examining whether pro-
resiliency genes are methylated to a greater extent in
females than they are in males. As discussed earlier in
this review, the addition of stress leads to a signaling
cascade that includes upregulation of DNA methylating
enzymes and recruitment of MBD proteins and histones,
which ultimately creates a more transcriptionally repres-
sive chromatin structure. We hypothesize that females
are more susceptible to stress because shorter periods of
stress are necessary to induce suppression of resiliency
genes due to existing methylation largely mediated by
Dnmt 3a. We are currently in the process of testing this
hypothesis and identifying potential resiliency genes.

Conclusion
Given that epigenetic mechanisms contribute to both
sexual dimorphism of the brain and susceptibility to
stress, it is likely that there are sex specific modifications
that shape responsiveness to stressful experience. As the
clinical occurrence of depression is much higher in
women, it is absolutely essential for the role of epigen-
etic modifications in stress related disorders to be exam-
ined in both sexes. Findings of significant differences in
epigenetic programming between the sexes are rapidly
emerging from developmental and transgenerational re-
search that includes female subjects. A greater under-
standing of the mechanisms by which epigenetic
modifications contribute to depression-associated behav-
ior will help to clarify the etiology of mood disorders
such as depression and anxiety. Additionally, this work
will inform the identification of novel therapeutic targets
for drug development. Already, HDAC inhibitors such
as Valproic acid exist for the treatment of bipolar dis-
order. Unfortunately, these treatments are non-specific,
and it is important to continue epigenetic research to
yield novel treatments with fewer off-target side effects.
Given the sex differences already found in epigenetic
regulation of behavior, it is vital that any drug trials
stemming from epigenetic research programs consider
sex at both preclinical and clinical stages.
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