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Abstract

Aging, Reproductive aging, Menopause, Andropause

Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer's — and the
importance of studying their influences relates directly to human health. The goal of this article is to review the
literature to date on sex and hormones in mouse models of Alzheimer's disease (AD) with an exclusive focus on
interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex
and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse
model literature, raise major unresolved questions, and offer a research framework that incorporates human
reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human
relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed
treatments for AD and other neurodegenerative diseases.
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Introduction

Biologic sex and gonadal hormones exert profound
effects on brain function — and we are only beginning to
appreciate the complexities of their actions in Alzhei-
mer’s disease (AD) from studies of humans and mouse
models. In 2010, the Institute of Medicine advocated for
expansion of neuroscience research to understand sex
differences in the susceptibility and progression of key
neurodegenerative conditions such as AD [1]. Indeed,
the importance of delineating sex- and hormone-based
actions in AD cannot be underestimated for many rea-
sons. First, AD is a tragic disease and the most common
neurodegenerative condition, characterized by an insidi-
ous and progressive loss of memory and other cognitive
functions. Second, true sex-based differences in AD
exist. Thus, a more clear understanding of the exact na-
ture of the sexual dimorphisms can shed light on what
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protects one sex or makes the other more vulnerable.
Third, AD develops in an aging brain and a fundamental
aspect of human aging is gonadal steroid depletion.
Whether and how depletion of certain androgens in
men and estrogens and progestins in women can affect
brain health and vulnerability to AD emerge as highly
relevant, and still unanswered, clinical questions. Finally,
sex- and hormone-based actions in human AD lay the
groundwork for the intelligent design, execution, and in-
terpretation of studies in animal models of aging and
AD. Ultimately, animal models of aging and disease en-
able rigorous dissection and mechanistic delineation that
may pave the way to novel and urgently needed treat-
ments to defeat AD.

In this Review, we highlight advances in AD, describe
and interpret sex- and hormone-based studies of AD,
and discuss the importance of simulating human repro-
ductive aging when modeling diseases of aging. With the
human condition in mind, we then review mouse mod-
els of AD, analyze reports of sex differences and hor-
mone effects in male and female mice that model AD,
raise major unresolved questions, and offer a research
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framework that incorporates human reproductive aging
for future studies aimed at translational discoveries in
the important area of sex and hormone biology.

Alzheimer’s disease

AD

Alzheimer’s disease, the most common neurodegenera-
tive condition, is reaching epidemic proportions. In the
absence of effective interventions, over 50 million people
worldwide will suffer from this devastating dementia by
the year 2050 [2]. The symptoms of AD begin insidiously
with memory impairment and then gradually progress to
erode multiple cognitive and behavioral functions. The
immeasurable burdens of the disease, combined with a
history of failed clinical trials (reviewed in [3,4]) warrant
urgent action toward the development of novel thera-
peutic targets based on a deeper understanding of AD.

Cognitive decline in AD

Progress in multiple fields of human and mouse model
research has advanced our knowledge of what leads to
cognitive decline in AD (for full review [5]). We now
know that synaptic loss [6-8] and network dysfunction
[9,10] correlate more closely with cognitive deficits in
AD than neuronal loss and degeneration. Furthermore,
we have a growing appreciation based on imaging find-
ings [11-13] and pathology studies [14-17] that the bur-
den, distribution, or presence of amyloid plaques,
pathologic hallmarks of AD, do not correlate well with
cognitive dysfunction. These human observations, com-
bined with evidence from transgenic mouse models of
AD, also support the concept that plaques and neurofib-
rillary tangles, though potentially toxic in their own right
[18-20], may not be the primary or driving cause of cog-
nitive dysfunction. Highlights from this large body of lit-
erature include: cognitive deficits often develop prior to
the deposition of amyloid plaques [21-23], neurofibrillary
tangles can exist without neuronal impairment [14,16,24-
27], and tau alone can exert toxicity independently of
neurofibrillary tangles (reviewed in [28]). Thus, a grow-
ing body of literature suggests that synaptic loss and
dysfunction and network disruptions, rather than con-
ventional pathological hallmarks, are main players in
the development of cognitive decline in AD.

Multifactorial etiologies of AD

AD is a complex disease caused by the interaction of many
factors. Aging, itself, is the primary risk factor for the de-
velopment of AD and aging—related problems such as dia-
betes, hypertension, and hyperlipidemia may further
promote AD risk [29]. Genetic contributions to AD in-
clude mutations or alleles that increase risk such as ApoE4
[30-33] and GWAS-identified genes [30,34] or decrease
risk such as the A673T coding variant in APP [35]. It is
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worth noting that, to date, all familial AD cases have been
caused by either mutations, duplications, or overexpres-
sion, of the human amyloid precursor protein (hAPP) or
by mutations in presenelin 1 (PS1) or presenelin 2 (PS2),
which alter the processing of hAPP (reviewed in [36]).

The human genetics of AD, combined with several lines
of evidence in human and mouse studies demonstrate a
pathogenic role for AP, and particularly for soluble, oligo-
meric assemblies of AP in synaptic and network dysfunc-
tion [10]. AP can alter and depress synaptic function
through mechanisms that involve NMDAR trafficking
[37], tau mislocalization into dendritic spines [38,39], and
a host of other mechanisms (reviewed in [10,40]) that may
ultimately lead to network destabilization and cognitive
dysfunction (reviewed in [9,10,40]).

AD: sex® and epidemiology

Epidemiology®

Alzheimer’s disease and mild cognitive impairment
(MCI), a clinical state preceeding AD, affect men and
women in different ways. A thorough understanding of
the sex-based differences in prevalence, incidence, and
disease course can provide critical insight into potential
targets for prevention. Of note, our review focuses on
large-scale epidemiologic studies, which do not often
specify effects of sex-influenced risk factors such as
ApoE4, an important modifier of AD [5].

Here, we review epidemiologic data on AD with an
emphasis on an important yet underappreciated sexual
dimorphism: women bear a greater burden of AD due
to increased prevalence and possibly incidence, but men
suffer an aggressive course of the disease (Figure 1)
[41-45]. In fact, one of the strongest predictors for an
aggressive disease course and progression to death fol-
lowing a diagnosis of AD is male sex [44].

Prevalence

The prevalence of AD, or the total number of cases in a
population at a given time, is higher in women compared
to men in multiple populations [46]. This is due, in large
part, to female longevity — that is, women are more likely
to live to ages when AD is most prevalent. In contrast to
AD, the prevalence of mild cognitive impairment (MCI), a
cognitive state that precedes dementia, is higher in men in
many populations [47-49], although not all studies are in
agreement [50,51]. Together, these data suggest that men
may be more vulnerable to the onset of the disease.

Incidence

The incidence of AD, a measure of the risk of develop-
ing disease over time, is on the whole similar between
men and women. Many epidemiologic studies show
increased risk for the development of AD in women
compared to men in specific populations, and many do
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Figure 1 Males with AD progress to death faster than females. Survival rate in an AD cohort of age-matched men and women shows that
males progress faster to death with sporadic AD in a manner that correlates most closely with cognitive decline. This effect is observed in
sporadic [44,45] and early-onset AD [41-43]. Figure adapted from [45] with permission from Neurology.
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not. A meta-analysis of studies worldwide shows similar
risks between men and women that increase dramatic-
ally with age, and may increase disproportionately in
women after the age of 80 yrs [52]. In parallel with
increased prevalence of MCI in men, the Mayo Clinic
Study of Aging also shows increased risk of MCI (or in-
cidence rates) in men [53]. It will be important to see if
other studies show the same.

Disease Course

Sexual dimorphism in the progression of AD is a major
and meaningful epidemiologic measure that has received
very little attention compared to incidence and prevalence.
Men are more vulnerable to an aggressive disease course
compared to women. This underappreciated sex difference
is supported by several studies. First, men progress to
death faster than women in both early- [41-43] and late-
onset [44,45] AD (Figure 1). Since the sex difference exists
in the presence and absence of other age—related comor-
bidities like cancer and heart failure, it suggests increased
vulnerability to the pathophysiology of AD in men com-
pared to women. In addition, the observed progression to
death closely correlates with the rate of cognitive decline
[54]. In further support of a more aggressive course of AD
in men, more studies are finding increased MCI in men
[47-49,53,55], suggesting increased vulnerability to the de-
velopment and manifestation of cognitive deficits.

AD: Disease course and mouse models

Disease course may be the human epidemiologic factor
most relevant to our study of AD in animal models. Since
most mouse models of AD involve the transgenic expres-
sion of mutated APP with or without mutated tau, outcome
measures are focused squarely on the manifestation or dis-
ease course rather than the risk or prevalence of disease.

Specifically, mouse models enable study of how a manipu-
lation changes the manifestation or severity of AD-related
disease measures such as pathology, biochemistry, cogni-
tion/behavior, synaptic/network plasticity, or survival.

Human reproductive aging, hormone replacement
and AD

Reproductive Aging

Reproductive aging is a fundamental aspect of the aging
process and is accompanied by dramatic decreases in
certain gonadal steroid levels in human [56-60], but not
rodent [61-64] males and females (Figure 2). Since AD is
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Figure 2 Gonadal hormone decline occurs in human, but not
mouse, reproductive aging. (A) Human levels of bioavailable
testosterone (blue) in males and estradiol (the most biologically
active estrogen) (red) in females decrease dramatically during aging
at a time when the brain is vulnerable to neurodegenerative
diseases such as AD. Of note, changes in total testosterone (not
shown) are more modest. (B) In contrast with the human condition,
mouse levels of bioavailable testosterone (blue) and estradiol (red)
do not decrease with age. M=male and F=female. Data derived
from human [56-60] and mouse [61,62] studies.
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a disease of the aging brain and develops in a sex
hormone-depleted environment, it is critical to study
how gonadal steroid changes in menopause and andro-
pause affect the risk and course of AD in women and
men. Further, simulation of reproductive aging in mouse
models of AD via gonadal steroid depletion represents a
meaningful way to model the human condition.

Women, AD, and Hormone Replacement Therapy (HRT)
The results of randomized, controlled clinical trials, in-
cluding the Women’s Health Initiative (WHI) [65,66],
found that HRT in women led to adverse [65-67] or no
effects [68-70] on cognition or AD risk. These studies
represent rigorous clinical trials; however, certain caveats
such as hormone formulation, timing of therapy, and
dose or route of hormone administration should be con-
sidered when interpreting the data (as reviewed in
[71,72]). Ongoing [73] and future clinical studies should
dissect whether HRT may be beneficial if given 1) during
a “critical window” after menopause, 2) by subcutane-
ous routes which largely bypass the liver, 3) in lower
doses, 4) or in other formulations since conjugated
equine estrogens without medroxyprogesterone acetate
(Premarin) or with it (Prempro) may have differing bio-
logical activities from hormones typically used in animal
studies (estradiol and progesterone). While future stud-
ies may shed light on these complex possibilities, the
clinical data to date show that HRT, in its current forms,
can be deleterious to cognitive outcomes.

Because AD pathophysiology begins and progresses
years before its clinical manifestation [74,75], it is con-
ceivable that HRT accelerated an existing disease process
in women who experienced cognitive decline in clinical
trials. Along the same lines, it is also possible that HRT
benefits mood and cognition in the context of normal
aging, but not in women already at risk for developing
AD. As we move closer to personalized medicine, the
use of genetic, protein, and imaging biomarkers to pre-
dict healthy brain aging versus increased risk for AD
and other diseases should serve as a clinical guide to
whether HRT is appropriate for an individual woman.

Men, AD, and Androgen Replacement

Andropause is the male correlate of the female meno-
pause, characterized by a gradual but steady decline of cer-
tain circulating gonadal steroids. A modest decrease in
total testosterone accompanied by an increase in steroid
hormone binding globulin (SHBG) results in a major de-
crease of bioavailable testosterone, averaging 1-2% per
year beginning in the third or fourth decade of life
[58,60,76-79]. Bioavailable testosterone (testosterone not
bound to SHBG) has long been recognized as the biologic-
ally active, and thus most critical form of androgen.

Page 4 of 17

Low levels of biologically active testosterone in the
aging male may be deleterious to the brain. Despite new
findings that SHBG might facilitate steroid delivery to
target tissues (reviewed in [80,81]), both increased SHBG
[82-84] and low levels of androgens (reviewed in [85])
are associated with increased dementia and AD risk.
These observations, combined with studies of androgen
treatment in humans and mice, suggest a protective role
for androgens in cognition and AD (reviewed in [85]).
Rigorous clinical trials to determine whether androgen
replacement is indeed beneficial to cognition and de-
mentia risk are needed.

Simulating human reproductive aging in mouse models
of AD
An understanding of human AD epidemiology and re-
productive aging, combined with intelligent research
strategies to study effects of sex and hormones, set the
stage to simulate the human condition using mouse
models of AD. Both mice and humans undergo repro-
ductive aging and subsequent decline in fertility. How-
ever two main differences in reproductive aging exists
between the species. First, gonadal steroid levels decline
in males and females during human aging [56-60] but
not mouse aging [61-64] (Figure 2). Second, the primary
cause of reproductive senescence in women is declining
oocyte number and ovarian function [86]; in female
rodents it is dysregulation of the neuroendocrine system
[87,88]. Despite these differences, the unifying similarity
in reproductive aging processes is that changes at all
levels of the hypothalamic-pituitary-gonadal axis are im-
portant in both humans and rodents [62,87,89].
Simulation of a prominent aspect of human reproductive
aging in mice can be accomplished by gonadal steroid de-
pletion through gonadectomy or other methods [90]. Since
AD develops in the aging human brain, which is subject to
effects of sex hormone depletion in both sexes, gonadect-
omy in mouse models of AD recapitulates a critical aspect
of human reproductive aging in males and females.

Strategies for studying hormone and sex effects
in mouse models of AD

Addressing human-relevant questions

Since aging is the primary risk factor for AD and devel-
opment of AD is restricted to the aging brain, the study
of sex and hormones in light of reproductive aging, ster-
oid depletion, and hormone replacement represents a
translational framework for human-relevant research in
mice. With this framework in mind, we propose three
research areas, offer optimal research approaches using
mice, and consider caveats. Each human-relevant ques-
tion posed is followed by an optimal research approach
using mice.
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1. Gonadal hormone depletion. The following

questions focus on sex differences (Figure 3).

a. Do males and females differ in AD-related outcome
measures? Compare gonadectomized male and
female mice to investigate sex differences.

b. If males and females differ in the absence of
gonadal steroids, is the sex difference due to sex
chromosomes or organizational effects of gonadal
hormones? Delineate these possibilities using a

genetic approach such as the “four core genotypes”

(FC@G) model (reviewed in [91,92]).

2. Reproductive aging. The following questions focus
on effects of reproductive aging.

a. How does reproductive aging alter vulnerability to
AD in females (Figure 4)? Compare “intact” to
gonadectomized females. Stage of estrous cycle
may also be taken into account since estrogen and
progesterone, which can have opposing actions,
fluctuate.

b. How does reproductive aging alter vulnerability to
AD in males (Figure 5)? Compare “intact” (gonads
present) to hormone-depleted (gonadectomized)
male mice.

3. Hormone replacement. The following questions
focus on effects of HRT.

a. How does hormone replacement in gonadal
steroid-depleted females alter vulnerability to AD?
Compare vehicle vs hormone treatment in
hormone-depleted (gonadectomized) female mice
(Figure 4). HRT doses, formulations, regimens,

Sex Differences in mouse models of AD:
Human-relevant research strategies

‘ Gnx adult males and females ‘

Do males and females differ?

4 N

If sex difference was present in Consider effects of sex
gonadally intact males vs females, chromosomes or organizational
it was hormonally modulated actions of gonadal hormones

Figure 3 Research strategy for studying sex differences in
mouse models of AD. Gonadectomy of both male and female
mice simulates gonadal steroid depletion that occurs in human
reproductive aging. It also enables a direct comparison between the
sexes that is less confounded by differential, activational effects of
gonadal hormones in the male versus female brain.
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Studying females in mouse models of AD:
Human-relevant strategies

Reproductive Aging Hormone Therapy
Effects Effects
Gnx vs Intact Gnx: Vehicle vs

Hormone treatment

Y N\

Gnx vs E,— Gnx vs P,—
dominant estrous dominant
stages estrous stages

Figure 4 Research strategy for studying females in mouse
models of AD. To determine how reproductive aging alters AD-
related measures in females, an appropriate strategy is comparing
gonadectomized to intact mice. Intact females can be separated
into estrogen dominant* (E,: proestrous, estrous) or progesterone
dominant** (P, metestrous, diestrous) stages of the reproductive
cycle since these hormones can have opposing effects in the brain.
To determine whether hormone replacement alters AD-related
measures in females, an appropriate strategy is comparing vehicle-
versus hormone-treated mice that have all undergone gonadectomy
to simulate human reproductive aging. E; is estradiol, the most
biologically active estrogen in the mammalian reproductive cycle.

timing, and routes of administration can be tested,
as guided by clinical questions.

b. How does hormone replacement in gonadal
steroid-depleted males alter vulnerability to AD?
Compare vehicle vs hormone treatment in
hormone-depleted (gonadectomized) male mice
(Figure 5).

Gonadectomy: considerations, caveats, and alternatives

All three areas of research outlined above incorporate the
strategy of depleting gonadal hormones though gonadect-
omy to mimic an aspect of human reproductive aging. This
manipulation successfully depletes levels of gonadal hor-
mones, but a few points regarding its limitations and opti-
mal applications deserve consideration. First, gonadectomy
decreases hormone levels in a subacute, rather than a slow
and progressive manner, as occurs in human reproductive
aging. However, whether the rate of hormone decline influ-
ences AD-related outcomes is unknown. Second, gona-
dectomy performed during middle-age (10-15 months in
mice) may more closely model reproductive aging, since
central nervous system changes that underlie reproductive
aging have already occurred; but restricting studies to aging
mice is not always practical or economically feasible. Fi-
nally, gonadal hormone depletion through natural or surgi-
cal means in humans [56,93-96] or gonadectomy in mice
[97,98] results in compensatory neuroendocrine responses
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Studying males in mouse models of AD:
Human-relevant strategies

Reproductive Aging
Effects

| !

Gnx: Vehicle vs
Hormone treatment

Hormone Therapy
Effects

Gnx vs Intact

Figure 5 Research strategy for studying males in mouse
models of AD. To determine how reproductive aging alters
AD-related measures in males, an appropriate strategy is comparing
gonadectomized to intact mice. To determine whether hormone
replacement alters AD-related measures in males, an appropriate
strategy is comparing vehicle- versus hormone-treated mice that
have all undergone gonadectomy to simulate human reproductive
aging.

such as increased luteinizing hormone (LH) and follicle
stimulating hormone (FSH). Therefore, potential effects of
LH and FSH cannot be ruled out when interpreting effects
of gonadal hormone depletion. Nonetheless, since these
compensatory changes occur in both simulated and true
reproductive aging, the manipulation of gonadectomy in
mouse models remains relevant to the human condition.
Alternatives to gonadectomy in female mice include
genetic and chemical models of reproductive aging. The
follitropin receptor knockout (FORKO) mouse is a gen-
etic model that leads to chronic estrogen deficiency early
in development [99,100]. An advantage of genetic mod-
els such as FORKO is the ability to recapitulate specific
physiological mechanisms involved in human reproduct-
ive aging; however, limitations such as potential effects
of the mutation on brain development and function
could introduce confounds or constrain study interpre-
tations. A chemical model of reproductive aging is treat-
ment with 4-vinylcyclohexene diepoxide (VCD), an
industrial chemical that induces follicle depletion and
ovarian atrophy [90]. Benefits of VCD treatment include
a more physiological, gradual decrease in gonadal steroid
levels and the continued presence of the ovarian tissue
[90]. Limitations of VCD are the absence of a compar-
able model in males (thus prohibiting studies on sex dif-
ferences) and potential toxic effects on brain function
that may be independent of gonadal steroid depletion.
Given current limitations of genetic and toxin models
of reproductive aging in studying sex differences in
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mouse models of AD, we advocate gonadectomy as a
relevant and reliable manipulation.

Gonadal hormone depletion: dissecting a sex difference
If the comparison between gonadectomized males and
females reveals a sex difference, further mechanistic dis-
section can be achieved by determining whether sex
chromosomes or organizational effects of hormones (long-
lasting effects of hormones that persist in their absence)
explain the difference (Figure 3). One strategy to delineate
these possibilities is through a genetic approach using the
“four core genotypes” (FCG) model. FCG mice produce
XX mice with ovaries, XX mice with testes, XY mice with
ovaries, and XY mice with testes (reviewed in [91,92]).
These mice can be crossed with transgenic mouse models
of disease, including AD models. Gonadectomy of all male
and female offspring in adulthood enables a complex but
precise comparison of whether the observed sex difference
is explained by sex chromosomes or organizational effects
of gonadal hormones (as reviewed in [91]).

Mouse models of AD

Introduction. Using animal models

The necessity of dissecting molecular mechanisms and
identifying potential therapies to improve the human con-
dition requires using animal models of disease. A model is
only useful, however, if the discoveries generated truly in-
form us about human disease and potential treatments.
Thus, attention to aspects of the AD mouse model that
recapitulate clinical manifestations of human AD, such as
cognition and its underlying substrates, is essential.

AD mouse models
While AD is a strictly human disease [101], the gener-
ation of genetically modified mice expressing mutations
in genes that cause AD has enabled progress in under-
standing its pathogenesis. Genetic AD results from
mutations in genes that regulate the production of Ap:
APPD, presenilin 1 (PS1), and presenilin 2 (PS2) (reviewed
in [5,101-103]). Most AD mouse models overexpress a
mutated form of the human APP gene, a combination of
mutated APP and PS1, or a combination of APP, PS1
and P301L (a tau mutation causing frontotemporal de-
mentia) (reviewed in [101,102]). Precise contributors to
neural dysfunction, however, are not always clear in the
models. For example, in transgenic hAPP mouse models,
relative pathogenic contributions of different hAPP pro-
cessing products are unknown. In addition, proteins
such as endogenous APP have normal functions in syn-
aptic physiology and neuronal migration (reviewed in
[104,105]) that may be disrupted, further contributing to
neural dysfunction.

The development of new mouse models of AD offers
the opportunity to optimize paradigms and tackle
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unanswered questions. For example, models that express
hAPP via targeted insertion and from the gene’s own
promoter might produce more physiological results. Yet,
such “knock-in” models of AD have shown very mild, if
any, tractable AD-like disease progression or dysfunction
[106-108] to date. Other approaches in current develop-
ment include modeling sporadic AD, incorporating
multifactorial etiologies of AD into models, and integrat-
ing other diseases of aging into AD models.

Despite the fact that current mouse models of AD are
imperfect representations of the human condition, key
features of AD are indeed preserved [101,102] and thus
enable meaningful studies using these models. Most not-
ably, transgenic mice show synaptic dysfunction/loss and
network disruption, which correlate more closely with
cognitive decline, the primary clinical manifestation of
AD, compared to other disease measures [6,9].

Relevant substrates of cognitive decline
The efficacies of therapies, and their relevance to patients
and families, depend on whether they can prevent or
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reverse cognitive decline, the primary clinical manifestation
of AD. Thus, its human relevance, combined with the in-
credible homology between rodent and human memory
systems [109], make cognition and its substrates high-yield
outcome measures in mouse models of AD. Since the main
drivers for cognitive decline are synaptic loss/dysfunction
and network disruptions, as discussed above (reviewed in
[6,10,40]), these measures, along with their causative agents,
are the most directly human-relevant assessments [5,6].

Review of studies on sex differences in mouse
models of AD

Overview

Sex-based differences in AD exist and comparisons be-
tween males and females that model AD are invaluable.
Understanding sexual dimorphisms can inform us about
what protects one sex or makes the other more vul-
nerable. Yet, studies that have compared AD-related
measures in male versus female mice have reported quite
varying results (cognitive differences reviewed in Table 1)
making overall conclusions challenging at this time. We

Table 1 Sex Differences in cognition and behavior in mouse models of AD

Hormone Comparison Cognition & Behavioral Measure and Ref. AD Tg
Status, Age Model
Baseline Intact, 8 mos (F), Intact: F vs M F Tg 1 activity vs F Ntg; M Tg no deficit (OF) [114] APPswe-PS1dE9
12 mos (M)

Intact, 2-15 mos [115], Intact Fvs M F Tg |spatial/fear memory at some ages vs F Ntg & M Tg (MWM, PA) [115] 3xTg-AD [115]
6-10mos [121] F Tg<>M Tg impairment in novel object recognition (NOR) [115,121] TASTPM [121]
Intact, 2-14 mos Intact: F vs M FTg | SAB at 12-14 mos vs F Ntg and M Tg (Y-maze) [116] 3xTg-AD
Intact, 2-17 mos Intact: F vs M F Tg impaired and no change with age (CTA) [127] APPswe/ PS1dE9

M Tg increasingly impaired with age (CTA) [127]
Intact, 6 mos Intact: F vs M F Tg |activity/spatial memory/novel arm preference vs F Ntg; 3xTg-AD
M Tg no deficit (OF, MWM, Y-maze) [117]
Intact, 6 mos Intact: Fvs M F Tg 1 activity & Tentries into light vs F Ntg; M Tg vice versa (OF, DLB) [118] 3xTg-AD
Intact, 3, 9 mos Intact: F vs M M Tg tactivity & |SAB vs M Ntg; F Tg no deficit (OF, Y-maze) [119] APPsw
F Tg |spatial memory vs F Ntg 3 mos; M Tg no
deficit (Circular Platform)® [119]
Intact,16 mos Intact: Fvs M F Tg«>M Tg impairment in spatial acquisition memory (Barnes Maze) [122] ~ APPswe/ PST1dE9

Intact, 3, 9 mos [119], Intact: F vs M Fe—M, TgNtg, no spatial learning impairments (MWM) [118,119] APPsw [119]

6 mos [118] 3XTg-AD [118]
Intact, 6, 15 mos Intact: F vs M M Tg Tcenter time vs F Tg and M Ntg (OF) [120] 3xTg-AD

Response to Intact, 8 mos (F),

Intact: F vs M COX-2 overexp |[SAB in F Tg; no change or impairment in M Tg (Y-maze) [114]

APPswe/ PS1dE9

Manipulation 12 mos (M) COX-2 overexp <> novel arm preferenceB in For M, Tg or Ntg (Y-maze) [114]
Intact, 6 mos Intact: F vs M Running fopen arm entries in F Tg & Ntg and | in M Tg & Ntg (EPMS) [117] 3xTg-AD
Intact, 6 mos Intact: F vs M Running fspatial memory/novel arm preference in F Tg vs 3xTg-AD

non-running F Tg; no effect or impairment in M Tg (MWM, Y-maze) [117]

Symbols: t=increase, |=decrease, <>=no change or difference.

Abbreviations: F=Female, M=Male, Ntg=non-transgenic, Tg=transgenic, mos=months, d=day, SAB=spontaneous alternating behavior (thought to reflect working
memory), MWM=Morris water maze, OF=open field, PA=passive avoidance, CTA=conditioned taste aversion, NOR=novel object recognition, DLB=dark-light box,
EPM=elevated plus maze, COX-2=cyclooxygenase 2, overexp=overexpression.

A, Latency to reach escape hole and number of errors.

B, Preference for the novel arm in Y-maze thought to reflect spatial recognition memory [114].

C, No 3xTg-AD effect was observed in the EPM [117].
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believe that the variation in data is probably not random
and, in large part, results from the inherently complex
comparison of gonadally intact males with gonadally in-
tact, cycling females — a comparison involving multiple
layers of biologic effects. Consider the following:

1. If a sex difference exists (or not), it may result from
differential activational effects of endogenous gonadal
steroids in the male versus the female brain. That is,
actions of androgen in the male brain may differ
from actions of estrogens or progesterone in the
female brain. It is also possible that the sex difference
may exist even in the absence of gonadal hormones.

2. Androgen levels remain constant in males while
estrogen and progesterone levels fluctuate in females
across the estrous cycle. Stages of the estrous cycle
influence brain functions of females in diametrically
opposing ways [110]. Since female mice cycle
synchronously, AD-related outcome measures in
females may be biased toward either an estrogen-
dominant (proestrous or estrous) [111-113] or a
progesterone-dominant (metestrous or diestrous)
[111-113] state. Conversely, important hormone-
mediated effects in females could be missed if
multiple estrous stages are inevitably combined in
the experimental group.

3. The ability to detect, repeat, or precisely interpret a
sex difference in mouse models of AD can be
obscured by points one and two.

In light of these complexities, we review the current
literature on sex differences in mouse models of AD —
and stress that while comparing gonadally intact males
and females is a valuable first step, studies that incorpor-
ate human-relevant manipulations to model reproductive
aging via gonadal steroid depletion in both sexes are
urgently needed.

Cognition and Behavior

For the reasons outlined above, it may not be surprising
that reports on sex differences between intact male mice
compared to intact female mice in AD-relevant cognitive
and behavioral tasks vary considerably, even within the
same AD model (Table 1). At baseline, females were
more impaired than males [114-119], males were more
impaired than females [119,120], and the two sexes did
not differ [115,118,119,121,122]. There was similar vari-
ation in sex differences resulting from genetic or other
manipulations in mice that model AD (Table 1). That is:
females worsened [114,117], improved [117], or did not
differ [114] compared to males. We emphasize that this
variability is probably not random, but results from the
complexities of differential hormonal actions in male
and female brains.
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It is curious, however, that intact females are impaired
slightly more often than intact males when considering
all studies together. While these studies have concluded
that female mice are more vulnerable to AD-related
deficits, we offer two additional interpretations: in
mouse models of AD, 1) female gonadal hormones are
more deleterious in female brains than male hormones
in male brains or 2) male gonadal hormones are more
beneficial in male brains than female hormones in fe-
male brains. It will be necessary to further dissect these
complex possibilities, beginning by simply depleting go-
nadal steroids and then comparing males to females. Go-
nadal steroid depletion in male and female mice will
enable us to determine what sex differences exists in a
hormonal milieu that is more comparable to the human
condition (Figure 3).

AB, tau, and histopathology

Like cognitive and behavioral data on intact males and
females that model AD, there is considerable variation
in reports of sex differences in baseline AP levels and
amyloid plaque deposition: females had higher levels
than males [116-118,121,123-132], males had higher
levels than females [133,134], and the two sexes did not
differ [115,135,136]. In addition, tau levels did not differ
in intact males and females [115,123]. Similar variation
in sex differences of AP levels, amyloid plaque depos-
ition, and tau is observed in response to stress, pharma-
cologic, and genetic manipulations of mouse models of
AD [114,128,131-134,136-139].

As we learn more about the pathophysiology under-
lying AD, we are coming to appreciate that moderate
differences between plaque load or neurofibrillary tangle
abundance bear less biologic relevance to cognition than
once thought. Nonetheless, levels of plaques and tangles,
combined with more toxic assemblies of Ap and tau
should be further assessed in gonadal steroid depleted
mice.

Molecular and Biochemistry

Many studies have examined molecular and biochem-
ical differences between gonadally intact male and fe-
male mice that model AD. Among reports are
measures of: hAPP processing enzymes and products
[123,125,130,133,134,137], corticosteroids [115,120,135],
metals [125,130,140,141], immune modulators [131],
lipids and their peroxidation products [142], and other
factors [128,129,132,143]. All of these measures un-
doubtedly bear relevance to AD and its pathophysiology.
But the significance of the molecular and biochemical sex
differences will become clearer with further mechanistic
dissection. Do the sex differences persist following deple-
tion of gonadal hormones? If so, how do the molecular and
biochemical measures relate to cognitive and behavioral
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performance in AD models? Factors that correlate well
with either protective or detrimental cognitive measures in
the absence of gonadal steroids, might lead to important
sex-based therapeutic targets in the treatment of AD.

Survival

Mice that model AD suffer premature mortality
[119,120,144-150] in parallel with the human condition.
However, whether the striking sexual dimorphism in sur-
vival — men with AD progress faster to death than women
[41-45] — is recapitulated in mouse models, remains to be
determined. Premature mortality has been reported in both
sexes [119] but further investigation into this AD-relevant
measure is currently lacking. Sex differences in survival bear
relevance to the human condition, and may hold promise
for revealing novel targets for the development of therapies,
if mouse models parallel human epidemiologic findings.

Conclusions and future directions

While comparing intact male and female mice that model
AD is an initial step, we propose that the next step
requires modeling human reproductive aging (depleting
gonadal steroids via gonadectomy) in mice. We strongly
advocate for this research strategy with the following
scientific rationales:

1. AD is a disease of aging that, in humans, develops in
a gonadal steroid-depleted state; thus, depleting
gonadal steroids in mice is a human-relevant
manipulation.

2. Endogenous gonadal steroids profoundly impact
cognition and brain function (reviewed in [151-156]);
thus, removing gonadal steroids in males and
females enables a more direct comparison between
sexes that is less confounded by “activational”
effects of endogenous gonadal steroids.

In the presence of endogenous gonadal steroids, differ-
ences between males and females may result from differ-
ential actions of androgens in males, or of estrogen/
progesterone in females. Further, hormonal effects in
females will vary according to the stage in estrous cycle
[111-113]. Thus, removing gonadal steroids enables a
more precise comparison between the sexes.

Review of studies in mouse models of AD: females
Overview

Whether and how reproductive aging or hormone re-
placement alters vulnerability to AD in females are
outstanding questions. Some answers are taking form,
but the overall picture remains unclear. Since the
WHI and other clinical studies reported negative
impacts of HRT on cognition and AD risk [65-67],
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some mouse studies have begun to determine whether
timing, dose, regimen, or route of administration of
hormone therapy alters its effects. Key issues in inter-
preting the results of the mouse studies, which are more
fully described in Table 2, are reviewed. Of note, our
review is focused on estradiol® (the most biologically ac-
tive estrogen) and progesterone effects in female mice
since these are the principle, systemic gonadal hormones
decreased following menopause; but other steroids, in-
cluding neurosteroids ([180] and reviewed in [157,158]),
may also play a role in AD.

Cognition and behavior

While estradiol facilitates synaptic plasticity and sev-
eral forms of hippocampal-dependent learning and
memory in the adult and aging rodent brain, (reviewed
in [151-153]), its role in memory of the diseased
brain remains less clear. To date, studies examining
hippocampal-dependent spatial learning/memory in AD
mouse models find no effects of gonadal hormone deple-
tion [159,160], or estradiol replacement [159,160] in
water maze tasks, despite estradiol-mediated decreases
in AP levels or deposition [161-168]. In parallel, proges-
terone replacement also failed to alter AD-related
impairments in the watermaze [169].

In contrast to the watermaze studies, studies in the
3xTg mouse model show impaired working memory in
the Y-maze following gonadectomy [162-163] — an effect
that is reversed by estradiol [162-164] but not progester-
one replacement [163-164]. The effect of estradiol is
mimicked by an ERa but not ERp agonist [162] and per-
sisted with a combined estradiol and cyclical progester-
one regimen [164]. More studies of females are needed
in AD mouse models to draw conclusions and deter-
mine: whether certain AD models are more sensitive to
hormonal effects compared to others (and why), if hor-
mone replacement differentially affects certain cognitive
domains and not others in the diseased brain, and ultim-
ately whether hormonal effects on cognition and behav-
jor in female AD model-mice reliably recapitulate
human findings.

AB, tau, and histopathology

A large body of evidence, with notable exceptions
[136,159,160,170], supports a role for estradiol [161-168,171]
and other hormone replacement regimens [164] in
decreasing AP levels and plaques. However, estrogen-
mediated decreases of AP, even in its more toxic forms,
do not correlate consistently with improved cognition.
This striking disconnect, combined with adverse cogni-
tive effects of estrogen replacement in human AD trials
[65,66] lead us to speculate that estrogens may be detri-
mental to substrates of learning and memory in the dis-
eased brain — and that this harmful action negates their
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Table 2 Female studies of cognition & behavior in mouse

models of AD
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Hormone/ Manipulation Timing, Route, Dose ComparisonA Cognition & Behavioral AD Tg Model
Regimen Measure and Ref.
Hormone Gnx 3 mos N/A Intact vs Gnx Gnx | SAB (Y-maze) [162'163] 3xTg-AD
Depletion Gnx | open arm time (EPM) [164]
Gnx 3 mos N/A Intact vs Gnx Gnx <> spatial memory (MWM) [159] APP+PS1
VCD 2-2.5 mos N/A Intact vs VCD VCD « spatial/working memory APPswe
(RAWM) [160]
Estrogens Gnx 3 mo Immediate s.c. E; (0.025 mg) 90 d Gnx: Veh vs E, E, 1 SAB (Y-maze) [1627164] 3xTg-AD
E, | freezing (FST) [164]
Gnx 3 mos Immediate s.c. PPT (0.25 mg) 90 d Gnx: Veh vs PPT PPT 1 SAB (Y-maze) [162] 3xTg-AD
Gnx3mos  Immediate s.c. DPN (0.25 mg) 90 d  Gnx: Veh vs DPN DPN « SAB (Y-maze) [162] 3xTg-AD
Gnx 3 mos Immediate, 3, & 6 mo later, s.c. E, Gnx vs Gnx + E, E, & spatial memory (MWM) [159] APP+PS1
(0.18 mg)
VCD 2-25 mos  Immediate s.c. E; (0.36 mg) 90 d VCD vs VCD+E, E, > spatial/working memory APPswe
(RAWM) [160]
P, Continuous Gnx 3 mos Immediate s.c. P4 (25 mg) 90 d Gnx: Veh vs P, P4, <> SAB (Y-maze) [163'164] 3xTg-AD
P, 1 open arm time, | freezing
(EPM, FST) [164]
Gnx 6 mos Immediate s.c. P, (25 mg) 90+d Gnx vs Gnx + P4 P, spatial memory (NPR, MWM) APPswe+
[169] PSENTAEQ
P, Cyclical Gnx 3 mos Delayed s.c. P, 28 mg) 10 d Gnx: Veh vs P, P4 <> SAB (Y-maze) [164] 3xTg-AD
off/on ) )
P41 open arm time, | freezing
(EPM, FST) [164]
E, + P, Gnx 3 mos Immediate s.c. E; (0025 mg) + P, Gnx: Veh vs Ex+ P, E>+ P4 1 SAB (Y-maze) [163] 3xTg-AD
Continuous (25mg)90d
Gnx 3 mos Immediate s.c. E; (0025 mg) + P,  Gnx: Veh vs Ex+ P, E,+ P4 <>SAB (Y-maze) [164] 3xTg-AD
(25 mg) 90 d E>,+P4 1 open arm time, | freezing
(FST, EPM) [164]
E, + P4 Cyclical Gnx 3 mos Immediate s.c. E; (0025 mg) 90 d  Gnx: Veh vs Ex+ Py E>+ P4 1 SAB (Y-maze) [164] 3xTg-AD
+ P (28 mg) 30 d cycles E,+P4 1 open arm time, | freezing
(FST, EPM) [164]
LH Depletion 21 mos .M. injection of leuprolide followed Intact: Veh vs leuprolide 1 SAB in aging (Y-maze) Tg2576
by depot (7.5 mg/kg) leuprolide [180]
Testosterone Postnatal d1-7 IP injection of T (100 ug/d) Intact: Veh vs T T—SAB (Y-maze) [116] 3xTg-AD

Symbols: t=increase, |=decrease, «>=no change.

Abbreviations: Tg=transgenic, mos=months, d=day, E,=estradiol (a type of estrogen), P,=progesterone, LH=Leutinizing hormone, VCD=4-vinylcyclohexene
diepoxide (causes chemically-induced ovarian atrophy), s.c.=subcutaneous, ..M.=intramuscular, IP=intraperitoneal, SAB=spontaneous alternating behavior (thought
to reflect working memory), FST=forced swim test, RAWM=radial arm water maze, NPR=novel place recognition, EPM=elevated plus maze, PPT= Propylpyrazole
triol (ERa agonist), DPN= Diarylpropionitrile (ERB agonist), leuprolide=leuprolide acetate (gonadotropin-releasing hormone agonist).

A, All comparisons are between groups of AD Tg mice.

beneficial effects on lowering Af. Studies are needed to
explore this untested hypothesis.

Molecular and Biochemistry

Consistent with estradiol-mediated decreases in AP
levels, estradiol treatment suppresses the Ap producing
[B-secretase 1 (BACE) [168], and increases the Af
catabolizing Insulin-degrading enzyme (IDE) [165]. Al-
though this may explain decreased AP levels, the conun-
drum of the hormone’s effect on cognition in the
diseased brain remains.

Survival

Studies have reported survival data in female AD-model
mice following gonadal hormone depletion or hormone
replacement — and consistently show that estrogens are
toxic. Estradiol treatment increased mortality in both in-
tact and hormone-depleted adult female APPswe mice
[160]. Interestingly, removal of gonadal steroids before
sexual maturity, via gonadectomy, increased mortality in
this model [172]; however, when depletion of gonadal
steroids was delayed until after sexual maturity, prema-
ture mortality did not occur [160]. Since premature
mortality in mouse models of AD is closely associated
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with sudden death from seizures [144-150], the studies
suggest that estrogens may increase network excitability
leading to seizure-related death in adult, female AD-
model mice. In support of this, decreasing brain estro-
gens through anastrozole in the adult female brain
increased survival in 3xTg-AD mice [136].

Conclusions and future directions

The known enhancing effects of estradiol on synaptic plas-
ticity and memory in the normal brain (reviewed in [151-
153]), juxtaposed to its conflicting effects on cognition in
the diseased brain, lead us to an intriguing hypothesis we
wish to put forth: Estrogens benefit cognition in the nor-
mal, aging brain but not in the diseased, AD brain (or
in the brain at risk for AD) (Figure 6). In support of this
hypothesis, is data from human clinical trials [65,66] and
the following untested rationale. Estrogens increase excit-
ability in the normal brain (reviewed in [151,152]), a
process that facilitates normal learning and memory. How-
ever, this same action in the hyperexcitable AD-brain could
lead to excitotoxicity and memory impairment. Answers to
this untested hypothesis could dramatically impact the fu-
ture of personalized HRT.

Review of studies in mouse models of AD: males
Overview

Whether androgens, or other forms of hormone replace-
ment in men with AD are beneficial has yet to be deter-
mined in rigorous, double-blinded, prospective, and
placebo-controlled clinical trials — but clinical observa-
tions [85,173-176] and data from animal studies suggest
they may be. Studies of hormone depletion and

Hypothesis for differential effects of
estrogen in health and disease

Estrogen Therapy

' N

Normal Alzheimer’s
Aging Disease
Beneficial Detrimental

Figure 6 Hypothesis: Estrogen replacement therapy is
beneficial in normal aging, but detrimental in AD or to those at
risk of developing AD.
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treatment in male mice that model AD collectively show
a beneficial action of androgens on cognition, pathology,
and biochemical measures.

Cognition and behavior

Gonadal steroid depletion, via gonadectomy of male mice
that model AD, worsened cognitive impairment [177].
The impairment was reversed by subcutaneous treatment
with dihyrdotestosterone (DHT) [177], a metabolite of
testosterone. Increasing serum and brain levels of testos-
terone via genetic knockdown of aromatase [178] also
improves cognition in male AD mice. The possibility that
androgens may exert long lasting “organizational” effects
is supported by a finding that blocking androgen recep-
tors during a critical period of brain differentiation in
male 3xTg mice worsens cognition in adulthood [116].
Collectively, these studies (Table 3) show a reproducible,
beneficial effect of androgen-related function on cogni-
tive impairments in male mice that model AD.

AB, tau, and histopathology

In parallel with protecting against cognitive deficits,
androgens also decreased levels of pathogenic proteins
and pathology related to AD. While gonadectomy
increased Ap levels and plaque deposition in male AD-
model mice [177,179], elevating androgens through hor-
mone replacement [177,179] or genetic knockdown of
aromatase [178] decreased these measures. In addition,
transient androgen receptor blockade in the neonate
[116] curiously increased A accumulation in adulthood,
suggesting that androgens can exert organizational
effects on propensity toward AP pathology. Gonadect-
omy did not change levels of tau in male 3xTg mice
[179], but testosterone decreased tau levels compared to
both gonadectomized and intact mice [179].

Molecular and biochemistry

Consistent with androgen-mediated decreases in Af
levels, elevating brain and serum testosterone via aroma-
tase knockdown, modified important enzymes (BACE,
neprilysin (NEP), and IDE) leading to decreased Af pro-
duction [178]. These data offer an explanation for andro-
gen’s protective actions in lowering levels of A and,
ultimately, improving cognition. Although more studies
have addressed molecular and biochemical measures in
in vitro, cell culture systems, they are not reviewed here.

Survival
No studies to date have examined if androgens, or the
lack of, alter survival in male mice that model AD.

Conclusions and future directions
Though the number of studies is limited, they collect-
ively show a deleterious effect of gonadectomy and a
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Table 3 Male studies of cognition & behavior in mouse models of AD

Hormone/ Regimen Manipulation Timing, Route, Dose Comparison® Cognition & Behavioral AD Tg
Measure and Ref. Model
Hormone Depletion Gnx 3 mos N/A Intact vs Gnx Gnx | SAB (Y-maze) [177] 3xTg-AD
Flutamide® Postnatal d1-20 IP injection of flutamide Intact: Veh vs Flutamide Flutamide | SAB (Y-maze) [116] 3xTg-AD
(50 mg/kg/d)

Genetic Knockdown None N/A Intact: Aromatase™~ vs Aromatase™~ 1 spatial memory APP23

of Aromatase® Aromatase™* (Hole-board) [178]

DHT Gnx 3 Mmos Immediate s.c. DHT Gnx: Veh vs DHT DHT 1 SAB (Y-maze) [177] 3xTg-AD

(10 mg) 90+d

Symbols: T=increase, |=decrease, <>=no change.

Abbreviations: Tg=transgenic, mos=months, d=day, Gnx=gonadectomy, SAB=spontaneous alternating behavior (thought to reflect working memory),

IP=intraperitoneal, Veh=Vehicle, DHT=dihydrotestosterone.
A, All comparisons are between groups of AD Tg mice.
B, Flutamide is an androgen receptor antagonist.

C, Males with aromatase knockdown have increased endogenous testosterone levels, and decreased brain and sera estradiol levels.

protective action of androgens in male mice that model
AD. The protective effect existed in more than one AD
model, was achieved using genetic or pharmacologic
strategies, and modified a directly relevant measure to
clinical AD - cognition. Several important questions
arise from these studies. How do androgens modulate
Ap-targeting enzymes and can they protect against cog-
nitive deficits in an AB-independent manner? Do andro-
gens signal through receptor-dependent or alternate
pathways to achieve protection? Can androgen signaling
improve AD-related cognitive deficits in both males and
females? If so, can we modify androgen signaling to im-
prove cognition without eliciting masculinizing effects?
These and other lines of androgen-focused investigation
may hold promise for treating the human condition.

Where do we go from here?

Research strategies

Given our evolving tools and knowledge base, we put
forth the following suggestions for future research in
sex- and hormone-based studies in AD mouse models.
First, since gonadal steroid depletion is an inextricable
aspect of human, but not mouse, aging, it should be vig-
orously incorporated into our study of AD and other
disease models of aging. Gonadal steroid depletion
through gonadectomy is a human-relevant manipulation
that models the hormone environment in which AD
develops and enables clearer approaches to comparing
males and females, understanding reproductive aging,
and testing effects of hormone replacement. Second,
when using mouse models of AD, measures that relate
closely to clinical AD, and thus directly reflect human-
relevant outcomes, should be included in studies. This
means expanding the focus of mouse model research to
include cognition, behavior, and measures closely corre-
lated with these, such as synaptic and network function.
Third, because clear sex differences exist in human AD
epidemiology, specifically in progression to death, it is
important to look at survival and related measures in

our mouse models. Finally, in light of past, present, and
future clinical trials, we should continue lines of re-
search studying how the loss and replacement of hor-
mones affect each sex in models of AD.

Outlook

As we learn more about AD itself, how it manifests dif-
ferently in men compared to women, and how
hormones moditfy its risk, we must simultaneously recast
our questions to reflect high-yield and human-relevant
research strategies — with the goal of achieving biomed-
ical discoveries that improve the human condition. This
is not an easy task, as it requires merging the complex,
emerging field of sex and hormone biology with the
study of a complex, devastating disease of aging, AD.
We believe this task is not insurmountable, and if taken
on mindfully, may reveal novel targets for defeating the
disease.

Endnotes

#Sex is biological classification of living beings as male or
female and is used in this review to describe both humans
and mice. Gender, a term that is only appropriate when ap-
plied to humans, is a cultural expression of sex, shaped by
environment and experience.

This review of sex differences in the epidemiology of
AD includes large populations in which the effect of
ApoE4, a genetic risk factor that increases AD risk in
women, is not specifically examined.

“Estradiol is the most biologically active form of estro-
gen that circulates in high levels in the body prior to the
menopause in women. Most studies in animal models
use estradiol for hormone treatment. In contrast, clinical
studies in humans have used hormone replacement
paradigms that include other estrogenic steroids.

4During the publication process of our review, an obser-
vational study showing an association between hormone
therapy use started within 5 years of menopause and
decreased AD risk was released (H. Shao et al. Hormone



Dubeal et al. Biology of Sex Differences 2012, 3:24
http://www.bsd-journal.com/content/3/1/24

therapy and Alzheimer disease dementia: New findings
from the Cache County Study. Neurology 79, 1846).
Though the findings are highly intriguing in light of the
critical window hypothesis, caution must be exercised
when interpreting observational studies due to their inher-
ent limitations. Ultimately this study approach can only
show associations and not causal links. Whether hormone
therapy reduces the risk of AD when given during a critical
window will need to be determined through the gold-
standard of clinical research — randomized, double-blind,
placebo-controlled trials.
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