
Becker et al. Biology of Sex Differences 2012, 3:14
http://www.bsd-journal.com/content/3/1/14
REVIEW Open Access
Sex differences in the neural mechanisms
mediating addiction: a new synthesis and
hypothesis
Jill B Becker1,2,3,4*, Adam N Perry1 and Christel Westenbroek1
Abstract

In this review we propose that there are sex differences in how men and women enter onto the path that can lead
to addiction. Males are more likely than females to engage in risky behaviors that include experimenting with drugs
of abuse, and in susceptible individuals, they are drawn into the spiral that can eventually lead to addiction.
Women and girls are more likely to begin taking drugs as self-medication to reduce stress or alleviate depression.
For this reason women enter into the downward spiral further along the path to addiction, and so transition to
addiction more rapidly. We propose that this sex difference is due, at least in part, to sex differences in the
organization of the neural systems responsible for motivation and addiction. Additionally, we suggest that sex
differences in these systems and their functioning are accentuated with addiction. In the current review we discuss
historical, cultural, social and biological bases for sex differences in addiction with an emphasis on sex differences in
the neurotransmitter systems that are implicated.

Keywords: Addiction, Dopamine, Acetylcholine, Norepinephrine, Dynorphin, Cocaine, Heroin
Introduction
The path from initial drug use to addiction is often
described as a downward spiral [1]. The euphoria of first
use deteriorates with habituation, to be replaced with
heightened incentive salience associated with the drug
and the cues that predict the drug as well as dysphoria
in the absence of the drug. This is followed by addiction,
compulsive craving for the drug, and exacerbation of
dysphoria with drug withdrawal. While this narrative
may capture the changing relationship between users
and their drugs over time, it fails to recognize the di-
verse reasons contributing to initiation of drug use,
which may ultimately influence how quickly an individ-
ual develops addiction. For many, illicit drugs are ini-
tially taken for their positive reinforcing effects, such as
feelings of euphoria, energy, focus or sexual enhance-
ment (Figure 1). For many other individuals, illicit drug
use is initiated primarily to self-medicate another
* Correspondence: jbbecker@umich.edu
1Molecular and Behavioral Neuroscience Institute, University of Michigan,
Ann Arbor, MI 48109, USA
2Department of Psychology, University of Michigan, Ann Arbor, MI 48109,
USA
Full list of author information is available at the end of the article

© 2012 Becker et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
condition (i.e. negative reinforcement), such as depres-
sion, anxiety, chronic pain or post-traumatic stress dis-
order (PTSD), just to name a few. Thus, in these latter
individuals, drug use provides temporary relief and func-
tions as a maladaptive coping strategy to deal with the
alterations in reward-related processes and affective state
that characterize each psychopathology.
While the basic neural systems involved in positive

and negative reinforcement, are similar in males and
females, sex differences are present in how these neural
systems are organized, activated and connected with the
rest of the brain, and these are postulated to underlie
sex differences in the path to addiction. Additionally, sex
differences in these systems and their functioning are
accentuated with drug use and the progression towards
addiction. There is an extensive body of literature con-
cerning the neural systems contributing to the develop-
ment of addiction. In general, the monoamine systems
(e.g., dopamine (DA) and norepinephrine (NE)), neuro-
peptides (e.g., corticotropin-releasing factor (CRF) and
the endogenous opioid peptides) and others (e.g., acetyl-
choline (ACh)) have been shown to participate in either
the rewarding effects of abused drugs or their negative
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Figure 1 The downward spiral from sensation-seeking into addiction. The spiral depicts individuals initiating drug use (large orange arrow)
primarily due to positive reinforcement (i.e., seeking the hedonic effects of drugs, such as euphoria, increased energy and alertness, or “the thrill,”
which are indicated by yellow shading), which are attributed to acute increases in dopamine (DA, green arrow), norepinephrine (NE, yellow
arrow), endogenous opioids (ENK/END/EM, light blue arrow), and acute increases in acetylcholine (ACh, orange arrow). A post-intoxication “crash”
follows these acute positive effects due to an “over-correction” by compensatory mechanisms leading to a transient dysphoria (blue-grey
shading), which is largely attributed to reduced DA function, ongoing NE activity, and increased dynorphin (DYN, dark blue/purple arrow) and
corticotropin releasing factor (CRF, pink arrow) signaling. Neurochemical function and affective state eventually normalize during drug-free
periods (white shading between grey arrows). Following repeated use, drug-induced adaptations can also result in the development of
psychopathologies and physical symptoms that further reinforce drug use out of negative reinforcement (as depicted by the transition in the
spiral from blue to red). A larger proportion of men compared to women may initiate drug use for their positive effects. However, sex differences
in the highlighted neurochemical systems may also lead to different trajectories from sensation-seeking toward dependence in men and women.
(The magnitude of neurochemical responses is indicated by the relative sizes of the arrows, refer to text for details on sex differences). Modified
from Koob and Moal [1].
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effects observed during withdrawal. With the exception
of the DA system [2-4], little attention has been paid to
sex differences in these other systems and how they
might differentially contribute to the risk of addiction in
males and females.
It is the thesis of this review that sex differences exist
along every aspect of the spiral pathway towards addic-
tion. In addition, we propose the existence of a second
“steeper” spiral, for which initiation of drug taking
occurs to alleviate self-perceived symptoms of (stress-
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related) psychiatric disorders. There are sex differences
in why men and women enter onto the path that can
lead to addiction. Men and boys are more likely to en-
gage in risky behaviors that include experimenting with
drugs of abuse primarily for their positive reinforcing
effects. In susceptible males, they are drawn into the
spiral that can eventually lead to addiction. Women and
girls are more likely to take drugs to reduce stress or allevi-
ate psychological distress (e.g., depression and PTSD), thus
they enter into the downward spiral already burdened with
neurological changes that may promote their transition to
addiction more rapidly. We propose that neither mode of
entry into the spiral is exclusive for men or women, but ra-
ther, different proportions of men and women enter
through the two spirals. Our thesis is that in the presence
of stress-related psychopathologies, or border-line disor-
ders, the transition from drug use to dependence will be
faster. In addition, sex differences in the underlying neuro-
biological mechanisms of these disorders interact with the
effect of drugs of abuse to result in sex differences in the
consequences of drug use and abuse in a more vulnerable
population.
We begin with an historical overview of evidence for sex

differences in addiction and drug abuse in humans. This is
followed by descriptions of the effects of drugs of abuse
with initial drug use, consequences of chronic drug use
and several of the brain systems involved. Sex differences
will be illustrated throughout each section. We will focus
mostly on the psychostimulants and opiates.
We hope this review will accomplish at least two objec-

tives: 1) highlight the seemingly ubiquitous presence of
basal sex differences in nearly every system implicated in
addiction, and 2) reveal the shocking lack of knowledge of
how these differences contribute to divergent (or similar)
responses to drugs of abuse and the development of addic-
tion in males and females.

Historical background
The history of use of psychoactive drugs is found through-
out our recorded history. One of the first recorded uses is
in the Odyssey by Homer from the 9th century B.C. where
Helen, daughter of Zeus, gave a drug that is thought to be
opium to Thelamachus and his men so they could forget
their grief at Odysseus’ absence, "it entered into Helen’s
mind to drop into the wine that they were drinking an ano-
dyne, mild magic of forgetfulness. Whoever drank from
this mixture in the wine bowl would be incapable of tears
that day. . . The opiate of Zeus’ daughter bore this canny
power. It had been supplied her by Polydamna, mistress of
Lord Thon in Egypt. . ." p. 59 [5]. Of course this passage
records the use of both wine (alcohol) and opium, pointing
out that men and women have also been using and abusing
alcohol throughout our history, as well as that opium was
traded even during the time of Odysseus.
It is difficult to determine the extent that women were
using or becoming addicted to drugs throughout the cen-
turies, since most of recorded history focuses on men. We
know that men used drugs and became addicted, but to
what extent and under what conditions have women suf-
fered from addiction in the past? Quantitative data on the
number of people (men or women) addicted to any drug
do not exist before late in the twentieth century. Qualita-
tive data about the causes of drug use and addiction are
colored by perceptions of the roles of men and woman in
society at the time. We relate the historical evidence for
drug use by women, to contextualize the differences in the
path to addiction for women vs. men.
What we know of historical patterns of drug use comes

mostly from the United States where attempts to docu-
ment use in both men and women began in the 1800 s, al-
though there are anecdotal reports as well as characters in
literature that contextualize drug abuse in other cultures
throughout the years, as illustrated by the quote from The
Odyssey above. More recently, the United Nations Office
on Drugs and Crime has published annual reports on drug
production and use throughout the world, but these
reports are not stratified by sex/gender, and there are large
populations for which data are missing. For example, in
China and Africa there are no data on drug use among
school age individuals [6].

Prevalence of drug use in women
Ethanol The use of alcohol is recorded throughout history
as an anesthetic, antiseptic and medication, as well as for
its use in beverages. In plays of the ancient Greeks, women
were frequently depicted as intoxicated, and drinking wine
was linked to sexual promiscuity in women [7]. Through-
out the ages ethanol was used by both men and women,
but brewing was considered a female domestic trade in
Germany, until the late 1600 s when the trade became
taxed and then men took over the practice [7]. In England
in the 1700 s the overuse of distilled alcohol became a
“woman’s problem”. Prior to the 1700 s most alcohol con-
sumed in England was ale, beer or wine, and these tended
to be consumed more by men, perhaps because of the
establishments in which spirits were consumed. With the
arrival of distilled liquors in the 1700 s, gin became known
as the woman’s drink, which fueled the ‘gin craze’ in Eng-
land. Women were selling gin and drinking gin, gin was
sold in places where women congregated and here women
were selling gin to other women. While it is difficult to get
quantitative data from the eighteenth century, there was a
clamp-down on gin sales in 1738 and 75% of the gin-
sellers appearing before a magistrate were women [8]. Fe-
male use of gin was made a social problem with a number
of highly publicized cases that lead to tighter restrictions
and higher taxes on gin, which further reduced use for
both men and women, but women in particular.
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Opiates As discussed in Brownstein (1993), the cultivation
of poppies to obtain opium began with the Sumerians liv-
ing in what is now Iraq during the third century B.C., al-
though opium was being obtained from poppies before
that time. From the literature one can trace to the 13th cen-
turies the trading of opium in Europe and Asia minor, and
reports of addiction can be found in manuscripts from the
16th and 17th centuries [9]. The British went to war with
China in 1839 and again in 1856 for the right to continue
to sell their opium produced in India to China, these be-
came known as the First and Second Opium Wars. China
lost both wars and was forced to open its borders to unre-
stricted trade and to permit non-Chinese individuals into
mainland China [10]. The active ingredient in opium was
isolated in 1806 and was called morphine after the god of
dreams Morpheus [9]. With the isolation of the active
compound, more uses for the drug were introduced, and
both doctors and pharmacists dispensed medicines that
contained opiates for a multitude of ailments resulting in
addiction for men and women [11].
The best quantitative data of a historical nature on

women and drug abuse are on the opiates and solutions
containing opiates. In the 1800 s it was widely acknowl-
edged that in the USA more women than men were
addicted to opiates (opium, morphine, laudanum or her-
oin). This sex difference in opiate use was quite dramatic
with estimates ranging from 66% to 80% of the opium
users being women during the late 1800 s [12]. As dis-
cussed by Kandall (1999) it was hard to get an accurate es-
timate of the number of women who were addicts in the
1800 s, because women tended to use opiates clandestinely,
self-medicating with doses that allowed them to continue
to function. In fact women frequently used opium for years
without the knowledge of their husband, friends or family.
Many physicians considered opium addiction among
women to be an upper class affliction, but in fact, when
doctors were surveyed in a more systematic manner there
was no distinction by class, occupation or regional location.
Housewives, prostitutes, women in rural farming commu-
nities, women living in Massachusetts or Alabama, all were
more susceptible to opiate addiction than were their male
counterparts. This was in large part because physicians and
pharmacists freely over prescribed and dispensed legal opi-
ates [12]. Furthermore, the readily available patent medi-
cines contained large amounts of opiates and alcohol, and
this contributed to their widespread use throughout the
country. Doctors at the time concluded that, “women were
more prone to opium addiction because of their ‘more ner-
vous organization and tendency to hysterical and chronic
diseases’” (Hamlin, 1882, as cited in Kandall 1999, p.29).
By the early 1900s there were approximately 50,000

opiate-containing patent medicines available in the USA
[13]. Then, in 1906 the Pure Food and Drug Act was
passed, and this law is credited with resulting in a dramatic
decrease in drug addiction throughout the country. This is
the law that created the Food and Drug Administration
(FDA) which required that the FDA approve drugs
intended for human consumption, that certain drugs be
available only by prescription, and that drugs that were
habit forming needed to be labeled as such (Pure Food
and Drug Act of 1906, United States Statutes at Large
(59th Cong., Sess. I, Chp. 3915, p. 768–772)). This law ef-
fectively put the patent medicine industry out of business,
since when these medicines were tested they were not
approved for sale by the FDA. Then, in 1914 the Harrison
Tax Act was passed, and this law effectively limited the
non-medical use of narcotics (opium, morphine and its
various derivatives, and the derivatives of the coca leaf in-
cluding cocaine) by imposing a prohibitive tax on all non-
medical sales of these drugs1. All over the country, the
ready access to addictive patent medicines was eliminated
and drug addiction in both men and women declined. For
women, the result of the Harrison Tax Act was that the
proportion of women narcotic addicts declined to 50% of
the population by 1918, and the proportion continued to
decline until women were approximately 25-30% of
addicts in the USA by the beginning of World War II [13].
This example, considered with the use of ethanol in the

1700 s in England, illustrates that when social conditions
allow for easy access to a drug of abuse women can be
more likely to escalate use to addiction than are men, per-
haps due to the tendency to self-medicate. When restric-
tions are tightened, use by women falls off. On the other
hand, one must also take into consideration the position of
women in society during these times. Women were with-
out a profession, frequently left alone, men of the times
tended to value a frail and retiring personality in their
women, so self-medication to alleviate physical and psy-
chological conditions was tolerated and to some extent
encouraged [12].

Other drugs After World War II women who had been
busy and employed during the war returned to the role
of homemaker, and physicians began to prescribe the
use of tranquilizers and sedatives to alleviate the stress
and tension of the discontented housewife [12,13]. By
the end of the 1960s two-thirds of the prescriptions for
the tranquilizers Valium and Librium were to women.
The drug industry at the time was also promoting the
use of amphetamines as appetite suppressants, and
women were consuming 80% of the prescription amphe-
tamines in the USA. Since the 1960s the use of all ad-
dictive drugs by women has been increasing. It is still
the case, that for individuals 18 or older, there are more
men than women who are drug addicts. In the 2008
SAMSHA report, among youths aged 12 to 17, however,
the rate of substance dependence or abuse among males
was similar to the rate among females (8.0 vs. 8.1%) [14].
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In the college age population surveyed in the 2008 SAM-
SHA report, containing both individuals attending college
and an age-matched cohort, use of amphetamine was a lit-
tle higher among college males (7.2%) than college females
(4.8%), but somewhat lower among males in the non-
college segment (6.3%) than among non-college females
(7.7%). Cocaine showed a similar profile with college
females (3.0%) reporting less annual cocaine use than col-
lege males (6.4%), and non-college males and females both
reporting higher rates of cocaine use (9.3% and 8.7% re-
spectively). For Vicodin (an opiate-based prescription
medication) in 2008 males and females showed the same
usage rate: 6.7% vs. 6.6%. Non-college females reported the
highest rates of use for both sedatives (barbiturates) and
tranquilizers, relative to all other groups. Alcohol use was
approximately the same in males and females, with males
having higher prevalence of binge drinking than females.
The annual prevalence of marijuana use did not differ sig-
nificantly between males and females among college stu-
dents, nor among the non-college respondents [14].
The historic prevalence and pattern of drug abuse

among males and females highlights a couple of points.
First, availability of opiate drugs in the 1800 s and seda-
tives or tranquilizers in more recent times has lead to
greater abuse of these drugs by women than men due to
a combination of factors including physician’s recom-
mendations, self-medication, and other social factors
such as lack of education and job status (unemployed,
homemaker, etc.). Since the 1960s the psychomotor sti-
mulants (amphetamine, methamphetamine, and cocaine)
have been used by women for appetite suppression and
as a ‘pick-me up’. During the 1980s and 1990s the illicit
use of these drugs among individuals under the age of
25 was predominantly by males. Since 2004, however,
the sex difference in use of these drugs has declined and
there has been no difference between males and females
in stimulant use among this age group in recent surveys
[14]. Overall, availability of drugs coupled with dissatis-
fying social conditions, stress, anxiety, and depression
tends to exacerbate drug abuse and addiction in women.
While such conditions can also increase drug use in
men, it is our hypothesis that on the average this hap-
pens more often in women.
Finally, comorbidity of psychiatric disorders and sub-

stance abuse is substantial, 30-41% of subjects with a life-
time drug use problem suffer from at least one mood or
anxiety disorder, and these associations are stronger in
women than in men [15-17], supporting the idea that self-
medication for mood disorders is a major path to addiction
in women. While there are clearly cultural and social fac-
tors that impact whether a woman vs. a man will take an
illicit drug and then continue to take the drug to the point
of compulsive use and/or addiction, there are also bio-
logical sex differences that contribute. Furthermore, the
same patterns of more rapid acquisition and escalation of
drug use are seen in female rodents compared with males.
We make the case that this is due to sex differences in the
neurobiology of the system in this review.

Patterns of drug taking behavior in women and men
Only a small percentage (16-17%) of people who use
drugs will progress to a state of dependence [18,19]. Sex
differences have been reported in the risk of progression
to dependence for several types of drugs. For example,
males have a higher risk for cannabis and alcohol de-
pendence, whereas for cocaine the risk is equal for men
and women [19].
Substance abuse and dependence are both characterized

by maladaptive patterns of substance use that lead to clin-
ically significant impairment or distress (DSM-IV, [20]).
The criteria that must be met for abuse include substance
use that leads to problems at work, physically hazardous
situations, and legal problems and/or interpersonal or so-
cial problems. The specific criteria for dependence include
tolerance, symptoms of withdrawal, escalation of intake,
persistent unsuccessful desire to control substance use,
considerable time spent in activities to obtain or use the
substance, other previously valued activities are reduced
because of substance use, and substance use continues in
the presence of adverse consequences [21]. When a user
transitions from recreational to compulsive drug use, there
is an increase in the amount of drug used daily, primarily
from an increase in frequency of use rather than increases
in the dose (for review [22]).
More men than women meet criteria for drug abuse

and dependence, and men show a higher prevalence for
dependence on alcohol and marijuana. On the other hand,
even though more men than women use cocaine and psy-
chotherapeutics, more women show dependence for these
substances [23,24].
Prevalence of drug abuse and addiction is only one index

of how males and females differ in their responses to drugs
of abuse. Other characteristics of drug abuse are also sexu-
ally dimorphic, including age of drug use initiation, rate of
escalation of drug use, and quantity of drug consumed.
This is particularly true for the psychomotor stimulants
[2,25], but is also true for other drugs of abuse [4]. For ex-
ample, women start using cocaine or amphetamine at an
earlier age than do men, the rate of drug use escalation is
greater for women than for men, and when women seek
treatment they are consuming greater quantities than are
men [2,25]. In addition, women report higher craving then
men, and exhibit more medical problems [16]. Although
no sex differences in these aspects of drug addiction have
been reported as well [19,26].
Why men and women or boys and girls begin using

drugs is also different. The best data are for consumption
of alcohol, but the same pattern of results is found for
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other drugs of abuse. In general, males report starting
drug use for the thrill or to enhance their behavior in so-
cial situations, while girls report drug use to enhance their
ability to cope with bad feelings, reduce stress, and de-
crease feelings of social isolation [27,28]. This sex differ-
ence in drug use initiation is also seen in the drugs that
are initially used. For opiate addiction, males will tend to
use heroin or other street opiates, while females tend to
use prescription opiates first and then progress to the use
of narcotics obtained without a prescription [29]. Perhaps
as a consequence, heroin use is more common in men,
whereas women are more prone to use other opiates, bar-
biturates, sedatives, and amphetamines.
Importantly, childhood abuse and neglect predicts subse-

quent illicit drug use in adulthood in women, but not men
[30]. In women, drug use following early abuse appears to
manifest as part of a generalized problem behavior syn-
drome that includes prostitution, homelessness, delin-
quency, criminal behavior and problems at school [30].
This relationship between early abuse and subsequent drug
use may reflect the sex difference in the reason for drug
use initiation, since women tend to be self-medicating for
feeling of social isolation and stress reduction.
If one considers individuals who are incarcerated, the

prevalence of substance abuse and dependence among
incarcerated women is higher than for their male counter-
parts [31,32]. This may reflect the fact that the overall num-
ber of women in prison is much lower than men, and their
convictions are often due to drug-related crimes. When
examining participants with drug-related offenses that were
placed in drug court programs, it is clear that women began
using alcohol and marijuana at later ages, but tended to ini-
tiate cocaine use earlier than men. Additionally, while the
time between initiation and the development of problem-
atic use was similar for men and women for alcohol and
marijuana, problematic cocaine use occurred much earlier
in women [33].

Sex differences in the acute/subjective effects
Humans With the exception of the stimulants (e.g., co-
caine and amphetamine), the subjective effects of most
drugs do not differ between men and women (reviewed in
[34]). In the case of cocaine and amphetamine (AMPH),
men often (but not always) report greater subjective
effects than women [35]. This difference is most likely due
to the fact that the subjective effects of stimulants vary
over the course of the menstrual cycle, with men and
women in the follicular phase (when E2 levels are low at
first and rise slowly; P levels are low) being more similar
to one another than either is to women during the luteal
phase (when E2 levels are moderate and P levels are high).
There is substantial evidence that sex differences in the

response to stimulants are due in large part to the fluctua-
tions in estrogen (E2) and progesterone (P) that occur over
the female reproductive cycle. For example, several of the
positive subjective effects of AMPH, such as euphoria, de-
sire, increased energy and intellectual efficiency, are poten-
tiated during the follicular phase relative to the luteal phase
[36]. Additionally, administration of exogenous E2 during
the follicular phase further increases the subjective effects
of AMPH [37].
In contrast to E2, the subjective effects of psychostimu-

lants are negatively correlated with salivary P levels in
women [38]. Additionally, exogenous P attenuates many of
the positive subjective effects of cocaine when administered
to women during the follicular phase, but has negligible
effects in men ([39], but see [40,41]). Conversely, exogen-
ous P also has been shown to increase the positive subject-
ive effects of AMPH in women [42].
The role of androgens (e.g., testosterone, T) in the pat-

tern of drug use in men and women has received far less
attention than E2 and P. Similar to E2, T concentrations
vary over the menstrual cycle [43]. Additionally, there are
circadian and seasonal rhythms to T concentrations [44-
47]} and several types of social experiences can modulate
plasma T profiles in both sexes, including sexual arousal,
winning/losing sports competitions, exposure to an infant’s
cries and providing nurturing care [48-57]. T concentra-
tions can be modulated by social experiences as well as by
exogenous drugs in both males [58,59] and females [60].
Thus, the relationship between the response to drugs of
abuse and circulating T is dynamic and bi-directional.
Taken together, these results suggest that if women start

taking drugs such as cocaine or amphetamine to self-
medicate for depression or anxiety, the stage of menstrual
cycle may impact both their subjective to mood to begin
with, as well as the efficacy of the drug to overcome the en-
dogenous state. This could affect the risk for transitioning
from use to dependence. It is beyond the scope of this re-
view to cover all of psychoactive drug-induced changes in
endocrine responses. We will focus on what is known
about sex differences in the effects of drugs on E2, P, T and
corticosterone/cortisol (CORT) in the following sections.

Animal models In preclinical models, the subjective
effects of drugs are often examined in the conditioned
place preference (CPP) paradigm [61]. Female rats develop
CPP to lower doses of cocaine than do males [62,63]. Yet
both sexes show equivalent CPP at higher doses of cocaine.
Reinstatement of CPP is also more pronounced in females
at higher cocaine doses [64]. The strength of CPP in
females is highly dependent upon ovarian hormones. Co-
caine CPP is attenuated in ovariectomized (OVX) females,
whereas treatment with both E2 and P (but not E2 alone)
potentiates CPP [65]. No sex differences in CPP to (meth)
AMPH have been reported in studies using intact males
and females [66,67]. AMPH does not induce CPP in OVX
females unless they are treated with E2 or E2 and P, an
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effect apparently mediated by estrogen receptor β (ERß)
[68].
Sex differences in the rewarding properties of mor-

phine have been reported, however, there are differences
among various rat strains. In Wistar rats, females find
lower doses of morphine more rewarding than males do
[69]. In Sprague–Dawley rats, however, there is no dif-
ference in morphine CPP between males and females at
lower doses, but females continue to display CPP at high
doses of morphine that males do not prefer [70]. Thus,
sex differences in the rewarding value of drugs of abuse
(as indicated by CPP) vary with the drug, the dose and
the hormone condition of the female rodent.

Drug taking behavior- effects of gonadal hormones
The amount taken and frequency of drug use are often dif-
ferent in men and women. In a survey of heroin addicts,
men and women reported a similar frequency of heroin
and alcohol use in the past 30 days; however, women
reported significantly more days of cocaine use [71]. Simi-
larly, in another survey of men and women in a treatment
center, women reported higher frequencies for lifetime and
current (i.e., past 12 months) use of crack/cocaine than
men, whereas there were no differences in the frequencies
of alcohol, marijuana or heroin use [72]. When examining
sex differences in stimulant users that primarily abuse
crack or powder cocaine, women reported greater frequen-
cies of crack use than men, whereas patterns of powdered
cocaine use were similar between the sexes [73]. Women
also appear to be more vulnerable to escalation of drug use
and show a faster transition from initial use to dependence
[74,75].

Ovarian hormones
Evidence from studies in both humans and animals indi-
cate that ovarian hormones modulate self-administration
of stimulants and thus may influence sex differences dur-
ing different phases of cocaine addiction. E2 administration
to ovariectomized females affects many psychostimulant
drug-induced behaviors, including self-administration [76-
84]. For example, Hu et al. (2004) found that in ovariecto-
mized female rats, exogenous E2 treatment alone was suffi-
cient to facilitate acquisition of cocaine self-administration.
E2-facilitated cocaine self-administration has also been
found in other studies [84,85]. Finally, acquisition of co-
caine self-administration is markedly reduced by ovariec-
tomy, and restored by E2 replacement [86]. Sex differences
and the effects of E2 are not limited to psychostimulants,
and E2 has been found to also facilitate acquisition of self-
administration of opioids in ovariectomized rats; females
acquire faster and show a higher motivation to self-
administer morphine and heroin than males [87-89]. Fur-
thermore, there is no effect of castration of male rats on
acquisition of cocaine self-administration behavior and a
dose of E2 that enhances self-administration in female rats
has no effect on cocaine self- administration behavior in
males [90]. Thus, the effects of E2 on the acquisition of co-
caine self-administration are sexually dimorphic.
Female rats will work harder for cocaine during the es-

trous phase of the cycle than during other phases of the
cycle, and females work harder than male rats [85]. The
finding that the motivation to self-administer cocaine is
greater during the estrous phase of the cycle may be
related to the finding that stimulant-induced DA release is
enhanced during estrus relative to diestrus [91,92]. In con-
trast, sucrose self-administration does not vary across the
estrous cycle [93], suggesting that drug taking behavior
taps into a slightly different motivation circuit or that
drugs of abuse are more effective at activating these neural
circuits and so effects of the estrous cycle are observed.
Female rats also ‘binge’ for a longer initial period of time,

take more cocaine over a 7-day access period, and show a
greater loss of diurnal control over cocaine intake than do
males [94]. When the role of E2 in ‘binge’ cocaine intake
and subsequent motivational changes is examined, E2
treatment increases the initial binge length and enhances
cocaine self-administration [95].
Patterns of hormone secretion are also altered during

withdrawal from cocaine. During the first month of co-
caine abstinence, cocaine-dependent women show elevated
CORT and progesterone concentrations across their cycle
compared to healthy controls [96]. In this same study, the
authors report a reduction in negative affect at the end of
the luteal phase, which may relate to findings in another
study that a majority of women entering treatment for co-
caine dependence were currently in the early follicular
phase and were more likely to be experiencing high levels
of anxiety [97]. High levels of anxiety and depression at the
start of treatment are also associated with increased
cocaine-positive urine tests at intake, which in turn pre-
dicts treatment retention [97]. Thus, fluctuations in hor-
mones and mood over the menstrual cycle, which are both
influenced by drug use and withdrawal, may impact pat-
terns of drug taking, and the likelihood of entering and
successfully completing treatment programs in women.

Testosterone
As described previously, androgen secretion in males is
often dynamically regulated by social interactions that
impact status or reproduction [48,54,98-101]. These
fluctuations in androgens over the course of the day may
influence the pattern of drug use and potential for re-
lapse in men. The latter may be especially relevant to
several drug-seeking triggers and may contribute to the
overlap between sexual activity and drugs (especially as
seen with the stimulants) [102-105]. Using real-time
electronic diaries to track mood, drug craving and use,
participants increasingly endorse “was in a good mood”
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prior to cocaine use, but not craving [106]. This is in
contrast to heroin craving, which was more often pre-
ceded by negative feelings (e.g., felt “angry,” “worried,”
or “sad”), among others [106]. In fact, men report re-
lapse following positive feelings as well as a connection
between feeling good (e.g., from winning at sports) and
drug craving. Conversely, opiate and cocaine addicts are
reported to have reduced T concentrations during with-
drawal or while on methadone maintenance [107,108].

Aspects of addiction-criteria modeled in animals
Escalation of drug intake is one characteristic of addiction.
The rate of drug use escalation is greater for women than
for men, and when women seek treatment they are con-
suming greater quantities than are men [2,25]. The escal-
ation of drug intake has been extensively studied in male
rats. In these studies, animals that have daily access to
drugs for only 1–2 h rapidly stabilize their drug intake,
while animals exposed to extended daily access (>6 h/
day) show increasing drug-intake over time [109-111].
Other reinforcement schedules can also lead to escalation
in drug taking [111-113]. Thus, environmental conditions
can influence drug-taking behavior and the preclinical
situation can be made to reflect the clinical pattern of
drug taking. Most of this research has been has been con-
ducted in male rats, but females are more likely to escalate
drug taking and show dysregulated intake after extended
daily access [114], an effect that is modulated by gonadal
hormones [115].
Persistence of drug taking/seeking in the face of adverse

consequences is an aspect of addiction that is not often
investigated in animal models. Rats with limited drug ex-
perience will stop responding for drugs when the drugs are
paired with a stressor like a foot shock. After extensive drug
taking exposure some rats will continue to respond for the
drug, even when receiving a foot shock, which is thought
to be related to compulsive drug taking as observed in
human addicts [116,117]. To our knowledge no data are
available for females in this regard.
Finally, that fact that only a small percentage (16-17%) of

people who have used cocaine or other drugs that are
abused develop dependence [18] is largely ignored in pre-
clinical addiction research. During preclinical drug self-
administration studies, the drug is easily obtained without
much effort or risk on the part of the rat, so all animals
learn to self-administer with stable levels of responding.
When multiple addiction-like traits (i.e., high motivation to
take drugs, persistence of drug seeking when no drugs are
available, and resistance to negative consequences) are
examined within a population of rats, only a small percent-
age of animals (<20%) meet all three criteria, and only after
long-term chronic self-administration [118,119]. This indi-
cates that chronic drug exposure is necessary to develop
addiction-like behavior in rats. It is unknown whether the
same proportion of female rats would meet the three
addiction-like trait criteria.

Stress and craving/reinstatement of drug seeking
Sex differences in stress-reactivity are extensively reported,
both in the hypothalamic-pituitary adrenal (HPA)-axis re-
sponse and neurobiological consequences of stress in the
brain. As reviewed recently, the relations between drug
abuse and sex differences in the stress system are compel-
ling [120]. For example, activation of the HPA-axis occurs
with the administration of many different types of drugs of
abuse [121-123], with females showing an enhanced stress
response to cocaine [124]. Conversely, stress affects several
aspects of drug-taking behavior [125-127], and activation of
different components of the HPA-axis are essential for ac-
quisition and maintenance of self-administration of cocaine
[128], motivation to self-administer cocaine, sensitization
to cocaine, and CPP for cocaine but not morphine [129].
Exposure to stressors induces craving in abstinent

drug users [127,130-133] and thus stress plays an im-
portant role in maintenance and relapse of substance
abuse. Beside stressors, exposure to cues associated with
drug use also result in craving. Interestingly, these cues
activate the HPA-axis and induce anxiety and subjective
feeling of stress [133-135], indicating cues act as stres-
sors as well. Sex differences have been found to cue and
stress-induced craving. Cues associated with drugs and
stress both increase drug craving in men and women;
however, women appear to have a greater craving re-
sponse and appear to be more sensitive to the effects of
stress [130,133,134]. Neurobiological differences have
also been found, with women addicted to cocaine show-
ing a greater reactivity to cocaine-associated cues than
men and a reduction in glucose metabolism in frontal
cortical areas, suggesting an impaired cognitive control
after exposure to cocaine-cues [136,137]. Interestingly,
corticostriatal-limbic hyperactivity was linked to stress-
cues in women and drug-cues in men, indicating a dif-
ferentially activated, but overlapping, circuitry for crav-
ing in men and women [137]. The impact of cues and
stress on craving appears to depend on the stage of the
menstrual cycle, with decreased craving and anxiety
being associated with higher P levels during the midlu-
teal phase [138].
Reinstatement of cocaine-seeking in rats is used as a

model for cocaine-craving in humans. Estrous females
show greater responding on the first day of extinction
training when the reward is no longer available and
show greater cocaine-induced reinstatement of cocaine-
seeking compared to proestrous and diestrous females,
which is associated with low levels of P [139]. E2 affects
cocaine-induced reinstatement in ovariectomized ani-
mals and augments cocaine-seeking. Sex differences in
the amount of cocaine-seeking during the first days of
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extinction training have been reported, with females dis-
playing greater amounts of seeking than males, and
there are also effects of the estrous cycle on cue-induced
reinstatement [140,141].
In rats (similar to in humans), stress enhances self-

administration and reinstatement of drug-seeking for
several types of drugs of abuse in both males and
females [142]. Sex-differences in the effects of stressors
on reinstatement are also seen in rats, with females hav-
ing greater stress-induced reinstatement of cocaine seek-
ing than males. In addition, the estrous cycle modulates
the effects of stress, with proestrous females displaying
higher levels of stress-induced reinstatement of cocaine-
seeking [140,141].

Underlying neurobiology
The neural circuitry contributing to drug use and the de-
velopment of addiction has been the subject of several re-
cent reviews [143-146]. Therefore, we will only provide a
brief overview to provide context for the sex differences
described in the following sections. The vast majority of
research regarding the effects of abused drugs and the
neural changes underlying dependence has been focused
on neurotransmission within and between the frontal cor-
tex (Fcx), nucleus accumbens (NAc), dorsal striatum (DS),
central nucleus of the amygdala (CeA) and bed nucleus of
the stria terminalis (BST) (Figure 2).
In this review, we will primarily be focusing on sex differ-

ences in the DS/NAc and CeA/BST, as these regions are
linked to the positive reinforcing effects of drugs, patterns
of drug use and the negative experiences associated with
withdrawal [147]. Neurotransmission within the DS/NAc
and CeA/BST is influenced by DA and NE signaling ori-
ginating primarily from within the substantia nigra pars
compacta (SN), ventral tegmental tegmental area (VTA),
locus coeruleus (LC) and nucleus of the solitary tract
(NTS), which is largely thought to underlie the effects of
drugs on motivation, attention and affect (Figure 2). While
these brain regions contain multiple classes of local and
projection neurons with diverse phenotypes, we will be fo-
cusing on DA, NE, the endogenous opioids (e.g., dynor-
phin, DYN and enkephalins, ENK), CRF, and ACh, as there
is widespread evidence of basal sex differences in these
neurochemical systems (Figure 3), which may become
altered/exacerbated by drugs and contribute to sex differ-
ences in the development of addiction (Figure 4).
The GABAergic medium spiny projection neurons (MSN)

in the NAc and DS comprise one of the primary sites of inte-
gration for cortical, thalamic and limbic afferents, and in turn
exert enormous control over voluntary actions and the
reinforcement of motivated behaviors. MSN are segregated
into two major classes based on the their patterns of axonal
projections (i.e., the “direct” striatonigral and “indirect” stria-
topallidal pathways), electrophysiological and neurochemical
properties, and receptor profiles [148-152]. The striatonigral
MSN preferentially express D1 receptors, dynorphin (DYN)
and substance P, whereas striatopallidal MSN preferentially
express D2 receptors, adenosine 2A receptors and
enkephalin (ENK). There is also a sub-population of “mixed”
MSN that co-express D1 and D2 receptors, DYN and ENK
and send projections in both the striatonigral and striatopal-
lidal pathways; however, the exact roles of these neurons in
basal ganglia function are still being clarified [153,154].
The dynamic opposition of striatonigral and striatopal-

lidal MSN is thought to underlie their contributions to
action selection [155]. Striatonigral MSN disinhibit
downstream motor circuits (hence there being called
“go” neurons), whereas striatopallidal MSN generally in-
hibit motor activation (hence the term “no go” neurons).
Striatonigral and striatopallidal MSN in different subre-
gions of the striatum (e.g., DS and NAc) receive unique
patterns of inputs from different cortical, thalamic and
limbic regions, and in turn modulate distinct aspects of
action selection and form specific processing loops for
motor, limbic and cognitive processing [156,157].
The distinct neurochemical and receptor profiles of

the striatonigral and striatopallidal MSN has enabled
the generation of transgenic mice in which each path-
way can selectively be activated or silenced (reviewed in
[158,159]). These models have provided experimental
validation of basal ganglia models of action selection, as
well as providing insights into how drugs of abuse influ-
ence behavior. In general, it appears that striatonigral
MSN activity is essential for conditioning appetitive
responses for both food and cocaine rewards (i.e., CPP)
and cocaine sensitization of locomotion, whereas stria-
topallidal MSN activity is required for aversive condi-
tioning and behavioral inhibition (e.g., attenuation of
cocaine sensitization and AMPH and cocaine CPP)
(Figure 2) [160-164].
In addition to their effects on basal ganglia structures

and action selection, drugs also exert a tremendous
influence over neural circuits regulating motivated beha-
viors (e.g., ingestive, reproductive and defensive beha-
viors), endocrine systems and the autonomic nervous
system [165-168]. The CeA and BST are two of the more
prominent structures within these circuits, which have
been implicated in the effects of drugs on emotional re-
activity, stress responses and affective state (Figure 2)
[145,169].
The exact roles of the CeA and BST in these and other

processes are still being clarified [170,171]. Nevertheless,
certain populations of neurons, identified by their neuro-
peptide transmitters (e.g., CRF, DYN and ENK), often
function in opposition to one another to fine-tune the
output of these systems and coordinate emotional, endo-
crine and physiological responses to various stimuli, in-
cluding drugs.



Figure 2 The central pathways of addiction and their associated neurochemical systems. A. Sagittal rat brain section depicting the systems
involved in reward/aversion and addiction. B. Medium spiny neurons (MSN) are the primary sites of synaptic integration in the DS/NAc, which
regulate locomotion and reward processes. Striatonigral MSN (DYN), are essential for the reinforcing effects of drugs, whereas striatopallidal MSN
(ENK) oppose the actions of striatonigral MSN and promote aversion. Cholinergic interneurons provide ACh in the DS/NAc, which is critical for
regulating the balance between striatonigral and striatopallidal MSN (among other functions). The CeA/BST contain several neuron types
expressing neuropeptides (and other neurotransmitters). CRF and DYN neurons contribute to negative affect, whereas ENK neurons contribute to
positive affect. DA neurons in the SN/VTA send projections throughout the forebrain, which convey motivational salience and value, as well as
providing an alerting signal for stimuli with potential significance. NE neurons in the LC/NTS send projections throughout the forebrain, which
enhance attention and arousal and modulate systems critical for maintaining homeostasis. C. The cycle of drug abuse/withdrawal alters the
balance of signaling in the DS/NAc and CeA/BST. Individuals initiating drug use primarily for “sensation-seeking” (refer to Figure 1) or “self-
medication” (refer to Figure 5) have different neurochemical profiles in the basal state and during acute intoxication and the post-drug “crash.”
The relative size of the pie pieces (e.g., DYN, ENK and CRF) indicates the predominance of each system, whereas the shading density (e.g., DA
and NE) indicates the relative extracellular monoamine concentrations. Neurochemical profiles are further altered during dependence, with
plasticity mechanisms in the DS/NAc potentiating striatonigral circuits driving compulsive drug-seeking behavior (indicated by the raised pie
wedge). The collective neurochemical changes and their associated effects on DS/NAc and CeA/BST neurotransmission contribute to more
frequent cycles of abuse and relapse that are the hallmarks of the spiral to addiction (refer to Figures 1 and 5).
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In general, the ENK neurons function as mediators of
positive affect, inducing positive feelings of calm, euphoria
and contentment, and promoting active stress-coping
responses and recovery from stress [172-175]. Conversely,
the CRF and DYN neurons in the CeA and BST participate
in the generation of negative affect, inducing negative feel-
ings of dysphoria, aversion and anxiety, and promote pas-
sive coping mechanisms and activation of stress responses
[176,177]. The function of these systems are normally inte-
grated and balanced to produce the full spectrum of
affective behaviors and homeostatic responses required to
navigate life’s daily frustrations and joys. However, repeated
drug exposure induces plastic changes in many of these
systems, which result in their dysregulation in the absence
of drugs and contributes to the psychological and physical
symptoms of withdrawal. Additionally, activation of these



Figure 3 Sex differences in basal neurochemical systems involved in reward, aversion and addiction. A summary of the published
information about sex differences in the neurochemistry of the reward system appears in this figure [193,225,226,228,269,329,330,332,353,354,356,
370,384,392,423,430,434,435,480-521]. Abbreviations are as follows, (R): data collected from rodents; (H) data collected from humans M: male, F:
female, for other abbreviations see list.
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neurons by stress and conditioned stimuli (i.e., drug-paired
cues and environments) may trigger anticipatory changes
in affective state and homeostasis that contribute to drug
craving, seeking and use [145,178,179].
In the following sections, we will discuss the roles of

DA, NE, CRF, DYN, ENK and ACh in regulating the
functional output of the DS/NAc and the CeA/BST and
how sex differences in these systems may contribute to
the different profiles of subjective effects, intake and se-
quelae of withdrawal in males and females.

Dopamine
Dopamine neurotransmission in the NAc/DS
The activity of DA neurons in the SN and VTA ranges
from regular pacemaker firing to burst firing, which trans-
late into tonic and phasic patterns of DA release that de-
termine extracellular DA concentrations in the NAc and
DS [180]. Stimuli with rewarding or salient features (or
that predict rewarding stimuli) induce brief bursts of DA
activity, whereas aversive stimuli typically inhibit the firing
of DA neurons and reduce DA concentrations [181-183].
The dynamic patterns of extracellular DA concentrations
resulting from these changes in activity are interpreted by
MSN through the differential activation of D1 and D2
receptors located primarily in striatonigral and striatopalli-
dal circuits, respectively [150,184].
All drugs of abuse increase DA concentrations in the

NAc and/or DS [185,186]; however, their mechanisms of
action can be quite different. The rapid increase in DA acti-
vates D1 receptors and biases the output of the striatum to-
wards the striatonigral pathway. Repeated drug exposure
induces DA-dependent plastic changes in striatonigral
circuits that mediate their reinforcing effects on behavior
(e.g., CPP and sensitization of locomotion).
The excessive extracellular DA concentrations induced

by repeated drug exposure engage compensatory mechan-
isms that function to constrain tonic DA neurotransmis-
sion. Thus, reductions in basal DA concentrations in
between periods of drug use lead to reduced D2 receptor
occupancy and preferential activation of striatopallidal
MSN, which may underlie the aversive (or anhedonic)
state characterizing these withdrawal periods [187]. There
is even evidence that D2 receptor expression is reduced
following chronic drug exposure, which may be an add-
itional mechanism to restore balance between the striato-
nigral and striatopallidal circuits.
Extracellular DA concentrations in the NAc and DS

are regulated by the clearance of DA from the synapse
by the DA transporter (DAT), which is also one of the
major targets of the psychostimulants. Cocaine increases
DA concentrations by blocking the DAT, and chronic
drug use results in increased DAT levels and function
that are thought to contribute to craving, withdrawal-
induced anhedonia and binging. DAT activity was
increased in the DS and NAc during withdrawal from
cocaine self-administration, although there were region-
specific changes in trafficking and signaling pathways
regulating DAT activity [188].
While the activity of DAT appears to be increased after

withdrawal from cocaine self-administration, its sensitiv-
ity to cocaine (but not AMPH) is actually reduced
[189,190]. These changes in DAT activity and cocaine
sensitivity are associated with reduced DA release, which
could play a role in the development of drug tolerance,
and suggest that the ability of DAT to regulate extracel-
lular DA concentrations and serve as a drug target can
be dissociated.

Sex differences in DA neurotransmission in the NAc/DS
The number of mescencephalic DA neurons has been
reported to be sexually dimorphic in many species. In
rats, males have more DA neurons in the SN and
females have more neurons in the VTA [191-193],
whereas in non-human primates, females are reported
to have more neurons in the SN than males [194]. DA
neurons in the SN often send collateral axons to mul-
tiple cortical and subcortical areas, whereas VTA DA
neurons primarily innervate a single target [195,196].
Thus, the sex differences in the relative number of DA
neurons in these areas may have functional implications



Figure 4 Sex differences and the influence of gonadal hormones in the effects of abused drugs. The contents of this figure complement
Figures 1 and 5 and emphasize sex differences (when known) and hormone effects (when known) in the effects of drugs of abuse (as depicted
in the figures) with initial drug use without preexisting psychopathology (euphoria-seeking), initial drug use when using as self-medication, and
during dependence. Yellow shading indicated changes associated with euphoria/positive effects, and blue shading indicated effects associated
with dysphoria/negative symptomatology (M: male, F: female, for other abbreviations see list).
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in terms of connectivity and integration between cor-
tical and subcortical processing. These sex differences
aren’t observed in all laboratory rodent strains [197],
which is consistent with the intrinsic variability of the
SN/VTA DA neurons and response to DA manipula-
tions across strains of mice and rats [198-201].
Differences in the number of DA neurons are influenced
by several factors, including sex chromosome complement,
the presence of the sry gene [192,202,203] and gonadal hor-
mones [204,205]. Gonadal hormones also regulate the
density of DA terminals in many brain regions, including
the NAc and DS [206-214]. The effects of gonadal
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hormones on DA terminals in these regions are due in part
to intrinsic effects within DA neurons, many of which con-
tain estrogen receptors (primarily ERβ) and androgen
receptors (AR), as well as extrinsic effects (e.g., signaling in
glia and neuronal afferents) that impinge upon DA term-
inals and cell bodies [215,216].
Interestingly, subpopulations of DA neurons that project

to discrete brain regions appear to have unique profiles of
steroid receptors, suggesting that gonadal hormones might
selectively influence regional DA neurotransmission to
affect certain aspects of behavior [209-212,217,218]. For
example, DA neurons projecting to dorsolateral DS, which
is involved in sensorimotor integration, are largely devoid
of ERβ and AR, whereas DA neurons projecting to asso-
ciative regions of the DS express ERβ and those projecting
to the NAc primarily express AR [219]. Clearly steroid
receptors within DA neurons are only one avenue through
which gonadal hormones can influence DA neurotrans-
mission in the NAc and DS, as demonstrated by the robust
increase in D2 receptor binding in the dorsolateral DS fol-
lowing E2 treatment, even though the DA neurons pro-
jecting to this region lack ERβ and AR [219-221].
Beyond differences in DA neuron number and terminal

density, there are likely sex differences in the firing rates of
DA neurons, which could impact extracellular DA concen-
trations in the NAc and DS. The firing rate of DA neurons
in the VTA fluctuates over the course of the estrous cycle,
with generally higher firing rates and more burst firing in
estrous and diestrous females relative to those in proestrus
[222]. The reduction in firing rate during proestrus may be
caused by increased negative feedback on DA neurons (e.
g., D2 autoreceptors) induced by E2 [222]. Additionally,
the effects of E2 on sensitivity to DA negative feedback var-
ies in different subpopulations of DA neurons, with some
showing increased sensitivity and others reduced sensitivity
[223], which may reflect DA neurons projecting to differ-
ent brain regions. E2 has also been shown to alter the firing
rate of DA neurons in the SN of both males and females,
with both increases and decreases in activity, as well as a
general synchronization of firing patterns [224]. Thus, go-
nadal hormones are likely to influence DA firing patterns
in both sexes, with more dramatic fluctuations in females
over the course of the estrous cycle.
There is evidence from microdialysis studies that extra-

cellular DA concentrations also vary over the course of
the estrous cycle and between GDX males and females,
which may contribute to sex differences in the function of
the striatum [225,226]. In the DS, basal extracellular DA
concentrations are significantly lower in diestrous females
compared to both males and proestrous/estrous females,
which are not significantly different from one another
[226]. There are also indications that women have greater
basal extracellular DA concentrations in the DS relative to
men [227]. Other studies in humans, however, report no
sex differences in basal DA concentrations, which is also
consistent with the preclinical data (i.e., sex differences
only during certain phases of the reproductive cycle).
DAT expression and function change over the repro-

ductive cycle, and following GDX and hormone replace-
ment, which may contribute to sex differences in
extracellular DA concentrations [228-232]. In intact
females, DAT binding in the DS is greater during dies-
trus compared to proestrus [230], which fits with the
pattern of extracellular DA concentrations [226] (i.e.,
lower DA with increased DAT binding, and higher DA
with decreased DAT binding). In OVX females, E2
increases DAT binding to levels of intact females [229].
Post-menopausal women also show increased DAT bind-
ing following E2 replacement therapy [233], which sup-
ports the idea that exogenous E2 can positively regulate
DAT function in an E2-deprived condition, whereas it
may normally function to suppress DAT function (and
thereby increase DA neurotransmission) in the context
of cycling hormone levels.
Fast scan cyclic voltammetry measurements of DA in the

DS indicate that females have greater release and uptake
parameters, relative to males, and that these do not fluctu-
ate over the estrous cycle [234,235]. At low frequency
stimulation, the greater uptake potential of females matches
their greater release, such that DA transients are similar be-
tween the sexes; however, at higher stimulation frequencies
reuptake is unable to match release producing larger
evoked DA transients in females. Greater DA synthesis
capacity and DAT availability have also been reported in
women, relative to men [231,232,236], suggesting that sex
Collectively, these data suggest that many factors con-

tribute to sex differences in DA function within the DS
and NAc. While the absolute levels of extracellular DA
concentrations in these regions might only be different
during certain phases of the reproductive cycle, the tem-
poral patterns of DA tone in males and females are quite
distinct. All evidence in males suggests that their DA
tone in the DS/NAc is relatively stable from day to day,
which may promote a consistent balance between the
output of striatonigral and striatopallidal MSN under
basal conditions. The fluctuating DA tone of females,
suggests that the balance between striatonigral and stria-
topallidal MSN may also be shifting over the reproduct-
ive cycle, with greater striatopallidal dominance during
periods of low DA (i.e., diestrus and OVX). Thus, the
ability of drugs to engage striatonigral circuits would
face variable opposition by striatopallidal circuits de-
pending upon the stage of the reproductive cycle.
In light of the many sex differences in these DA systems,

it is not surprising that DA function is differentially
affected by drugs in males and females. Sex differences in
DA release to psychostimulants have been reported for
humans as well as animals. Munro et al (2006) reports that
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men show greater DA release in the NAc and greater sub-
jective effects to AMPH compared to women [237]. In
contrast, greater DA release to AMPH has been found in
women in the globus pallidus as well as striatal and cortical
regions [238]. Neither study controlled for menstrual cycle,
so differences could be due to the use of different tracers,
regional variation among brain structures, menstrual cycle
effects, as well as a combination of these factors.
Female rats show greater DA release in the DS than

males in response to electrical stimulation of the medial
forebrain bundle and cocaine [234,235]. Many sex differ-
ences in the effects of drugs on DA function are the result
of gonadal hormones. AMPH-induced striatal DA release
fluctuates over the estrous cycle of rats, with an augmented
response during the evening of behavioral estrus compared
to diestrus [92]. Administration of E2 (but not P) to OVX
female rats increases rotational behavior and AMPH-
induced DA release in the DS [225,239,240]. It is to our
knowledge unknown if similar sex-differences and effects
of E2 on morphine-induced DA release occur.
Sensitization of the DA response to repeated psychosti-

mulant and opioid exposure has been found in preclinical
studies, however clinical studies rather show the occur-
rence of tolerance, as in diminished positive effects of drugs
and a blunted DA response to drug exposure in addicts
[22,241-243]. This hypo-dopaminergic state is believed to
contribute to anxiety and persistent drug seeking in drug-
dependent subjects [242,244]. Chronic exposure to cocaine
has been found to attenuate both baseline and cocaine-
induced DA levels in the NAc of rats ([189,245-247], but
see [248]). Sex differences have been reported for
sensitization to psychostimulants in rodents, which is likely
related to augmented DA responses [249,250], with females
showing a higher level of sensitization than males. E2
increases sensitization in OVX females [251-253], whereas
the effects of CAST and T replacement are more variable
[249,252,254-256]. We are unaware of any studies investi-
gating sex differences in tolerance. One could speculate
that tolerance develops faster in women than in men,
resulting in more rapid escalation of drug use to compen-
sate for the attenuated positive effects of the drugs.

DA neurotransmission in the CeA/BST
DA neurotransmission in the NAc and DS is essential
for shifting the balance between striatonigral and striato-
pallidal circuits; however, the role of DA in the CeA and
BST is less clear. The monoaminergic innervation of the
CeA and BST includes both DA and NE projections,
with discrete subnuclei in each region preferentially re-
ceiving inputs from either DA or NE neurons, or both.
Within the dorsolateral BST (a region that primarily
receives DA projections), intra-oral delivery of sucrose
rapidly increases, whereas quinine delivery reduces, extra-
cellular DA concentrations [257]. Reinforcing drugs also
increase extracellular DA concentrations in the BST [258].
Thus, DA signaling is likely to bias neurotransmission in
the CeA and BST towards outputs that promote positive
arousing, emotional and affective responses. This is also
supported by the ability of DA infused into the CeA to re-
duce the number and severity of gastric ulcers following
stress [259-261], which may involve interactions with the
ENK and CRF systems [262,263].
The ability of DA in the CeA/BST to modulate affective

responses are partially due to its effects on inhibitory
neurotransmission within these brain regions. DA attenu-
ates evoked inhibitory synaptic currents in the CeA and
BST, through the activation of presynaptic D2 receptors
[264-266]. Cocaine self-administration (but not yoked non-
contingent administration) modifies this effect, such that
DA subsequently increases inhibitory currents through a
D1-dependent mechanism that persists during withdrawal
[266].
It is difficult to assign these effects of DA and cocaine to

discrete neurons and projection pathways, due to the nu-
merous types of neurons in the CeA and BST [267,268]. It
does suggest, however, that the neural systems initially dis-
inhibited by drug-induced DA signaling that contribute to
the rewarding effects of cocaine (ostensibly ENK in our
model) eventually become inhibited by drug-induced adap-
tations in D1 receptor signaling pathways [266].

Sex differences in DA neurotransmission in the CeA/BST
There have been few rigorous studies of sex differences in
DA function in the CeA and BST, especially since many
studies that rely on micro-dissection techniques include
additional nuclei with very different developmental origins,
cell types and signaling molecules (e.g., basolateral amyg-
dala). In gross dissections of the amygdala, males and
females have similar tissue DA contents, whereas males
have much greater DOPAC concentrations, suggesting that
the kinetics of DA neurotransmission might be sexually di-
morphic [269].
There are not many studies that have examined sex dif-

ferences in DA receptor expression in the CeA and BST.
Interestingly, a greater proportion of D3-containing neu-
rons in the amygdala also co-express D1 and D2 receptors
in females, relative to males, a pattern that emerges after
puberty [270]. Thus, the activation of DA receptors in the
CeA/BST may induce very different signaling cascades in
males and females.

Norepinephrine
Nearly all drugs of abuse increase NE concentrations in
several brain regions, including the Fcx, DS, NAc, BST and
CeA [271-274]. The increases in extracellular NE concen-
trations can occur acutely in response to the drug (thereby
contributing to the initial positive or negative drug effects),
develop over the course of chronic drug exposure (thereby



Becker et al. Biology of Sex Differences 2012, 3:14 Page 15 of 35
http://www.bsd-journal.com/content/3/1/14
contributing to the transition to compulsive use and habit
formation), or manifest during withdrawal (thereby con-
tributing to craving and negative reinforcement processes).
The origins of NE afferents are located in the LC (A4

and A6 cell groups), the dorsomedial medulla (e.g., the nu-
cleus of the solitary tract, NTS, or A2 cell group) and the
rostroventral medulla (RVM, or the A1, A5 and A7 cell
groups) [275]. Due to their specific patterns of inputs and
outputs, the different groups of noradrenergic neurons
have distinct, albeit overlapping, roles in drug use and the
development of addiction.
The dynamic contributions of noradrenergic signaling

to early and late phases of addiction, as well as to the
positive and negative effects of drugs [276] are likely due
to several factors, including the multitude of NE cell
groups, their diverse array of overlapping and unique
afferents and projection pathways (e.g., dorsal vs. ventral
noradrenergic bundles) and their reciprocal interactions
with other neurochemical systems (most notably CRF
and the endogenous opioids) [277-280].
Knowledge about the role of the noradrenergic system in

the effects of drugs of abuse comes mostly from manipula-
tions of this system and subsequently investigating effects
of drugs of abuse. The loss of the α1b-AR results in the at-
tenuation of locomotor activation and sensitization to
AMPH, cocaine and morphine [276,281]. It also inhibits
morphine CPP and reduces oral intake of cocaine and
morphine in a 2-bottle choice test. All of these effects are
manifested in α1b-KO mice even though post-synaptic DA
signaling appears to be unaffected in the NAc and DS
[276]. The endogenous ligand mediating the effects of
these drugs through the α1b-AR is unknown (i.e., either
DA or NE). Dopamine β-hydroxylase (DBH) knockout
mice do not exhibit CPP for morphine or cocaine, even
though they demonstrate CPP for food rewards [282].
DBH knockout mice also fail to show increased anxiety fol-
lowing acute cocaine administration, as indexed in the ele-
vated plus maze [283]. Both of these deficits are corrected
following restoration of NE biosynthesis, suggesting that
they are the result of the NE deficiency, as opposed to de-
velopmental changes in the underlying neural circuitry of
reward and aversion. Additionally, pretreatment with
disulfiram (an inhibitor of DBH, among other enzymes) or
propranolol (a non-selective β-adrenergic receptor antag-
onist, βAR) attenuates the acute anxiogenic effects of co-
caine in wild type mice [283]. Systemic propranolol also
reduces cocaine self-administration, which may reflect its
potentiation of DA overflow in the NAc and putative in-
crease in inter-infusion interval [284]. Systemic treatment
with prazosin (an α1 antagonist) attenuates the motivation
for cocaine in rats trained under long-access conditions,
whereas α2 or β1 antagonists are ineffective [285]. In this
same study, rats under long-access conditions had signifi-
cantly fewer α1 adrenergic receptors in the bed nucleus of
the stria terminalis compared to animals under short-
access conditions or drug-naïve rats.
In addition to these reinforcing effects, NE systems also

contribute to the aversive effects of drugs, especially dur-
ing periods of withdrawal. Many of the negative conse-
quences of withdrawal (behavioral aversion and physical
symptoms of distress and negative affect) are attenuated
following the peripheral administration of adrenergic re-
ceptor antagonists (e.g., βAR and β2AR) [286-288]. Ven-
tral, but not dorsal, noradrenergic bundle lesions attenuate
opiate withdrawal-induced aversions, but neither lesion
attenuates the physical symptoms of withdrawal [287].
NE neurotransmission in the NAc/DS
There are several mechanisms potentially contributing
to the role of NE in the positive, or reinforcing, effects
of abused drugs, which all primarily relate to the modu-
lation of DA neurotransmission in the striatum (espe-
cially the NAc). The overall effects of NE manipulations
on striatal DA concentrations are the product of both
local effects within the striatum. The systemic adminis-
tration of propranolol potentiates cocaine-induced DA
overflow in the NAc, which is associated with enhanced
locomotion [284]. The local effects of NE within the stri-
atum are more complex. In general, activation of βAR
within the NAc increases extracellular DA concentra-
tions, whereas activation of α2AR (most likely α2A-AR)
reduces NE concentrations, without affecting DA con-
centrations [289]. Little is know about sex differences in
the effects of stimulants or opioids on striatal NE signal-
ing. There appear to be no sex differences in basal levels
of NE in the NAc and DS [290]. While DS tissue from
males showed a greater AMPH-induced NE release than
females during most stages of the estrus cycle [291].
NE neurotransmission in the CeA/BST
The BST may be the site of action for the aversive effects
of NE during withdrawal, as β-adrenergic receptor (βAR)
antagonists attenuate the aversion and some of the physical
symptoms of withdrawal when infused into this region
[287]. The infusion of α2AR agonists into the BST also
reduces aversion and some of the physical symptoms of
morphine withdrawal, which may be related to the negative
regulation of NE release by α2AR autoreceptors [287]. In
animals addicted to opiates, the BST is activated during
precipitated withdrawal, and selective β-adrenergic antago-
nists attenuate this response [288]. In addition, lesions of
the ventral noradrenergic bundle that sends projections to
the CeA/BST and NAc, unlike lesions of the dorsal bundle
that target the Fcx, attenuate withdrawal-induced condi-
tioned place aversion [288]. Infusions of βAR antagonists
into either the BST or CeA attenuate stress-induced re-
instatement of cocaine seeking [292].
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The activation of the BST may be downstream of
increased NE release, as chronic morphine treatment
increases extracellular NE concentrations in the BST,
which is further increased during withdrawal [274].
Chronic cocaine self-administration alters noradrenergic
signaling within the CeA/BST, including up-regulation of
the NE transporter [293,294]. Finally, blockade of α2aAR
or β1AR within the CeA prevents the development of
conditioned place aversion following systemic treatment
with acetic acid, even though animals still display the
physical signs of pain [295]. NE levels in amygdala do not
differ by sex [296,297], it is not known if there are sex dif-
ferences in drug-induced changes in NE signaling in the
BST and CeA.

NE neurotransmission in the LC/NTS
Chronic morphine exposure robustly increases TH gene
and protein expression in the LC [298]. This may be
related to the hyper-activation of LC neurons following
drug-induced adaptations in ENK, DYN, CRF and glu-
tamate signaling [299-302]. Conversely, chronic cocaine
administration reduces TH-immunoreactivity in the LC
and NE transporter-immunoreactivity in the olfactory
bulb (a target of LC noradrenergic neurons) [303].
The LC has long been recognized as a sexually di-

morphic structure, both in terms of volume, neuron num-
ber and cellular morphology [304-306]. LC and NTS both
contain estrogen receptors (both ERα and ERβ) and andro-
gen receptors [307-309]. Thus, gonadal hormones regulate
the activity of LC neurons and NE biosynthesis in the LC
and NTS (e.g., expression of TH, GTP cyclohydrolase
(GTPCH), and DBH) [309-312]. Sex differences in TH ex-
pression have largely been attributed to the sex-specific
patterns of ERα and ERβ, with males having more ERα and
roughly equivalent ERβ expression relative to females
[309]. The different patterns of ERα and ERβ may also
underlie the sex-specific responses to gonadectomy, which
increases and decreases TH expression in the LC of males
and females, respectively [311]. Exogenous E2 reverses the
effects of gonadectomy in males and females [311], as does
treatment with exogenous T or 3β-diol (an ERβ selective
ligand) in males [309]. Neural activation in the LC also var-
ies over the course of the estrous cycle, with E2 reducing
activation and P reversing this inactivation [310]. Even
though the noradrenergic system plays a role in the effect
of drugs of abuse, and sex differences in this system are
well known, there is very little research investigating sex
differences in the interaction between NE and drugs of
abuse.

Corticotropin releasing factor
Interactions with drugs of abuse
The CRF neurons in the CeA and BST are important for
mediating the emotional responses to stress and contribute
to many aspects of drug abuse, including initiation of drug
taking, as well as generation of a negative affective state on
drug withdrawal (Figure 2). CRF neurons also contribute
to the effects of stress on craving and relapse due primarily
to their projections to DA and NE neurons in the VTA, LC
and NTS [145,313-316]. Extracellular CRF concentrations
are increased in the CeA following withdrawal from co-
caine, opiates, cannabinoids, alcohol and nicotine, support-
ing the notion that CRF mechanisms contribute to the
negative symptoms associated with withdrawal after addic-
tion [145,176,317-319].
The CRF projections to the LC and NTS are one com-

ponent of an adaptive response that increases the activity
of NE neurons and contributes to increased attention and
vigilance, coordinated with anticipatory physiological
responses [277,320,321]. The effects of CRF on DA neu-
rons are complex, as CRF can increase the firing rate or
potentiate negative feedback mechanisms (e.g., D2 autore-
ceptors) that inhibit DA neuron firing [322-324]. The
mixed effects of CRF on DA may reflect different effects
on subpopulations of DA neurons conveying different sig-
nals (e.g., motivational salience, reward value, or a general
alerting function) [325]. Collectively, the effects of CRF on
DA neurons may serve to interrupt behaviors mediated by
striatonigral MSN and promote the transition to striato-
pallidal circuits for more appropriate defensive/avoidance
responses.
Cocaine exposure also induces plastic changes within the

VTA and the CRF projections to the VTA that result in
enhanced glutamate and DA release. While stress increases
CRF release in both naïve and cocaine-experienced animals,
only cocaine-experienced animals display the potentiated
glutamate and DA release to result in the reinstatement of
cocaine seeking [318,326]. Interestingly, CRF preferentially
induces reinstatement of cocaine seeking in animals
exposed to long-access, but not short-access, cocaine self-
administration. Therefore, the pattern of drug intake is an
important determinant of these plastic changes in CRF sig-
naling [327]. Females appear to be more sensitive to CRF-
induced reinstatement of cocaine seeking [328], and
females are more sensitive to stress-induced reinstatement
[329]. The vast majority of research on CRF and addiction
has been done in males, nevertheless, CRF regulation of the
HPA axis is largely sexually dimorphic [329-332]. Addition-
ally, the expression of CRF in females varies over the course
of the estrous cycle and is positively regulated by E2
[329,333,334]. Thus, depending upon the time of day and
phase of the cycle, one could obtain CRF levels that support
greater activity in males, females or neither.

Endogenous opioids
For the purpose of this review, we will focus on what is
known about sex differences in the endogenous opioid sys-
tems in the NAc/DS and the CeA/BST. After considering
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these systems, we will briefly discuss additional opioid sys-
tems that are also relevant to the effects of drugs and the
development of addiction, namely the ENK neurons in the
rostral medulla that project to the LC/NTS [335,336] and
the β-endorphin (END) and endomorphin (EM) neurons
located in the hypothalamus and brainstem, which send
projections to the NAc/DS, CeA/BST and spinal cord,
amongst other regions (ref).

Opioid systems in the NAc/DS
The striatonigral and striatopallidal MSN in the DS and
NAc preferentially express DYN and ENK, respectively.
While these two endogenous opioid peptides are often
used to characterize the MSN populations, their specific
roles in local signaling and the functional output of the
striatum are unclear [148]. As MSN are GABAergic, and
all three classes of opioid receptors (μOR, δOR and
κOR) are coupled to inhibitory signal transduction path-
ways [337], they likely reinforce the inhibitory actions of
MSN on their projection targets [338].
MSN are also exquisitely sensitive to endogenous opioids,

which may be released from their axon collaterals or pepti-
dergic afferents (e.g., DYN, ENK, END and EM) from other
brain regions [339-344]. Striatonigral and striatopallidal
MSN both express μOR; however, they appear to be
enriched within striatonigral MSN [345,346]. Conversely,
μOR are preferentially expressed within striatopallidal
MSN [345]. Thus, the striatonigral and striatopallidal MSN
have unique profiles of opioid peptides and receptors that
may contribute to their different patterns of activity, regula-
tion and responses to drugs.
Self-administration or “yoked” non-contingent heroin

administration increases DYN mRNA expression in the
NAc shell, but not the core or DS, and has no effect on
ENK mRNA abundance in any of these regions [347].
Acute cocaine or AMPH exposure reduces DYN peptide
levels in the DS [348] and increases DYN mRNA expres-
sion in the DS, but not the NAc, and has no effect on ENK
mRNA in either region [349,350].. Chronic cocaine or
AMPH administration (either self-administered or “yoked”
non-contingent delivery) increases DYN mRNA expression
in the DS, but not the NAc [348,351]. Cocaine exposure
also attenuates some of the effects of exogenous DYN on
excitatory neurotransmission in the NAc, which could re-
flect adaptations in either endogenous DYN synthesis and
release and/or the expression and functional coupling of
presynaptic κOR in glutamatergic terminals [352].

Sex differences in opioid systems in NAc/DS
Females have greater expression of DYN within the stri-
atum [353,354], whereas males have higher expression of
ENK [353]. These sex differences are not always apparent
[355,356], which may reflect the changes in the concentra-
tions of these peptides over the course of the estrous cycle
[357]. DYN peptide levels are relatively stable across the
cycle in the NAc, whereas there is a significant reduction
in the DS during estrus. Conversely, the concentrations of
ENK appear to be more sensitive to fluctuating hormones,
as they show more robust changes in both the NAc and
DS and are significantly elevated during proestrus and es-
trus. The differential hormone sensitivity of DYN and
ENK might also explain why sex differences are found in
the former even in GDX animals [354].
If the relative concentrations of DYN and ENK reflect

the activity (or influence) of each projection pathway, then
it suggests that the balance between the striatonigral and
striatopallidal MSN may be different in males and females.
Thus, striatonigral MSN activity predominates in females
(as suggested by their greater DYN concentrations), which
could explain the more robust locomotor responses to sti-
mulants in females compared with males. Conversely, pre-
dominance of the striatopallidal MSN in males (as
suggested by their greater ENK concentration) may con-
tribute to their attenuated responses to stimulants relative
to females.
Ovarian hormones influence the acute response of stria-

tonigral MSN to stimulants, as OVX females treated with
vehicle or both E2 and P (but not E2 or P alone) displayed
increased DYN mRNA expression in the DS following a
single cocaine injection [358]. Immediate early gene ex-
pression was similar in all the female groups irrespective
of hormone treatment, suggesting equivalent activation of
MSN by cocaine. The activity of various intracellular sig-
naling cascades in the striatum fluctuates over the estrous
cycle [359]. Thus, drug exposure may translate into differ-
ent patterns of DYN and immediate early gene expression
depending upon the hormonal milieu.

Opioid systems in the CeA/BST
Within the CeA and BST, there are discrete populations
of ENK and DYN neurons that are critically involved in
the regulation of stress responses and affective state. In
general, the ENK neurons promote a positive affective
state and facilitate positive coping responses, especially
following stress [172-175], whereas the DYN neurons con-
tribute to negative affective states, especially in regards to
activating stress, anxiety and fear responses and feelings of
dysphoria [176,177] (Figure 2). Many of the effects of
DYN overlap with those of CRF, which may be due to the
extensive co-localization of DYN and CRF in many CeA
neurons [176,360].
The effects of abused drugs on ENK and DYN in the

CeA and BST are complex. ENK and DYN neurons in the
CeA/BST are activated acutely by drugs and recruited dur-
ing withdrawal [361,362]. AMPH administration acutely
increases activation of ENK neurons in the CeA and BST
[363]. On the other hand, chronic cocaine administration
(either self-administered or non-contingent “yoked”
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delivery) has no effect on DYN or ENK mRNA in the CeA
[351].
Self-administration or “yoked” non-contingent heroin

administration increases DYN mRNA expression in the
CeA, but has no effect on ENK mRNA levels in this re-
gion [347]. Morphine treatment increases glutamatergic
synaptic strength in CeA neurons, which is attenuated
by the activation of δOR [364]. The changes in glutama-
tergic signaling and δOR sensitivity in the CeA are simi-
lar to the morphine-induced loss of ENK tone in the LC
[299].
Thus, excitatory neurotransmission in the CeA is nor-

mally constrained by the endogenous ENK tone derived
from the BST and amygdala [365], which may confer
stress resilience and positive affect [172]. Repeated drug
exposure reduces endogenous ENK tone, as indicated by
the increased concentrations of δOR in synaptosomal
fractions of morphine-treated rats [364], which may then
contributes to dysphoria and anxiety during withdrawal.
DYN neurons in the CeA/BST send projections to the

NE neurons in the LC and NTS [302,314]. The DYN pro-
jections activate κOR located primarily in excitatory affer-
ents relaying sensory information, which attenuate the
phasic activation of noradrenergic neurons, without alter-
ing their tonic firing rates [366]. Thus, the attenuation of
sensory inputs to the LC (and ostensibly NTS) is thought
to blunt the affective responses to aversive and/or arous-
ing stimuli without affecting general arousal, which is con-
veyed by the tonic firing of LC neurons [302,366]. Blunted
or reduced affect is thought to promote drug use in many
individuals; however, many women report using crack co-
caine specifically to “numb out and start to feel nothing,”
[367].

Sex differences in opioid systems in the CeA/BST
There are extensive reports about sex differences in hypo-
thalamic opioid peptide and receptor expression [368,369],
which generally support greater numbers of ENK neurons
and density of terminals in males in some brain regions
and equivalent levels in others. Brain regions with sexual
dimorphisms in opioid systems tend to be those that are
enriched in steroid receptors and contain other sexually
differentiated features (e.g., anteroventral periventricular
nucleus) [368] and E2 increases hypothalamic ENK con-
centrations in both males and females [369].
Much less is known about potential sex differences in

the endogenous opioid systems in the CeA and BST;
however, these brain regions both contain high concen-
trations of steroid receptors and are sexually differen-
tiated in terms of morphology and neurochemistry. DYN
concentrations in the amygdala do not vary over the
course of the estrous cycle, whereas ENK concentrations
are reduced during proestrus, relative to diestrus and es-
trus [357]. Males have greater δOR expression in the
medial amygdala (MeA), whereas the staining intensity
within the CeA is roughly equal between males and
females [370].

Effects of drugs of abuse
Data on how (chronic) drug use affects the opioid system
in the brain are limited and even less is known about sex
differences herein. Chronic drug use results in increased
mRNA levels of the DYN precursor prodynorphin in the
striatum and amygdala [347,371-373]. Since activation of
κ-opioid receptors results in depressive-like symptoms in
rats, and these symptoms are blocked by a κ-opioid recep-
tor antagonist [374,375], this is though to be related to the
negative withdrawal symptomatology. The hypodopami-
nergic state found after chronic drug use [187,189,243-
247] could be the result of increased κ-opioid/DYN signal-
ing, since stimulation of κ-opioid receptors decreases DA
transmission ([376]; for review see [377]), and this is
thought to be a compensatory mechanism to counteract
the high drug-induced DA levels.

Additional opioid systems involved in addiction
The NE neurons in the LC and NTS also receive projec-
tions from ENK neurons in the rostral medulla (e.g., nu-
cleus paragigantocellularis and the nucleus prepositus
hypoglossi), which may represent sites of action for the
calming and stress buffering effects of ENK and other
μOR agonists. [302,335,378]. ENK/μOR signaling appears
to preferentially inhibit tonic activity of NE neurons, with-
out affecting phasic responses [321,379-383]. The inhibi-
tory effects of ENK/μOR signaling on LC tonic activity are
in contrast to the excitatory effects of CRF on tonic activ-
ity and the suppression of phasic activation by DYN/κOR
signaling [384].
The effects of ENK on neurotransmission in the LC

(and ostensibly NTS) are also mediated through the acti-
vation of δOR. Many ENK neurons co-release glutamate
and the activation of δOR autoreceptors is thought to con-
strain glutamatergic signaling [299]. Morphine exposure
reduces ENK expression in the brainstem and ENK levels
in the LC and NTS, which leads to an imbalance in ENK/
GLU signaling. During withdrawal, the loss of ENK tone
may lead to excessive GLU signaling and hyper-activation
of NE neurons in the LC and NTS, which contributes to
the withdrawal syndrome [299].
The effects of morphine on pain perception are mediated

primarily through the activation of μOR in the midbrain,
brainstem and spinal cord; however, antagonism of DYN
signaling actually blocks morphine anti-nociception in
females during proestrus, but not in males or diestrous
females [385]. The recruitment of a DYN/κOR component
to the effects of morphine in females is due to the forma-
tion of μOR/κOR dimers that are relatively rare in males
and increased in proestrous females. The acute blockade of
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E2 signaling (either through ERα, ERβ or GPR30 antago-
nists or the inhibition of aromatase), as well as the over-
night (but not acute) blockade of progesterone receptors,
significantly reduces the amount of μOR/κOR dimers in
proestrous females and prevents κOR antagonists from
inhibiting morphine anti-nociception [386].
Males also possess unique features of opioid signaling

in the spinal cord that may contribute to sex differences
in opiate addiction. The release of the endogenous opi-
oid, endomorphin 2 (EM2), is regulated by both positive
and negative feedback systems that are activated follow-
ing the binding of EM2 to μOR autoreceptors in the
spinal cord. In males, the activated μOR can couple with
either Gs or Gi/o, which respectively enhance and in-
hibit subsequent EM2 release [387]. Under normal con-
ditions, the negative feedback pathway predominates;
however, following morphine withdrawal, compensatory
mechanisms kick in that shift the balance towards favor-
ing Gs coupling and enhanced EM2 release. The nega-
tive feedback system mediated by Gi/o activation is the
only functional coupling that occurs in drug-naïve and
opioid withdrawn females [387]. As this mechanism
involves the regulation of EM2 from its terminals in the
spinal cord, it is very possible that similar regulatory
mechanisms operate in the ascending EM terminals tar-
geting the NAc and CeA/BST.
Thus, while females are able to shift DYN signals into

μOR responses through the formation of μOR/κOR
dimers, males can take advantage of promiscuous G pro-
tein coupling to increase the gain on EM2 signaling fol-
lowing withdrawal from exogenous opiates. While these
sex-specific processes have only been characterized in
the spinal cord, it is possible that opioid systems in other
brain regions might also engage similar sexually di-
morphic mechanisms. As DYN expression is increased
in the striatum following chronic drug use [347,371-
373], the formation of μOR/κOR dimers may promote
the engagement of very different signaling pathways in
females, which could exacerbate or attenuate their vul-
nerability to addiction.
On the other hand, many studies have demonstrated

greater negative symptoms in males during withdrawal
from opiates and alcohol [388,389]. Naloxone-precipitated
opiate withdrawal, which blocks μOR and endogenous opi-
oid signaling, can produce more severe symptoms than
spontaneous withdrawal [388]. While males show more se-
vere symptoms than females during spontaneous morphine
withdrawal, there is no apparent sex difference during
naloxone-precipitated withdrawal. Thus, both male- and
female-specific compensatory mechanisms might be com-
promised and masked during precipitated withdrawal,
whereas the robust sex difference during spontaneous with-
drawal suggests more effective mechanisms in females. The
different mechanisms engaged by males and females during
withdrawal might underlie the sex differences in symptom
severity endorsed by alcoholics and contribute to the male
bias in dependence.

Acetylcholine
Interactions with DA
The large, aspiny cholinergic interneurons represent less
than 5% of the total neurons in the striatum, but provide
the only source of ACh for the entire structure
[151,390,391]. The distribution of cholinergic interneur-
ons within the striatum is heterogeneous, with generally
higher densities found in the DS and the lowest levels in
the NAc [392-394]. Several other regional differences in
cholinergic signaling have also been reported, suggesting
an even greater complexity to the function of ACh
neurotransmission across the different divisions of the
DS and NAc [395-398].
Every element within the striatum is affected by changes

in ACh due to the presence of nicotinic and muscarinic
ACh receptors (nAChR and mAChR, respectively) within
MSN, fast-spiking GABAergic interneurons, and glutama-
tergic and DA afferents [151,390,399-401].
ACh and DA are critical partners in regulating the

functional output of MSN in the DS and NAc. This part-
nership is largely mediated through their reciprocal
interactions, as activation of nAChR on DA terminals is
a major determinant of the activity dependence of DA
release [396,401], which can also impact the balance be-
tween the striatonigral and striatopallidal MSN [150].
These dynamic changes in ACh concentrations can thus
either sharpen or blunt the signals (i.e., DA) conveying
the motivational salience and value of rewarding stimuli.

Interactions with drugs of abuse
Activation of D2 and D5 receptors located in cholinergic
interneurons inhibits and facilitates ACh release, respect-
ively [397,402,403]. Interestingly, relatively low doses of
AMPH infused directly into the NAc rapidly increase
extracellular ACh concentrations, which return to baseline
levels upon cessation of AMPH perfusion. Whereas a
higher dose of AMPH decreased ACh concentrations until
well after the end of AMPH infusion, at which time ACh
concentrations displayed a significant rebound above base-
line. The initial increase following low dose AMPH and
the delayed increase following the high dose of AMPH
were both blocked by pretreatment with a D1-type antag-
onist (presumably acting through D5), whereas the initial
decrease following the high dose of AMPH was prevented
by a D2 antagonist [404]. Thus the magnitude and tem-
poral pattern of the DA response may determine the effect
of drugs on ACh neurotransmission. As females generally
display greater DA responses to stimulants (at least in pre-
clinical models- refer to DA section), it is possible that
drug-induced ACh profiles will be sexually dimorphic (i.e.,
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rapid increase and return to baseline in males due primar-
ily to D5 activation, whereas females might show an initial
decrease due to preferential D2 receptor activation and a
delayed rebound as D5 activation takes over). Direct evi-
dence for this sexually dimorphic ACh response is lacking,
but suggested by two studies from Sousa and colleagues
[405,406].
Self-administration of cocaine has short and long-term

effects on cholinergic signaling, For example it reduces
Choline Acetyltransferase (ChAT) activity in the NAc (and
to a lesser degree in the DS), and after 3 weeks of with-
drawal ChAT activity is still significantly reduced in both of
these regions. Conversely, ChAT activity is increased in the
PFC during cocaine self-administration and this returns to
control values during withdrawal [407]. In addition self-
administered drugs induce striatal ACh release, which is
greater compared to non-contingent drug delivery [408-
410]. In addition while the DA response remained relatively
stable during acquisition of self-administration the ACh re-
lease also seemed to be more directly associated with the
acquisition of self-administration. This may reflect the con-
tribution of additional cortical or thalamic glutamatergic
inputs regulating the ACh response. There are indications
that ChAT activity might also be reduced in the NAc and
DS of methamphetamine (meth)AMPH addicts, at least in
individuals using high doses [411], which seems to corres-
pond with the preclinical data. Alterations in cholinergic
activity in the caudate are also reflected by increased ves-
icular ACh transporter immunoreactivity in high dose
methamphetamine users [412].
Ablation of cholinergic neurons in the NAc, ventral palli-

dum and diagonal band shift the dose response curve for
cocaine self-administration down and to the left, suggesting
an increase in its reinforcing effects [413]. While these data
suggest ACh neurotransmission is important in regulating
cocaine self-administration, the exact locus of its effects are
unknown, as the lesions preferentially targeted the ventral
pallidum and diagonal band and had modest effects on
cholinergic markers in the NAc. More selective lesions of
cholinergic interneurons in the NAc, increase the sensitivity
to both morphine and naltrexone-precipitated withdrawal
[414]. The systemic administration of Acetylcholine-
esterase (AChE) inhibitors, which increase central ACh
concentrations, reduces morphine CPP in mice with intact
cholinergic interneurons, but not lesioned mice. AChE
antagonists also attenuate many of the effects of cocaine in
intact mice, but not those with cholinergic lesions in the
NAc, including CPP, locomotor activation and sensitization
[414]. Thus, these data also suggest that ACh neurotrans-
mission in the NAc opposes the reinforcing effects of
drugs, which is consistent with the ACh-DA balance hy-
pothesis in terms of promoting approach and avoidance
[415]. It is suggested that increased striatal ACh release
might contribute to the negative effects of withdrawal.
Both mAChR and nAChR are likely to contribute to the
ability of drugs to condition behavior. Activation of mAChR
with the non-selective agonist oxotremorine reduces co-
caine self-administration, and this effect is blocked by con-
current treatment with a selective M1 antagonist [416].
Whereas antagonism of nAChR (mecamyline) reduces cue-
induced cocaine craving in dependent subjects [417].

Sex differences
The preceding descriptions of cholinergic function in
the striatum have largely been derived from research in
males. There is however an extensive body of literature
demonstrating sex differences in cholinergic function in
the cortex and hippocampus [418-424], and many of
these differences are also present in the striatum. We
are unaware of any studies that have directly compared
the effects of drugs on ACh neurotransmission in the
striatum of both males and females, especially in relation
to their reproductive hormone status. Sex differences in
cholinergic function in the striatum are likely to contrib-
ute to differences in the effects of abused drugs.
There is some circumstantial evidence that the cholin-

ergic systems of males and females respond differently
to drugs. M1 and M2 receptor binding is increased in
the striatum of female rats following repeated cocaine
injections [405]. In male rats, repeated cocaine injections
decrease M1 and M2 receptor binding in the striatum
from 30 minutes up to 30 days after the last cocaine in-
jection, including the same 24 hour time point examined
in females [406]. Unfortunately, the two studies used dif-
ferent cocaine doses (5 and 10 mg/kg in females vs. 20
and 30 mg/kg in males); however, the striking divergence
in the direction of the effects (i.e., increased in females
and decreased in males), supports the contention that
cholinergic signaling in the striatum may respond very
differently to drugs in males and females.
Many aspects of ACh neurotransmission are sexually

dimorphic (Figure 3); however, there are often conflict-
ing data, which most likely reflects differences in the
parameters under study (e.g., cell number, mRNA abun-
dance, protein immunoreactivity, enzyme activity, recep-
tor binding, etc.), not all of which are different in males
and females. In the DS and NAc, the vast majority of
studies suggest that males and females maintain different
profiles of ACh neurotransmission.
Examinations of the effects of hormones on cholinergic

markers have largely been confined to the contiguous
groups of cells distributed throughout the medial septum,
vertical and horizontal limbs of the diagonal band of
Broca, and the substantia inominata (i.e., nucleus basalis
of Meynert), which provide ACh projections to the cortex
and hippocampus. Cholinergic neurons in these regions
show reductions in ChAT-ir in GDX males and females,
which are reversed by exogenous E2, P and T [425-429].
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There are few studies examining the effects of sex and
circulating hormone on cholinergic function within the
striatum; however, the available data suggest that ACh sig-
naling in the DS and NAc is sexually dimorphic. ChAT
mRNA and activity vary over the course of the estrous
cycle in the striatum, such that estrous females have sig-
nificantly greater activity than males and females in most
other stages of the cycle, which do not differ from one an-
other [392,430,431]. Thus, when the cycle is not consid-
ered, males and females are often reported to have
equivalent levels of ChAT activity in the striatum [432].
These differences are likely the result of the effects of E2
and P on ChAT gene expression, which interact to regu-
late ChAT mRNA abundance [433].
The density of AChE staining in the DS and NAc is not

sexually dimorphic [434]; however, AChE activity in the
striatum is reported to be greater in males [435] and
increased in females following OVX [436]. Further muddy-
ing the waters of how these sex differences in ACh biosyn-
thesis and degradation might impact the functional output
of the striatum is the fact that ACh receptor profiles are
also sexually dimorphic.
Males and females have similar total concentrations of

mAChR binding sites in the striatum [430]. Overall, the af-
finity of mAChR is higher in cycling females rats compared
to intact males, which is largely due to the increased affin-
ity of females with high levels of endogenous E2. Exogen-
ous E2 also increases the affinity of mAChR binding in
OVX females [430]. Young women also have greater total
mAChR binding in the striatum compared to post-
menopausal women, which is attributed to E2, as post-
menopausal women receiving E2 replacement therapy
(ERT) have greater binding than their counterparts that
have never had ERT [437]. Whether the sex differences in
mAChR affinity reflect modifications of mAChR binding
properties, or shifts in the differential expression of
mAChR subtypes is unknown. Expression patterns of M1
and M1 receptor binding are different in males and females
[392], which may very well translate into different patterns
of synaptic integration in the striatum. Much less is known
about sex differences in nAChR expression and function in
the striatum. The mRNA expression of several α and β
nAChR subunits in the SN and VTA appears to be similar
in males and females [438].
Given the importance of striatal ACh neurotransmission

in behavioral flexibility and conditioning and it interactions
with DA signaling, it is not surprising that this system is
implicated in the effects of drugs and the development of
dependence (reviewed in [439]). However, the dynamic na-
ture of the ACh signal (i.e., tonic versus burst/pause firing
patterns) and sex differences throughout the system have
made it difficult to ascertain the functional contributions
of cholinergic neurotransmission within the striatum to
the effects of drugs and sex differences herein.
Stress-related psychopathologies in relation to drug use
disorders
As mentioned earlier, there is a high level of comorbidity
between drug abuse and (often stress-related) psychiatric
disorders (i.e., major depression, PTSD and anxiety disor-
ders, which have a 2–3 times higher prevalence in women),
with comorbidity being associated with more psychological
and social problems and poorer outcome [440-443]. Inter-
estingly this association is especially prominent in women
[15,442,443], The causal relationship between substance
abuse and stress-related disorders is not an unidirectional
one. In adolescence psychiatric disorders appear to precede
the drug abuse problems in women [444,445].
For depression, in men substance abuse frequently pre-

cedes depression, whereas in women depression precedes
substance abuse [442]. A subpopulation of substance abu-
sers begin using drugs primarily as self-medication, enter-
ing the spiral at the negative reinforcement segment.
Cessation of drug taking brings on additional negative
symptoms during withdrawal, in addition to the resurfacing
of the pre-existing condition the drugs were taken to allevi-
ate. This results in greater and more rapid escalation of
drug use. It also puts subjects at greater risk of relapse,
since drugs of abuse likely have not taken away the initial
reasons that they started using drugs in the first place.
Thus, the downward spiral is accelerated, again consistent
with clinical and basic data discussed above (Figure 5).
With the extensive sex-differences in both the effects of

stress and drugs of abuse, it is likely that stress-systems are
involved in the higher vulnerability of females to certain
aspects of substance abuse. Additionally, the coexistence of
stress-related disorders and substance abuse could differ-
entially affect the underlying neurobiological mechanisms
in males and females.
Koob and Moal [1] depicted the process of addiction as

a downward spiral with initially drug taking being main-
tained by drug-induced euphoria, which is followed by
modest periods of negative affect (i.e., post-intoxication
crashes) and relatively normal function in between intoxi-
cation events. Eventually, drug-induced neuroadaptations
(i.e., hyperactivation of stress and anti-reward systems)
leads to prolonged periods of withdrawal/dysphoria fol-
lowing cessation of drug taking. During this stage of
abuse, negative reinforcement begins to maintain drug
taking. Finally, in the end stage of addiction, drug taking is
maintained both by negative reinforcement and habit for-
mation, which contributes to the compulsive nature of
drug taking (Figure 1).
Stress-related disorders, as post-traumatic stress disorder

(PTSD) and depression, lead to neurobiological changes in
brain reward systems, which likely has consequences for
both positive and negative effects of drugs of abuse and
could thus affect the transitioning from use to abuse. For
example, depressed subjects show a hypersensitive response



Figure 5 The downward spiral from self-medication into
addiction. The spiral depicts individuals who start using drugs
primarily due to negative reinforcement mechanisms, such as
seeking relief from chronic negative feelings, stress-related
psychopathologies or victimization (indicated by the blue/grey
shading). The drug-induced (large orange arrow) euphoria is likely
attenuated in these individuals and the following post-intoxication
“crash,” may temporarily exacerbate their initial dysphoria that
continues unabated during drug-free periods (large grey arrows). As
drug use becomes less regulated, the intervals between intoxicating
events become shorter (as depicted by the narrowing of the spirals),
intake increases, the positive effects become further attenuated and
the dysphoria/negative affective state becomes more protracted/
exacerbated. These features of addiction are the result of several
interacting neurochemical changes in reward-related brain regions,
including a hypodopaminergic state, characterized by reduced basal
and stimulated DA concentrations (green arrows), and augmented
NE (yellow arrow), CRF (pink arrow) and DYN (dark purple/blue
arrow) signaling. The inhibition of other opioid systems (e.g., ENK/
END/EM) (blue arrow) that contribute to positive affective state may
also contribute to the dysphoria experienced by those with stress-
related psychopathologies and during the development of
dependence. Since many of these adaptations are already present in
individuals coping with chronic stress and its associated
psychopathologies even before drug use, the downward spiral may
be accelerated. Women are more likely to develop stress-related
psychopathologies, suggesting that a greater proportion of women
may initiate drug use for self-medication, whereas a larger
proportion of men may initiate drug use for their positive effects
(Figure 1). Sex differences in individuals with comorbid
psychopathology may also lead to different trajectories toward
dependence in men and women, and in sex-specific neurochemical
changes. (The magnitude of neurochemical responses is indicated
by the relative sizes of the arrows, refer to text for details on sex
differences).
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to the rewarding effects of AMPH [446], which is asso-
ciated with a relative decrease in brain activity, in a.o. the
PFC and caudate putamen [447], indicative of an hypodo-
paminergic state. It is to our knowledge unknown if the re-
sponse to psychostimulants is changed in subjects with
PTSD, or if there are sex differences in the acute effect of
abused drugs in people suffering from major depression or
PTSD. However for subjective effects of AMPH an oppos-
ite response has also been observed in a nonclinical sample,
with subjects that reported more severe life stress had an
attenuated pleasant response to AMPH. Also higher stress
levels were associated with a blunted striatal DA response
[448]. Unfortunately no sex differences were reported.
Both major depression and PTSD, affect HPA-axis activ-

ity albeit in different ways, in general PTSD is associated
with a hyperactive central CRF and NE system and blunted
HPA-axis activity, whereas with major depression it varies
with the subtype of depression [449] (for review see [450].
Addiction has a high comorbidity with both, but with (pos-
sibly sex-specific) differences in underlying neurobiological
dysfunctions, the consequences of drugs of abuse in the
brain are likely (at least partly) dependent on the comorbid
disorder. Little data is available on sex-differences. Brain
maturation is differently affected in boys and girls suffering
from maltreatment-related pediatric PTSD, with boys
showing more adverse effect than girls [451]. Also women
with PTSD show and enhanced startle response, a measure
for non-specific anxiety, compared to men [452], which in-
dicate sex differences limbic brain systems in PTSD.
As described earlier stress exposure is used as an animal

model for depression and PTSD, and especially depression
could be viewed as being in a dysphoric state. Although
the distinction between different human stress-related dis-
orders is hard to model specifically in animal stress models.
And chronic of severe stress likely induces changes mim-
icking aspects of both depression and PTSD in animals.
Female rats exposed to isolation stress during puberty

were shown to be more sensitive to the AMPH-induced
locomotor activity compared to males [453]. Chronically
stress rodents show an attenuated basal DA [454-456],
which is though to underlie symptoms of anhedonia.
These data appear to correspond with the findings in
depressed patients of increased subjective effects and a
reduced response in the brain reward system [446,447].
Repeated social defeat stress in rats affects the locomotor

response to stimulants, which could be related to the
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positive subjective effects, cocaine self-administration.
Defeated animals show a faster acquisition and a higher
motivation to self-administer cocaine [457-459]. Also social
stress results in escalation of cocaine, but not heroin, in-
take [460]. In addition, chronic social stress affects the DA
response to cocaine in males, although the direction of the
change depends on whether the stress was continuous or
intermittent [461]. In females drug-induced increases in
DA levels are attenuated after chronic stress [455].
Summarizing, the link between drug abuse and stress-

related psychiatric disorders is well known. Sex differ-
ences in prevalence of those disorders is also well estab-
lished. There is very limited information, however, on
how this affects the pattern of drug use and if the under-
lying neurobiology is different dependent on the comor-
bid psychopathology.

Review and conclusions
Our theoretical model presented in Figure 5 is based on
the evidence reviewed above demonstrating that there
are sex differences in the clinical presentation of addic-
tion and in the neural substrates contributing to addic-
tion. The model highlights three concepts that are
essential to understanding the neurobiology of addiction:
1) addiction affects many different brain regions; 2) ad-
diction manifests as a constellation of clinical features
that collectively result in the maladaptive behavior
exhibited by addicts; and 3) the presence of psycho-
pathologies prior to drug use impacts the rate of deteri-
oration into addiction. The magnitude of involvement of
individual systems is hypothesized to differ between
males and females, as described in Figure 2 and dis-
cussed above. Considered together, it is clear that effect-
ive treatments for addiction will require sex/gender-
specific combinations of drugs targeting the multiple
systems that are dysregulated in the addicted brain, and
additionally consider comorbid psychopathologies.
Females show enhanced engagement of the DA system

during initial drug exposure. As discussed above there is
initially greater release of DA and an enhanced sensitivity
to inhibition of uptake by stimulants in females. Chronic
drug use results in a hypodopaminergic state within the
striatum of both sexes, which has a greater impact in
females due the enhanced sensitivity to DA. Drug use and
exposure to drug-related cues are associated with increases
in DA release, however, reduced DA levels between peri-
ods of drug use result in a state of dysphoria and anhedo-
nia in which interest in natural rewards and previously
preferred activities is reduced. This period is associated
with enhanced drug-seeking behavior as the addict seeks
to reduce craving and alleviate the dysphoria. In fact, drug
use may be seen as a form of self-medication to deal with
the abnormally low DA levels. Chronic drug use is also
associated with enhanced engagement of NE signaling
within the CeA/BST and NAc, which contributes to the
negative affective state, dysphoria, anxiety and irritability
associated with withdrawal. In females this negative state
is exacerbated due to greater noradrenergic and CRF
activity.
The sexually dimorphic behavioral patterns of drug

abuse are hypothesized to be due to sex differences in
the neural systems mediating acquisition and escalation
of drug taking behavior. The areas of the brain involved
in the neural basis for motivation begin conceptually
with the ascending DA systems that project from the
SN/VTA to the DS, NAc, CeA/BST, Fcx. These DA pro-
jections are involved in the initiation of drug taking and
according to some models the progression from use to
compulsive drug use [462].
Comorbidity between drug abuse and stress-related psy-

chiatric disorders is associated with more psychological
and social problems and poorer outcome, especially in
women. Brain circuitry affected by these disorders over-
laps with circuitry involved the effects of drugs of abuse,
which could exacerbate the effects of drugs of abuse and
lead to higher risk of transitioning from drug use to de-
pendence and a faster escalation of drug use.

Implications for treatment
There are very few effective treatments for psychostimu-
lant addiction, and as such frequent relapses are a hall-
mark of the addiction cycle [463-465]. Naltrexone and
disulfiram have been shown to reduce cocaine intake in
men, but these treatments are not effective in women
[466,467]. It is therefore important to test possible
pharmacological interventions in both males and females.
Mitigating the negative effects associated with addiction,
like dysphoria, anxiety and irritability will likely reduce the
frequency of drug taking and the chance of relapse. The
stress-axes and κ-opioid/DYN signaling are involved in
mediating these withdrawal symptoms, and pharmaco-
logical interventions targeting these systems could prove
to be therapeutically interesting. With women being more
sensitive to stress-induced craving, and sex-differences
being present in the stress system, noradrenergic projec-
tions, and in κ-opioid/DYN signaling, it is conceivable that
sex/gender will affect treatment outcome of pharmaco-
logical interventions targeting these systems.
The βAR antagonist propranolol has modest effects in

promoting treatment retention and cocaine abstinence,
which are mostly observed in individuals with more severe
withdrawal symptoms [468,469]. Thus, noradrenergic an-
tagonism on its own may only be effective at targeting the
negative affective state ostensibly mediated by increased
NE signaling in the CeA/BST.
There are even fewer studies examining the efficacy of

cholinergic manipulations on clinical outcomes of stimu-
lant addiction [470]. In general, AChE inhibitors have
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modest effects that are most pronounced on the subject-
ive effects of stimulants, with little effect on actual drug
use [471-473]. The relatively modest (or absent) effects
of AChE inhibitors might relate to the fact that they
chronically elevate ACh concentrations, which can lead
to desensitization and loss of nicotinic receptors or pro-
mote the non-selective activation of both M1- and M2-
like receptors.
The effects of more selective cholinergic manipulations

on drug use in humans have also been examined. The ad-
ministration of nicotine attenuated the subjective effects of
intranasal (but not intravenous) cocaine, and increased the
latency for detecting the effects of cocaine and euphoria
[474,475]. Pre-treatment with mecamylamine, a nicotinic
antagonist, was also shown to reduce cue-induce craving in
cocaine addicts [417], whereas varenicline, a partial α4β2
agonist and full α7 agonist, tended to promote abstinence
and reduced the rewarding value of cocaine [476]. The
effects of nicotinic agonists and antagonists may result in
similar effects through tonic activation and desensitization
of nicotinic, which could explain why both treatments re-
duce the sensitivity to drugs and their cues. Preclinical re-
search suggests that muscarinic interventions might also be
beneficial [396,416,470,477]; however, we are not aware of
any clinical data on the effects of selective muscarinic treat-
ments on stimulant addiction. In the most of the studies
examining cholinergic manipulations, the majority (or in
some cases all) of the participants were men; therefore, it is
also difficult to say whether men and women will show
similar effects.
Opiate addiction is on the rise again, especially in rela-

tion to the abuse of prescription drugs. Unintentional over-
dose deaths involving opioid pain relievers have increased
dramatically since 1999, and by 2007, outnumbered those
involving heroin and cocaine [478]. Although more men
than women use heroin, young women show a higher rate
of dependence to non-medically used psychotherapeutics,
which include pain relievers, sedatives, stimulants, and
tranquilizers. The reason for using appears to be different
between men and women, with men going for the high
and rush, whereas women use it more as a form of self-
medication [23]. This could reflect a difference in under-
lying neurobiological mechanisms on which the drugs act
and have implications for possible pharmacological inter-
ventions. Studies using self-administration of opioids in
both males and females are few, and if chronic exposure to
self-administered opioids have differential effects on the
brain of males and females as would be predicted from the
data presented in this review, risk factors and treatment
options will also be sexually dimorphic. With discreet
behavioral profiles and neurobiological substrates of co-
caine and heroin addiction [479], it cannot be expected
that sex-specific findings for cocaine can be extrapolated to
opioids.
Concluding remarks
Currently, preclinical research is focused primarily on
examining the acute effects of stimulants and other abused
drugs and how they are influenced by pharmacological
interventions. While these acute responses to drugs of
abuse can provide valuable information about possible
mechanisms of action, they are less informative in regards
to developing new pharmacotherapies for addiction. This is
because chronic drug abuse induces major changes in the
brain that are often different from those occurring in re-
sponse to passive drug exposure. Thus, in order for
pharmacological interventions to be effective, they must
target what is “wrong” in the addicted brain, which will
likely not respond similar to a healthy brain exposed to
acute drugs of abuse. It is therefore important to investigate
possible pharmacological interventions in animal models
that better reflect the suite of behavioral (and ostensibly
neurochemical) changes that occur following chronic drug
use, especially as they relate to addiction-like criteria.
Additionally, little is known about the neurobiological

consequences of chronic exposure to drugs of abuse in
females. While data collected from male subjects provide
important information of how the male brain copes with
repeated stimulation of the reward system, it is unlikely
that the female brain responds in the same way. With
drugs of abuse having sex-specific effects on behavior
and the brain, it is vital to test effectiveness of new treat-
ments and underlying neurobiological mechanisms in
both male and female subjects.

Endnotes
1The Harrison Tax Act is the reason the Dept. of the

Treasury was responsible for enforcement of drug laws
until the 1969 Dangerous Substances Act was enacted.
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