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Abstract

Background: Both coxsackievirus B3 (CVB3) and influenza A virus (IAV; HINT) produce sexually dimorphic
infections in C57BL/6 mice. Gonadal steroids can modulate sex differences in response to both viruses. Here, the
effect of sex chromosomal complement in response to viral infection was evaluated using four core genotypes
(FCG) mice, where the Sry gene is deleted from the Y chromosome, and in some mice is inserted into an
autosomal chromosome. This results in four genotypes: XX or XY gonadal females (XXF and XYF), and XX or XY
gonadal males (XXM and XYM). The FCG model permits evaluation of the impact of the sex chromosome
complement independent of the gonadal phenotype.

Methods: Wild-type (WT) male and female C57BL/6 mice were assigned to remain intact or be gonadectomized
(Gdx) and all FCG mice on a C57BL/6 background were Gdx. Mice were infected with either CVB3 or mouse-
adapted IAV, A/Puerto Rico/8/1934 (PR8), and monitored for changes in immunity, virus titers, morbidity, or
mortality.

Results: In CVB3 infection, mortality was increased in WT males compared to females and males developed more
severe cardiac inflammation. Gonadectomy suppressed male, but increased female, susceptibility to CVB3. Infection
with IAV resulted in greater morbidity and mortality in WT females compared with males and this sex difference
was significantly reduced by gonadectomy of male and female mice. In Gdx FCG mice infected with CVB3, XY
mice were less susceptible than XX mice. Protection correlated with increased CD4+ forkhead box P3 (FoxP3)+ T
regulatory (Treg) cell activation in these animals. Neither CD4+ interferon (IFN)y (T helper 1 (Th1)) nor CD4+
interleukin (IL)-4+ (Th2) responses differed among the FCG mice during CVB3 infection. Infection of Gdx FCG mice
revealed no effect of sex chromosome complement on morbidity or mortality following IAV infection.

Conclusions: These studies indicate that sex chromosome complement can influence pathogenicity of some, but

not all, viruses.

Background

Males and females differ in their susceptibility to a vari-
ety of viral pathogens [1]. The mechanisms for this sex-
ual dimorphism are complex and can involve hormonal,
behavioral and genetic factors. Females typically gener-
ate enhanced immune responses compared to males
[2-4], which can accelerate virus clearance and reduce
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virus load, but can be detrimental by causing immuno-
pathology or the development of autoimmune disease.
Immunity to viruses varies with changes in hormone
concentrations caused by natural fluctuations over the
menstrual or estrous cycle, contraception use, and preg-
nancy [5]. Estradiol influences multiple aspects of both
innate and adaptive immunity including: enhancing den-
dritic cell differentiation and antigen presentation [6],
suppressing lymphoid cell expression of tumor necrosis
factor (TNF)a and interleukin (IL)-6 [7,8], increasing
lymphoid cell production of IL-4 and interferon (IFN)y
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[9-11], increasing immunoglobulin synthesis [12], inhi-
biting B cell apoptosis [13], suppressing T and B cell
lymphopoiesis [14], and promoting forkhead box P3
(FoxP3)+ T regulatory cell development [15-17]. In con-
trast, androgens are usually immunosuppressive and
inhibit both humoral and cellular immunity, including
natural killer cell activity [18,19].

Although direct effects of gonadal steroids cause many
sex differences in physiology, some sex differences are
also caused by the inherent imbalance in the expression
of genes encoded on the X and Y chromosomes [20-22].
Many genes on the X chromosome regulate immune
function and play an important role in modulating sex
differences in the development of immune-related dis-
eases [23]. These immune-related genes code for pro-
teins ranging from pattern recognition receptors (for
example, TIr7 and TIr8) to cytokine receptors (for
example, I/2rg and I/13ra2) and transcriptional factors
(for example, Foxp3) [24]. As a result, X-linked immu-
nodeficiencies are more prevalent in males. However,
autoimmune diseases occur more frequently in females,
probably as a result of differences in effects of gonadal
hormones and sex chromosome genes [23,25].

The Sry gene on the Y chromosome causes testes
formation and testosterone synthesis leading to male-
typical development of many phenotypes, whereas the
absence of Sry results in ovaries and female-typical
development [26]. The ‘four core genotypes’ (FCQ)
mouse model has been developed to investigate the
impact of sex chromosomes (XX vs XY) and gonadal
type (testes vs ovaries) on phenotypes. In FCG mice,
Sry is deleted from the Y chromosome and an Sry
transgene is inserted onto an autosome. Deletion of
the Sry gene results in XYminus (XY-) mice that are
gonadal females (that is, with ovaries) whereas inser-
tion of the Sry transgene onto an autosome in XX or
XY- mice (XXSry and XY-Sry) results in gonadal males
(that is, with testes). The FCG are: XX gonadal females
(XXF), XY- gonadal females (XYF), XXSry gonadal
males (XXM) and XY-Sry gonadal males (XYM).
Depletion of gonadal steroids by gonadectomy of FCG
mice unmasks profound effects of sex chromosome
complement on behavior, brain function, renal func-
tion, and susceptibility to autoimmune disease [22,27].
In experimental autoimmune encephalitis (EAE) and
lupus, for example, the presence of the XX sex chro-
mosome complement worsens disease progression,
relative to that in XY mice, and results in decreased
production of IL-4, IL-5, and IL-13, but increased IL-
13Ra2 expression on dendritic cells [27].

Whether sex chromosome complement modulates sex
differences in response to viruses has not been exam-
ined. Sexual dimorphism in picornavirus infections,
including coxsackievirus B3 (CVB3), in mice is well
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documented with males showing more severe disease
than females [28-30]. In contrast, influenza A virus
(IAV) infection is more severe in females than males
[31,32]. Much of the sexual dimorphism in the outcome
of infection with either CVB3 or IAV depends upon the
effects of gonadal hormones on immune responses to
viral infection [1]. Whether sex chromosome comple-
ment also contributes to sex differences in response to
viruses was explored in this study. These studies
demonstrate that sex chromosome complement contri-
butes to the severity of disease caused by CVB3 but not
IAV suggesting that sex chromosomes can impact sus-
ceptibility to some but not all viral infections.

Methods

Animals

Adult wild-type (WT) male and female C57BL/6 mice
were purchased either from NCI (Frederick, MD, USA)
or Jackson Laboratories (Bar Harbor, ME, USA). Mice
were age matched to the FCG mice in our facilities.
FCG mice backcrossed to a Jackson Labs C57BL/6 back-
ground for more than 15 generations were used to
obtain litters consisting of XXF, XYF, XXM, and XYM.
All experimental FCG mice were bred at UCLA and
then sent to the University of Vermont or Johns Hop-
kins University for viral infection. Mice were maintained
at five per microisolator cage under standard housing
conditions with a 14:10 light/dark cycle and ad libitum
access to food and water. All experiments were
approved by either the Johns Hopkins University or
University of Vermont Animal Care and Use Committee
and conducted using approved biosafety level 2 practices
and procedures.

Gonadectomy

All FCG (n = 6-9 per group) and half of the WT ani-
mals (n = 7-10 per group) were gonadectomized (Gdx)
to remove concurrent effects of sex steroids, which can
mask effects of sex chromosomes [33]. For bilateral
gonadectomy, females and males were anesthetized with
an intramuscular injection of a ketamine (80 mg/kg)/
xylazine (6 mg/kg) cocktail (Phoenix Pharmaceutical, St
Joseph, MO, USA) and the testes were removed from
males and the ovaries from females using aseptic techni-
que as described previously [34-36]. Animals were
sutured and given several weeks to recover from sur-
gery. All mice were gonadectomized at 8-10 weeks of
age. Surgery was performed at UCLA for CVB3 studies
and at Johns Hopkins for IAV studies.

CVB3 infection

The H3 variant of CVB3 was made from an infectious
c¢DNA clone as described previously [37]. Mice were
infected at 15-25 weeks of age with 100 plaque-forming
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units (PFU) of virus intraperitoneally in 0.5 ml phos-
phate-buffered saline (PBS) and killed 7 days later.

IAV infection

The mouse-adapted IAV, A/Puerto Rico/8/1934 (PRS;
HIN1; courtesy of Maryna C Eichelberger at the Food
and Drug Administration), was used for inoculation.
Male and female mice (n = 6-10 per experimental
group) were infected at 18-22 weeks of age. Mice were
anesthetized with ketamine-xylazine and inoculated
intranasally with 10> 50% tissue culture infective dose
(TCIDsp) of PR8 in Dulbecco’s modified Eagle medium.
Body mass, rectal temperature, and mortality were mon-
itored daily for 21 days.

Organ CVBS3 titers

Hearts were aseptically removed from the animals,
weighed, homogenized in RPMI 1640 medium contain-
ing 5% fetal bovine serum (FBS), L-glutamine, strepto-
mycin and penicillin. Cellular debris was removed by
centrifugation at 300 g for 10 min. Supernatants were
diluted serially using tenfold dilutions and tittered on
Hela cell monolayers by the plaque-forming assay [38].

Histology

Tissue was fixed in 10% buffered formalin for 48 h, par-
affin embedded, sectioned, and stained by hematoxylin
and eosin. Slides were coded and read blindly using a 0
to 4 scale as published previously [39].

Antibody depletion of T cells in vivo

Mice were injected intraperitoneally with 100 pug mono-
clonal anti-CD3 antibody (clone 17-A2) or rat IgG2b
(clone A95-1) in 0.5 ml PBS on day -3 and +1 relative
to injection of virus. T cell depletion was determined by
flow cytometry of spleen cells as described below.

Flow cytometry

CD4+IFNy+ cells were determined by intracellular cyto-
kine staining [39]. 10° spleen cells were cultured for 4 h
in medium containing 10 pg of Brefeldin A (BFA;
Sigma, St. Louis, MO), 50 ng/ml phorbol myristate acet-
ate (PMA; Sigma), and 500 ng/ml ionomycin (Sigma);
washed; labeled with a 1:100 dilution of Alexa 647 anti-
CD4 (clone GK1.5) or Alexa 647 rat IgG2b (clone A95-
1); fixed in 2% paraformaldehyde; permeabilized with
0.5% saponin; and labeled with 1:100 dilutions of PE
anti-IFNy (clone XMG1.2) and Alexa647 anti-IL4 (clone
11B11) or PE and Alexa647 rat [gG1 (clone R3-34). All
antibodies were from BD Biosciences/Pharmingen
(Franklin Lakes, NJ, USA). T regulatory cells were iden-
tified using the Mouse T Regulatory Cell Staining Kit
(eBioscience, San Diego, CA, USA) according to manu-
facturer’s directions. Cells were analyzed using a BD
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LSR II flow cytometer with a single excitation wave-
length (488 nm) and a band filter for PE (575 nm). The
excitation wavelength for Alexa 647 is 643 nm and a
band filter of 660/20 nm. The cell population was classi-
fied for cell size (forward scatter) and complexity (side
scatter). At least 10,000 cells were evaluated. Positive
staining was determined relative to isotype controls.

Statistical analyses

Survival following infection was compared among
experimental groups using log rank sum and %> ana-
lyses. Other dependent measures were analyzed using
two-way analysis of variance (ANOVA) or multivariate
ANOVA (MANOVA) with sex/hormone status/sex
chromosome complement and days post inoculation as
the independent variables. Significant interactions were
further analyzed using planned comparisons or the
Tukey method for pairwise multiple comparisons. Mean
differences were considered statistically significant if P <
0.05.

Results

Sex chromosome complement impacts susceptibility to
CVB3 infection

Gonadally intact, WT male and female C57BL/6 mice
were infected with CVB3 and by 7 days post infection,
5/10 WT male and 0/10 WT female mice died or were
moribund and required killing (x?, P < 0.01). WT male
C57BL/6 mice develop significantly greater myocarditis
than WT female mice (two-way ANOVA sex effect P <
0.005), but had similar cardiac virus titers (Figure 1).
Gonadectomy of WT male mice reduced CVB3 patho-
genicity, whereas gonadectomy of WT female mice
increased CVB3 pathogenicity and in the absence of sex
hormones, Gdx males became less susceptible to myo-
carditis than Gdx females (Figure la; two-way ANOVA
sex x gonadal status effect P < 0.00005). This study
demonstrates that sex hormones are primarily involved
in myocarditis susceptibility in males, whereas sex hor-
mones in females suppress myocarditis susceptibility. In
contrast, no significant differences were observed in car-
diac virus titers between intact and Gdx animals or
between WT male and WT female mice, indicating that
pathology is not directly related to CVB3 infection of
the myocardium (Figure 1b).

T cells are crucial to CVB3 pathogenesis since mice
made deficient of these effectors by thymectomy, irra-
diation and bone marrow reconstitution fail to develop
myocarditis despite high virus titers in the heart [37].
To demonstrate a role for T cells in mediating sex dif-
ferences in CVB3 pathogenesis, WT male mice were
injected on days -3 and +1 relative to infection with 100
pg of monoclonal IgG isotype immunoglobulin or anti-
CD3, which depleted > 93% of CD3+ T cells in the
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Figure 1 Myocarditis and cardiac virus titers in intact and gonadectomized (Gdx) male and female C57BL/6 mice infected with
coxsackievirus B3 (CVB3). Male and female C57BL/6 mice were injected intraperitoneally with 100 PFU CVB3 and surviving mice were killed 7
days later. Half of the animals were gonadectomized 4-6 weeks prior to infection. Hearts were removed, divided and either homogenized for
determining virus by the plaque-forming assay or fixed in formalin, paraffin embedded, sectioned and stained by hematoxylin and eosin. (a)
Mean + SEM myocarditis score based on a 0-4 scale with 0 = no inflammation; 1 = 1-10 lesions/section; 2 = 11-20 lesions/section; 3 = 21-40
lesions/section and 4 = > 41 lesions/section [39]; and (b) virus titers given as mean + SEM plaque-forming units (PFU) log;¢/g heart tissue of 4-7
mice/group. *Significantly different at P < 0.05.

animals. T cell deficient male mice developed less myo-
carditis compared to immunoglobulin treated males
(Figure 2; t test P < 0.05). T cell depletion had no signif-
icant effect on cardiac virus titers confirming earlier stu-
dies that CVB3 clearance during primary infection is
not dependent on T cell responses [40].

The possibility that sex chromosome complement
influences CVB3-induced myocarditis was investigated
by infecting Gdx FCG mice and evaluating myocarditis
and virus titers 7 days post infection (Figure 3). Myo-
carditis scores showed a significant effect of sex chro-
mosome complement, in which XX mice developed
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Figure 2 T lymphocyte depletion protects against coxsackievirus B3 (CVB3) induced myocarditis. Intact C57BL/6 male mice were injected
intraperitoneally with 100 ug monoclonal anti-CD3 antibody or rat IgG2b isotype immunoglobulin on days -3 and +1 relative to infection with
CVB3 (100 plague-forming units (PFU)). Surviving mice were killed 7 days after infection and evaluated for (a) myocarditis using a 0-4 histology
scale and (b) cardiac virus titers (PFU log10/g tissue). Results represent mean + SEM of 5-7 mice/group. *Significantly different than IgG isotype
treated group at P < 0.01.
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Figure 3 Myocarditis and cardiac virus titers in four core genotype (FCG) mice infected with coxsackievirus B3 (CVB3). FCG mice were
gonadectomized (Gdx) and infected with 100 plaque-forming units (PFU) CVB3. Surviving mice were killed 7 days after infection and evaluated
for (a) myocarditis using a 0-4 histology scale and for (b) cardiac virus titer (PFU log10/g tissue). Results represent mean + SEM of 10-13 mice/
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significantly more myocarditis than XY mice, irrespec-
tive of their gonadal sex (two-way ANOVA sex chro-
mosome complement effect P < 0.009). There were no
differences in cardiac virus among the FCG mice. To
evaluate the mechanism by which sex chromosome
complement impacts CVB3 myocarditis, spleen cells
from FCG mice were isolated and evaluated by flow
cytometry for CD4+IFNy+ (T helper 1 (Thl)), CD4
+FoxP3+ (T regulatory) or CD4+IL-4+ (Th2) cell
responses. No significant difference in Th2 cell
responses was observed among the FCG mice (data

not shown). Gonadal females had significantly greater
Thl cell responses than gonadal male mice, regardless
of their sex chromosome complement (Figure 4a; two-
way ANOVA gonadal sex effect P < 0.0006). In con-
trast, higher T regulatory cell numbers were observed
at day 7 post infection in XY than XX mice, irrespec-
tive of gonadal sex (Figure 4b; two-way ANOVA sex
chromosome complement effect P < 0.006). Taken
together, these data illustrate that both gonadal hor-
mones and sex chromosomes contribute to CVB3
pathogenicity.
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Figure 4 T helper 1 (Th1) and T regulatory (Treg) cell response in coxsackievirus B3 (CVB3)-infected four core genotype (FCG) mice.
Spleen cells from FCG mice represented in Figure 3 were labeled with antibody to CD4, washed, fixed with 2% paraformaldehyde,
permeabilized and labeled intracellularly with antibody to either (a) interferon (IFN)y (Th1 cells) or (b) forkhead box P3 (FoxP3) (Treg cells).
Results represent the mean + SEM number of indicated cells/spleen. *Significantly different at P < 0.05.
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Sex chromosome complement does not impact
susceptibility to IAV infection

Sex biases also exist in response to IAV infection
[31,32,41]. To begin our analyses, we inoculated male
and female C57BL/6 mice with IAV and morbidity and
mortality were evaluated over a 21-day period in gonad-
ally intact WT mice that were older than in previous
studies [32] (that is, animals were 18-22 weeks of age to
be age matched to FCG mice). Although males and
females lost a similar percentage of body mass, females
experienced a greater reduction in rectal temperature
than males during infection (Figure 5a, b, MANOVA
sex x day interaction P < 0.0001). Survival was also sig-
nificantly reduced among females, in which fewer
females survived infection and females died sooner than
their male counterparts (Figure 5c¢; log rank P < 0.05).
These data illustrate that sex differences in response to
IAV infection are observed among older adult mice, cor-
responding to the sex differences previously shown in
younger animals (that is, animals that were 9-11 weeks
of age) [32].

To determine if deprivation of sex steroid hormones
could abolish sex differences in morbidity and mortality
from IAV infection, WT adult male and female C57BL/
6 mice were gonadectomized and infected with IAV.
Gdx females lost more weight than Gdx males (Figure
6a; MANOVA treatment x day interaction P < 0.01),
but showed a similar reduction in rectal temperature as
Gdx males (Figure 6b). The proportion of Gdx females
and males that died as well as the rate of death were
similar following infection (Figure 6c). These data illus-
trate that sex steroid deprivation reduces, and in some
cases eliminates, the sex difference in IAV pathogenesis.

To examine whether sex chromosome complement
affects susceptibility to IAV infection, responses to
infection were examined in Gdx FCG mice [33]. All
FCG mice lost a similar percentage of body mass and
experienced a similar reduction and recovery in rectal
temperature during the course of infection (Figure 7a,
b). The proportion of mice surviving infection was simi-
lar among XXF, XYF, XXM, and XYM mice (Figure 7c).
Although not statistically significant, among those ani-
mals that died, the average day of death was slightly
later for gonadal male (XXM and XYM) than gonadal
female (XYF and XXF) mice (Figure 7d; two-way
ANOVA gonadal sex effect p = 0.056). Taken together,
these data suggest that sex chromosome complement
does not affect susceptibility to IAV in C57BL/6] mice.

Discussion
Sex differences in response to viral infections are well
documented [1]. In many cases, these differences are
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Figure 5 Morbidity and mortality from influenza A virus (IAV)
infection in gonadally-intact male and female C57BL/6 mice.
Average (+ SEM) change in body mass (a) and rectal temperature
(b) from baseline (that is, day 0) following inoculation with 107 50%
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a series of two replications. *Significantly different at P < 0.05.

13




Robinson et al. Biology of Sex Differences 2011, 2:8
http://www.bsd-journal.com/content/2/1/8

>

Body Mass (% change)

—C— Gdx Females %
11 13 15 17 19 21

‘45IIIIIIIIIII

1 357 9

(8]
1

L
T

AT
@ @

A
al

1 13 15 17 19 21

¢ Body Temperature (% change) g

_‘
L =)
T T 2

Survival (%)

)
T

OIIIIIIIIIIIIIIIII\VIIII

135 7 9 11131517 19 21
Days Post-Inoculation

Figure 6 Morbidity and mortality from influenza A virus (IAV)
infection in gonadectomized (Gdx) male and female C57BL/6
mice. Average (+ SEM) change in body mass (a) and rectal
temperature (b) from baseline (that is, day 0) following
inoculation with 107 50% tissue culture infective dose (TCIDso) of
mouse-adapted AV, A/Puerto Rico/8/1934 (PR8). The proportion of
Gdx male and female mice surviving PR8 infection during the 21
days post inoculation is shown in (c). Each group consisted of 7-8
mice run in a series of 2 replications. *Significantly different at P <
0.05.

modulated by the effects of gonadal hormones, including
testosterone and estradiol, on immune responses to
infection [1]. This communication confirms an impor-
tant role for testicular and ovarian secretions in the
response to viral infection, and also shows that sex

Page 7 of 11

chromosome complement impacts the pathogenicity of
CVB3 but not IAV infections in mice.

Host immunity can play a significant role in either
recovery or pathogenesis from both picornavirus and
influenza virus infections. For picornaviruses, host T cell
immunity is particularly detrimental and in CVB3 myo-
carditis [42], Theiler’s virus encephamyelitis [43], and
encephalomyocarditis virus-induced diabetes [44], virus
infection induces autoimmunity to tissue antigens by
antigenic mimicry or epitope spreading. Autoimmune
effectors rather than direct virus cytopathic effects are
the dominant mechanism of morbidity and mortality in
response to these viruses. T regulatory cell activity abro-
gates autoimmune T cell responses, morbidity and mor-
tality following picornavirus infection [45]. In the
present study, activation of T regulatory cells was
increased in Gdx XYF and XYM mice compared to Gdx
XXM and XXF mice, resulting in preferential protection
of these mice from CVB3. Previous studies have linked
activation of FoxP3+ T regulatory cells with resistance
to CVB3 induced myocarditis, which is consistent with
the current finding [39,45]. Foxp3, the T regulatory cell
transcriptional factor, is encoded on the X chromosome.
It is therefore highly probable that the increased T regu-
latory cell response in Gdx XY mice will explain the
increased resistance of these animals to CVB3 induced
disease, although this will need to be confirmed by
depletion of these cells prior to CVB3 infection. The
major question that remains is why the XY sex chromo-
some complement would give rise to enhanced Foxp3
expression when this gene is present on the X chromo-
some. It is unlikely that the XY sex chromosome com-
plement is directly affecting expression of the Foxp3
gene, but may establish conditions that are favorable to
T regulatory cell activation.

The dominance of CVB3-induced autoimmune patho-
genesis is also shown by the disassociation between
myocarditis and cardiac virus titers. T cell depletion
reduces cardiac injury but has no effect on virus titers
in the heart. If cardiac injury resulted from direct virus
infection and replication, then T cell depleted male mice
would not be protected when virus load in the myocar-
dium remained high. The inability of T cells to promote
CVB3 clearance was initially shown in 1974 using both
athymic (nude) and thymectomized, irradiated, bone
marrow reconstituted animals [40]. Since then, various
studies have demonstrated that T cell independent anti-
bodies are rapidly induced by picornavirus infections,
including CVB3 and foot-and-mouth disease virus,
which, along with macrophages, are the primary media-
tors of virus clearance [40,46,47].

Protection against IAV infection represents a delicate
balance between immune responses protecting versus
causing pathology in the host. Immediately following
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infection, proinflammatory responses, including produc-
tion of cytokines (for example, TNFa, IL-6, and IL-1f)
and chemokines (for example, chemokine (C-C motif)
ligand 2 (CCL2) and CCL3), are initiated by macro-
phages, dendritic cells, and epithelial cells in the respira-
tory tract, which activate humoral and cell-mediated
immune responses to promote virus clearance and pro-
tection of the host from subsequent infection. There is,
however, growing evidence that these early proinflam-
matory events can lead to severe disease and even death
through a process termed ‘immunopathology’ [48].
Immune memory and long-term protective immunity
against IAV is mediated by pre-existing antibodies as
well as memory B and T cells [49]. Young adult female

mice produce significantly higher proinflammatory cyto-
kine and chemokine responses and experience greater
morbidity and mortality during IAV infection than
males, which appears to involve the effects of infection
on circulating levels of estradiol [32]. Influenza A virus
infection of female mice disrupts reproductive function
resulting in persistently low levels of estradiol and pro-
gesterone, heightened proinflammatory responses, and
reduced rates of survival [32]. Consequently, the out-
come of IAV infection is severe for both gonadally-
intact and Gdx female mice and exogenous administra-
tion of estradiol to Gdx females significantly reduces the
induction of proinflammatory responses and increases
rates of survival [32]. Taken together, our previous data
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combined with data from the current study illustrate
that gonadal secretions, but not sex chromosome com-
plement, play a role in modulating responses to IAV
infection.

Gonadectomy of female mice substantially increased
pathogenicity in females infected with CVB3, but had
little effect in IAV infected females. In males, Gdx had
the opposite effect, with Gdx protecting CVB3 infected
males, but increasing pathogenesis in IAV infected Gdx
males. A key difference between IAV and CVB3 infec-
tions is in the crucial role of adaptive immunity to clear
influenza virus [50,51], whereas T lymphocytes and
virus neutralizing antibodies are of limited value for
elimination of picornaviruses [40,47]. This difference in
the requirement for adaptive immune responses for
recovery from IAV and CVB3 likely contributes to why
Gdx is protective against CVB3 and promotes patho-
genicity of IAV infection.

The response of FCG mice to infection with CVB3
and the development of CVB3-induced myocarditis in
XX animals is similar to the responses of FCG mice in
experimental models of EAE and lupus, in which the
XX sex chromosome complement produces significantly
more severe disease than the XY complement [27]. In
EAE and lupus models, XX mice had lower levels of
Th2 cytokines than XY mice. Consequently, Th2-
mediated responses promote resistance against EAE
[52], whereas Thl and Th17 cell activation is crucial to
EAE severity [53]. In the current study, XY mice devel-
oped less severe CVB3-induced myocarditis and had
more T regulatory cells in their hearts than XX mice. T
regulatory cells inhibit proinflammatory responses
through direct cell-cell contact with effector T cells,
interaction with antigen presenting cells resulting
increased indoleamine-2,3-dioxygenase (IDO) produc-
tion, and secretion of soluble factors including IL-10
and transforming growth factor (TGF)B [54-56]. The
effect of sex chromosome complement on T regulatory
cells was not addressed in previous experiments of EAE
and lupus in FCG mice [27]; T regulatory cells, however,
are associated with resistance against EAE [57]. An
inherent deficiency in T regulatory cell activation in
individuals either having two X chromosomes or lacking
a Y chromosome is consistent with autoimmune dis-
eases that typically show a strong female bias [23,58].

Three genetic differences between XX and XY mice
could contribute to a sex chromosome effect. The Y
chromosome may encode genes that normally have an
XY-specific effect. Secondly, the double dose of X genes
in XX mice, relative to XY mice, could cause constitu-
tively higher expression of some X genes [59]. The pro-
cess of X inactivation greatly reduces the number of X
genes that show such sex differences in expression.
There are, however, a small number genes that escape X
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inactivation resulting in meaningful differences in gene
expression [60]. Thirdly, X genes that receive a parental
imprint might be expressed higher in one sex than the
other, because only females receive a paternal X imprint.
Further genetic studies are needed to resolve the chro-
mosome of origin of the sex chromosome effects
reported here, and the genes, especially those that code
for immune-related proteins, that are responsible.

Sex differences in circulating levels of gonadal hor-
mones contribute significantly to sex differences in
response to viral infections [1]; there is, however, little
evidence that gonadal secretions have lasting effects that
are maintained for several weeks after removal of the
gonads. These effects, often called ‘organizational’ effects
of gonadal hormones [61], may account for the differ-
ences between Gdx males and females in response to
CVB3 and IAV infection. Thus, the immune system, like
the brain and genitalia, may reflect lifelong sex differ-
ences established by sex differences in patterns of gona-
dal secretions early during development [62].
Alternatively, the differences in gonadal males and
females seen in response to CVB3 may be caused by
direct effects of Sry on non-gonadal tissues.

Conclusions

Although sex chromosomes can directly influence CVB3
pathogenesis, the dominant sex effect is mediated by
gonadal hormones. Gonadally intact WT males are
more susceptible to CVB3 myocarditis than gonadally
intact WT females. Although gonadectomy reduces
male susceptibility, restoring testosterone to Gdx males
results in equivalent myocarditis as in intact animals
[30], and treating intact males with estradiol inhibits dis-
ease [63]. Similarly, gonadectomy reduces the sex differ-
ence in susceptibility to IAV in mice. Taken together,
the data presented suggest that any effect of sex chro-
mosome complement on responses to viruses is over-
powered by the effects of sex hormones on virus
infection and immunity. The significance of direct chro-
mosome effects on clinical CVB3 or other viral infec-
tions may be minimal in premenopausal women when
estrogen levels are high. Examination of immune
responses to viruses in older populations, especially
among postmenopausal women, may unmask clinically-
relevant effects of sex chromosomal genes on viral dis-
ease pathogenesis. Clarification of the relative roles of
gonadal hormones and sex chromosome effects will be
improved once the X or Y genes responsible for sex
chromosome effects are identified.
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