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Abstract

deuterostome phyla.

patterning of the embryonic apical territory (foxQ2).

Background: The Fox gene family is a large family of transcription factors that arose early in organismal evolution
dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene
regulatory networks essential for embryonic development. Although much is known about the role of Fox genes
during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have
characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate
Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early
development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group
for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the

Results: Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes,

S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which
has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2
lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights
into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC,
foxL1, and fox!), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxl), cilia formation (foxJ1), and

Conclusions: Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to

develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes
and bilaterians, and more recent clade-specific innovations.

Keywords: Hemichordate, Saccoglossus kowalevskii, Fox cluster, Deuterostome evolution, Gene regulatory networks,

Gill slits, Gut patterning, EH-I-like motif, FoxQ2, Fox genes, Forkhead, Fork head

Background

The development of animal body plans and associated mor-
phological innovations are a result of genetic and cellular
mechanisms acting in space and time. Developmental regu-
lation of these mechanisms has many layers of complexity,
and involves interacting suites of transcription factors that
form core conserved regulatory kernels [1]. Analyzing these
transcription factors and their genetic interactions is there-
fore essential to understand development, and comparative
studies between species can help us to understand the
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evolutionary traits of developmental programs/networks
and how they arose during evolution [2-6].

One large transcription factor family with key regula-
tory roles is the Fox (Forkhead box) transcription factor
family. Fox genes encode transcription factors contain-
ing a fork head helix-turn-helix DNA binding domain of
100 amino acids [7-12]. The conserved protein sequence
encoding the DNA binding domain was described in
1990 by comparative analysis of the Drosophila melano-
gaster ‘Forkhead’ protein [13] with the HNF-3 protein
isolated from rats [14,15] by Weigel et al. [16]. In the
20 years since their discovery, a large number of Fox
genes have been characterized in a phylogenetically broad
range of animals, including choanoflagellates, yeast, and
fungi (reviewed in Larroux et al. [17]) and a unified
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nomenclature of 15 Fox families (alternatively named clas-
ses or subclasses) was established in 2000 [18]. Five more
families have since been added: FoxAB [19-21], FoxQ
[22-24], FoxP [25,26], and the vertebrate specific groups
FoxR [27,28] and FoxS [29]. Four of these families have
subsequently been further divided: FoxL into FoxL1 and
FoxL2, FoxN into FoxN1/4 and FoxN2/3, FoxQ into FoxQ1
and FoxQ2, and Fox] into FoxJ1 and FoxJ2 [30]. This has
led to the identification of a total number of 24 Fox families,
making it possible to compare their orthologs in different
species to gain insights into the evolution of this large tran-
scription factor family and their roles in metazoan develop-
mental programs.

Fox genes probably arose by serial duplication from a
single ancestral Fox gene present in the fungal/metazoan
ancestor (stem opisthokont) [17,18]. This evolutionary
history is reflected in the clustered arrangement of some
of the Fox genes in animal genomes [31-33]. By com-
parative genomic analysis two Fox gene clusters have
been proposed to be present in stem bilaterians; a foxD-
foxE cluster and a foxL1-foxC-foxF-foxQI cluster [31,33].
The latter is of special interest since its conserved link-
age may be correlated with its function in mesoderm de-
velopment [31,32,34]. Much of the literature on Fox
genes focuses on medically relevant developmental roles
using data from a narrow range of vertebrate model sys-
tems including only a few invertebrates like Drosophila
melanogaster [35-38] and Caenorhabditis elegans [39-42].
Recently, a more extensive evolutionary comparative lit-
erature has begun to emerge; new data from animals such
as elasmobranchs (dogfish) [34], echinoderms [20,43-48],
cephalochordates [21,49-55], urochordates [56-60], lopho-
trochozoans [32,61], cnidarians [19,62-65], and sponges
[66] make it now possible to investigate the deeper evolu-
tionary history of this transcription factor family.

In this study, we have characterized the full Fox gene
complement of the enteropneust hemichordate Saccoglossus
kowalevskii to contribute to this discussion. Hemichordates
are a deuterostome phylum, sister group to echinoderms,
which together form the Ambulacraria [67-70]. Hemichor-
dates share many organizational features with chordates
such as a bilateral body plan with a conserved anterior pos-
terior patterning gene regulatory network [71-73]. Their
anterior gut is perforated by pharyngeal gill slits, likely
homologs to those of chordates [74-79] and they have a
nervous system with both diffuse and central organizational
elements [71,80-87].

In our study, we identified 23 Fox genes in S.
kowalevskii and analyzed their phylogenetic relation-
ships, genomic cluster organization, and spatiotemporal
expression patterns during early development. The ex-
pression analysis of all 23 genes gives insights into the
evolution of components of the regulatory networks for
pharyngeal gill slits (foxC, foxLI, and foxI), mesoderm
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patterning (foxD, foxE, foxG), hindgut development (foxD,
foxI), cilia formation (fox/I), and patterning of the apical
territory (foxQ2).

Methods

Embryo collection

Adult S. kowalevskii were collected at Waquoit Bay,
Massachusetts in September. Oocyte ovulation and
fertilization were carried out as described previously
[88]. Embryos were staged by the normal tables of
Bateson [74,89,90] and Colwin and Colwin [91]. Em-
bryos were cultured at 20°C.

Identification and cloning of Fox genes

Numerous Fox genes were identified by screening expressed
sequence tags (EST) [92], and expression patterns of
foxQ2-1, foxG (bf1), foxA, and foxC in select develop-
mental stages have previously been published [71,79,93].
To identify and clone additional genes, we screened the
S. kowalevskii genome-trace archive at NCBI and our
arrayed EST clone libraries [71] by bidirectional blast.
Genes not in our EST libraries were cloned by PCR
from cDNA prepared from a variety of developmental
stages, using RNAeasy (Qiagen) for RNA extraction and
Superscript III (Invitrogen) for cDNA synthesis, and cloned
into the pGemT easy vector system (Promega). Primers
used to clone partial fragment of FoxJ2/3: 5'-CAATG
GACTGGCTGCCACAACTA-3', 5'-GTGTGAAGAACT
GATTGAGTGAATTTGC-3'.

In situ hybridization

In situ hybridization was carried out as described in Lowe
et al. [88] with the following modifications: Proteinase K
treatment was carried out at 10 pg/mL for 5 min at 37°C.
Acetic anhydride treatment at 250 uM for 5 min at room
temperature (RT) followed by a 500 pM treatment for
5 min at RT.

Sequence retrieval

Reference sequences for the alignment were assembled
from a variety of metazoans; cephalochordates [21,94],
sea urchin [20], cnidarians [17,19,62,63,95,96], and sponge
[17]. For a list of GenBank accession numbers, see
Additional file 1: Table S1, Additional file 2: Table S2
and Additional file 3: Table S1. Sequences were aligned
using ClustalW (EMBO-EBI). Trees were constructed
in FigTree v1.2.3 [97] and further modified in Adobe
[lustrator CS3.

Additional software

The DNASTAR Lasergene software package was used
for sequence management, genome walking, and initial
alignment.
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Molecular phylogenetic analyses

All genes in this study were assigned orthology by phylo-
genetic analysis. Two types of analysis were carried out:
(1) Bayesian analysis using MrBayes (v3.0B4) [98,99]; and
(2) maximum likelihood analysis using the web-based
PhyML server at Lirmm [100,101]. Alignment of the
Fox (fork head box) domains was performed using
ClustalW2 via the EMBL-EBI homepage [102].

Phylogenetic analysis of S. kowalevskii Fox proteins
Bayesian analysis (MrBayes (v3.0B4), [98,99]) was carried
out using the mixed amino acid substitution model apply-
ing four independent simultaneous Metropolis-coupled
Markov Chains Monte Carlo in two independent simultan-
eous runs. N chains was set to 16, and the tree was calcu-
lated on a 32 CPU cluster. The likelihood model was set to
gamma rates =4. A tree was sampled every 6,000 genera-
tions for 53 million generations. The first 25% of the sam-
pled trees were excluded via ‘burnin’ prior to consensus
tree calculation. Saccharomyces cerevisiae Fox1 was used as
an outgroup. The trees converged to a standard deviation
of 0.0109. Because of the size of the dataset, the maximum
likelihood analysis was performed using the Approximate
Likelihood-Ratio Test (aLRT) using the SH-like model
[101]. The input alignment is comprised of 200 sequences
with 88 characters (see Additional file 4: Table S4).

Phylogenetic analysis of the FoxQ2 family

The fork head box of FoxQ2 proteins from various phyla
was used for this analysis, including sequences from the
genome of the mollusc Lottia gigantea for which we
identified four putative FoxQ2 genes by bidirectional
blast and named foxQ2-1 to foxQ2-4 (see Additional file
5: Table S5). We only included proteins in our analysis
which were short branching, and had an identifiable EH-
I-like motif on the N-terminal or C-terminal side of the
protein (see below) (Additional file 5: Table S5). The
EH-I-like motif is outside the fork head box and was
thus not part of the alignment. Bayesian analysis was
performed using the Jones amino acid substitution model,
applying four independent simultaneous Metropolis-coupled
Markov Chains Monte Carlo in two independent simul-
taneous runs. The likelihood model was set to gamma
categories = 4 and gamma rates = invgamma. A tree was
sampled every 500 generations for 1 million generations.
The first 25% of the sampled trees were excluded via
‘burnin’ prior to consensus tree calculation. Nematos-
tella vectensis foxO was used as an outgroup. The trees
converged to a standard deviation of 0.023. Maximum
likelihood analysis was performed using the aLRT (SH-
like model) [101]. The input alignment is comprised of
28 sequences with 136 characters (see Additional file 6:
Table S6).
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Results

Molecular phylogenetic analysis of S. kowalevskii Fox
proteins

Comparative studies among bilaterian lineages have
previously identified 24 Fox families in bilaterians (FoxA
to FoxS), including the newly identified FoxAB family
[19-21,103]. Two of these families are vertebrate-specific
(FoxR and FoxS) [29,104], leaving 22 Fox families that
were present ancestrally in bilaterians. The S. kowalevskii
genome contains a single copy of all bilaterian Fox family
members with two notable exceptions; we failed to iden-
tify a representative of FoxH, which was likely secondarily
lost in hemichordates and echinoderms [20] since it is
present in the mollusc Lottia gigantea [33]. Further, the
FoxQ2 family is represented by three paralogs in S.
kowalevskii (Figure 1). All S. kowalevskii Fox proteins
group into their corresponding families with high boot-
strap and posterior probability values, most closely related
to the sea urchin or cephalochordate orthologs. Two of
the sea urchin Fox proteins used in this study are long
branching (SpFoxX and SpFoxY), and in our analysis they
could not be assigned to a specific Fox family, supporting
the result from Tu et al. [20]. The presence of a member
of the FoxE family in S. kowalevskii, which could not be
identified in the sea urchin genome, suggests a loss of
FoxE somewhere in the echinoderm lineage. The FoxAB
ortholog identified in S. kowalevskii groups reliably together
with putative orthologs from sea urchin [20], cephalochor-
dates [21], and cnidarians [19] thus making us confident
that we have identified an additional member of this new
family absent in vertebrates (see Figure 1a, Additional file 7:
Figure S1 and Additional file 8: Table S7).

FoxQ2 family evolution

Many animals have multiple duplications in the FoxQ2
family that have been considered species-specific dupli-
cations. Multiple FoxQ?2 genes are present in the cnidar-
ians Nematostella vectensis (NvFox4, NvFoxQ2b, NvFoxQ2c)
[17,63], Hydra magnipapillata (HmFoxQ2b, HmFoxQ2al,
HmFoxQ2a2) [96], Clytia hemisphaerica (CheFoxQ2a,
CheFoxQ2b) [19], the cephalochordate Branchiostoma
floridae (BfFoxQ2a, BfFoxQ2b, BfFoxQ2c) [21], the mollusc
Lottia gigantea (foxQ2-1, foxQ2-2, foxQ2-3, foxQ2-4),
and the hemichordate Saccoglossus kowalevskii (foxQ2-1
[93], foxQ2-2, foxQ2-3). Other animals like the sea urchin
Strongylocentrotus purpuratus [20], the ascidian Ciona intes-
tinalis [59], the fish Danio rerio [105], and the fly Drosophila
melanogaster [37] seem to have only one FoxQ2 gene.

An ancestral subdivision of the FoxQ2 family at the
base of the cnidarians has been suggested by Chevalier
et al. [19], but a more detailed analysis of the evolution-
ary history of this family was not possible due to lack of
bilaterian sequences. To address this question we included
the newly available data from S. kowalevskii and other
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(See figure on previous page.)

Table S4, Additional file 5: Table S5 and Additional file 6: Table Sé.

Figure 1 Phylogenetic analysis. (A) Phylogenetic analysis of S. kowalevskii Fox genes: The S. kowalevskii Fox proteins group into their predicted
families with high support values. Displayed is the Bayesian tree (standard deviation = 0.0109) with Bayesian posterior probabilities values on top
of each branch and maximum likelihood values underneath each branch. Stars indicate a different tree topology result from the maximum
likelihood analysis which lead to no support value at that position. Branches with posterior probabilities below 50% are collapsed. For gene
accession numbers, gene predictions, and alignment see Additional file 1: Table S1, Additional file 2: Table S2, Additional file 3: Table S3 and
Additional file 4: Table S4. (B) Phylogenetic analysis of the FoxQ2 family. Phylogenetic analysis of FoxQ2 proteins containing an EH-I-like motif
(see Additional file 5: Table S5) result in a tree topology supporting a duplication of the FoxQ2 family at the base of the bilaterians. Displayed is
the Bayesian tree (standard deviation = 0.023) with Bayesian posterior probabilities values on top of each branch and maximum likelihood values
underneath each branch. Stars indicate different tree topologies which lead to no support value at that position. Branches with posterior
probabilities below 50% are condensed. Proteins with a C-terminal EH-I-like motif are highlighted in blue. Proteins with a N-terminal EH-I-like motif
are highlighted in yellow. Proteins with a N-terminal and a C-terminal EH-I-like motif are highlighted in yellow and blue. For gene accession numbers,
identification of the EH-like motif, and alignment see Additional file 1: Table S1, Additional file 2: Table S2, Additional file 3: Table S3, Additional file 4:

phyla (see Additional file 5: Table S5). In our analysis, we
found that bilaterian FoxQ2 proteins clustered into two
well supported groups suggesting the duplication of an an-
cestral FoxQ2 gene occurred before the origin of the bila-
terians. However, it is not clear whether this event was in
stem bilaterians or earlier, before the split of cnidarians
and bilaterians: two cnidarian sequences cluster within one
of the bilaterian FoxQ2 groups, whereas the others are
largely unresolved or demonstrate weak support for group-
ing into the second bilaterian FoxQ2 group (Figure 1b).
More sequence data from additional groups will be re-
quired to resolve this ambiguity.

Since the conserved region of Fox proteins is relatively
short and shows little sequence variability, we found fur-
ther support for our results by mapping an additional
character onto the tree: the position of the EH-I-like
Groucho binding domain. This domain is found in sev-
eral Fox families, including the FoxQ2 family [105,106].
The EH-I-like motif is either located at the C-terminus
or at the N-terminus of the FoxQ2 protein [105] outside
the fork head box. Since its sequence is not included in
the alignment for our phylogenetic analysis, its position
can be used as an independent character to analyze the
evolution of this protein family.

We identified the eight amino acid long EH-I-like
Groucho binding motif [106,107] for the S. kowalevskii
FoxQ2 family by manual sequence alignment and NCBI
Protein BLAST (see Figure 1b and Additional file 5:
Table S5). We found that one of the two bilaterian
FoxQ2 groups contains all bilaterian FoxQ2 proteins
that have the EH-I-like motif at the N-terminus of their
proteins and the second group contains only bilaterian
FoxQ2 proteins that have the EH-I-like motif at the
C-terminus. Protein sequences from bilaterian animals
with multiple FoxQ2 genes, like Saccoglossus kowalevskii,
Branchiostoma floridae, and Lottia gigantea, were divided
up into both groups.

Our data therefore show that the FoxQ2 family was
already divided into two distinct groups at the base of
the bilaterians. Since the data from cnidarians do not

fully resolve timing of this duplication (see Discussion)
we currently cannot determine whether the split of the
FoxQ2 family occurred at the bilaterian base or predates
the divergence of cnidarians and bilaterians.

Clustered Fox genes

Two draft genome assemblies for S. kowalevskii are cur-
rently available (Baylor College of Medicin/GenBank:
ACQMO00000000.1 and a HudsonAlpha assembly, Hudso-
nAlpha Institute for Biotechnology, AL (unpublished data)).
Using these two drafts, four Fox genes show evidence
of clustering (Additional file 9: Figure S2); foxC, and
foxL1 are joined on one scaffold and foxQ2-1 and foxQ2-3
are closely linked on a separate scaffold (see Additional
file 9: Figure S2). In addition, foxF clusters with foxC and
foxL1 depending on the algorithm used (it is linked in the
BCM assembly but not in the HudsonAlpha assembly).
Further, we provide evidence of a link of foxQI to the foxF,
foxC, and foxL1 containing scaffold by manual genome
walking using unassembled trace sequences and by bidir-
ectional blast of the scaffold ends (see Additional file 10:
Table S8). However, even though no better match was
found in the genome, the scaffold ends mostly contain re-
peats and a final assignment of foxQI and foxF requires
further characterization. The potential linkage of foxQl,
foxE, foxC, and foxL1 is of particular interest since this
cluster conservation may be linked to their developmental
roles in mesoderm development [32,33].

Expression analysis

Saccoglossus kowalevskii is a direct developing enterop-
neust [74,89-91,108]. Early cleavage is radial forming a
hollow blastula (Figure 2 (1)), and gastrulation is by in-
vagination between 16 and 30 hours post fertilization
(hpf) at 20°C (Figure 2 (2)). Mesoderm forms by entero-
coely from the archenteron following gastrulation at
about 36 hpf (Figure 2 (3)). Embryogenesis leads to a tri-
partite body plan with a prosome/proboscis, a mesosome/
collar, and a metasome/trunk (Figure 2 (4)), divided after
48 hpf by an anterior and posterior collar groove (Figure 2
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Figure 2 Expression patterns of S. kowalevskii foxA-E. Spatial expression pattern of S. kowalevskii foxA - foxE. Animals are oriented as indicated
in cartoons for the corresponding stage if not otherwise specified. For a detailed description of the expression patterns see text. Panels 1 to 5;
ectoderm = light gray, mesoderm = light blue, endoderm = dark gray, black arrows in panel 4 point at the forming furrows at the boundary
between the proboscis and collar and collar and trunk respectively. Panels 6, 11, 16, 19, 21, and 31 show surface views. Panels 17/18 are lateral
views. (10) Panel 10 shows a dorsal view, white arrows points at the forming gill pores, the black arrow points at the gap of ectodermal foxA expression
at the dorsal collar, inlay shows lateral view. (15) Inlay in panel 15 shows ventral view on the mouth opening, white arrow points at the mouth
opening. (20) White arrow in panel 20 points at the endodermal expression domain of foxB. (30) White star in panel 30 indicates the ectodermal
expression domain of foxD at the base of the proboscis. The inlay shows a closeup of the posterior gut region. An: animal pole; Veg: vegetal pole;

L: left; R: right; A: anterior; P: posterior; D: dorsal; V: ventral; ao: apical organ; cb: ciliated band; gp: gill pore. Brightness and contrast of pictures
were adjusted when appropriate to match overall appearance of the figure.

(4) black arrows). The mouth opens on the ventral side,
between the collar and proboscis, into the anterior phar-
ynx, which leads to the posterior gut. The first gill slit
forms in the posterior pharynx and perforates through the

ectoderm in the anterior trunk (Figure 2 (5)), with more
added sequentially during development. A more detailed
description of hemichordate development can be found in
[74,88-91,109,110].
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foxA

foxA expression is first detected at blastula in the vegetal
plate, which gives rise to the prospective endomesoderm
(Figure 2 (6)). Expression is persistent in the endoderm
throughout development (Figure 2 (7-10 and inlay)), but
excluded dorsolaterally from the regions that give rise to
the gill pores (white arrows in Figure 2 (10)). foxA is also
expressed in the ectoderm in the anterior collar groove
from approximately 48 hpf (Figure 2 (9)). In juveniles,
this circumferential expression marks the most anterior
collar region but is excluded from the dorsal midline
(black arrow in Figure 2 (10)). A partial description of
the expression of foxA was previously reported [73,93].

foxAB

foxAB expression was not detected at blastula stages
(Figure 2 (11)). At gastrula foxAB is expressed in a cir-
cumferential ring in the prospective anterior ectoderm
(Figure 2 (12)). The ectodermal expression persists into
later stages and refines into a thin ring in the anterior
collar groove (Figure 2 (12-15)). The developing mouth
of the embryo perforates through this ring of expression
on the ventral side (Figure 2 (15 inlay, white arrow indi-
cates mouth)).

foxB

foxB expression is first detected at the blastula stage in a
circumferential ring in the most posterior prospective
ectoderm surrounding the vegetal plate (Figure 2 (16)).
During gastrulation, foxB expression localizes asymmet-
rically to the posterior ventral ectoderm, flanking the
ciliated band on both sides (Figure 2 (17-19, Additional
file 11: Figure S3)). At 48 hpf foxB is expressed in the
ventral endoderm in the collar region. It is further
expressed ventrally in a broad stripe in the trunk ecto-
derm, anterior to the ciliated band and in two further
narrower stripes posterior to the ciliated band and in
the collar (Figure 2 (19)). This expression persists into
the juvenile stage (Figure 2 (20)). At this stage, the
ectodermal expression domain anterior to the ciliated
band is divided into two domains (See Additional file 11:
Figure S3).

foxC

JfoxC expression is first detected at the blastula stage in
the vegetal plate (Figure 2 (21)). During gastrulation this
endomesodermal expression restricts to the tip of the
archenteron, which is fated to become the anterior
mesoderm [111]. Circumferential ectodermal expression
is also detected in the anterior of the embryo at the base
of the developing proboscis (Figure 2 (22)). Upon com-
pletion of gastrulation, foxC is further associated with
mesoderm formation and is localized to two pairs of lateral
endomesoderm (Figure 2 (23)) that become the coelomic
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pouches of the collar and trunk [111] in a pattern very
similar to foxF (see below). At this stage, circumferential
ectodermal expression is detected in sharply delineated
rings marking the anterior and posterior collar groove
(Figure 2 (23)). From 48 hpf on, foxC expression per-
sists in the anterior collar groove with a gap of expres-
sion at the dorsal midline, and endodermal expression
is detected in the pharyngeal endoderm and is associated
with gill pouch formation (Figure 2 (24/25)) (See also
Additional file 11: Figure S3).

foxD

foxD expression begins during gastrulation in an anterior
ectodermal circumferential ring (Figure 2 (26/27)). The
circumferential ectodermal expression domain persists
throughout development and localizes to the posterior
proboscis at later stages (Figure 2 (27-30)). Beginning at
36 hpf, additional ectodermal expression is detected in
scattered cells in the proboscis and continues into later
stages. In the endomesoderm, foxD is expressed poster-
iorly during gastrulation and early axis elongation
(Figure 2 (28/29)). Following enterocoely of the meso-
derm foxD is expressed in the posterior-most endo-
derm that gives rise to the hindgut (Figure 2 (30 inlay)),
and in the ventrolateral mesoderm (Figure 2 (30)).

foxE

foxE expression is first detected at early blastula in the
prospective ectoderm (See Additional file 11: Figure S3).
This expression refines to a ring around the animal pole
before gastrulation (Figure 2 (31)). During gastrulation
this circumferential expression domain persists (Figure 2
(32)) and later refines to a narrow circumferential ring
localized at the base of the prosome (Figure 2 (33)).
From 48 hpf on, foxE expression is detected in the anter-
ior pharynx; the region that later gives rise to the stomo-
chord (Figure 2 (34/35)) (See also Additional file 11:
Figure S3).

foxF

No foxF expression was observed at blastula (Figure 3
(1)). Expression is first detected during gastrulation in
the anterior endomesoderm that will give rise to the an-
terior mesoderm (Figure 3 (2)). At 36 hpf, it is expressed
in the developing posterior mesoderm before entero-
coely (Figure 3 (3)), and at 48 hpf in the anterior, mid,
and posterior mesoderm (Figure 3 (4)) [111]. At later
stages mesodermal expression is detected laterally on
both sides of the pharynx (Figure 3 (5 inlay, indicated by
stars)), in small patches around the posterior gut, in the
most anterior tip of the embryo directly underlying the
apical organ (Figure 3 (5 white arrow)) (Additional file 11:
Figure S3), and the heart/kidney complex at the tip of
the developing stomocord (Figure 3 (5 and inlay, black
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match overall appearance of the figure.

Figure 3 Expression patterns of S. kowalevskii foxF-L1. Spatial expression pattern of S. kowalevskii foxF - foxL 1. Animals are oriented as indicated
in cartoons of Figure 2 (1-5) for the corresponding stage if not otherwise specified. For a detailed description of the expression patterns see text. Panels
4,8,9,and 17-19 show surface views. (5) White arrow in panel 5 points at endodermal expression domain of foxF at the tip of the proboscis, black
arrow points at the heart-kidney complex. Inlay shows dorsal view of the pharynx, black arrow points at the heart-kidney complex. White asterisk
indicate expression in the pharyngeal mesoderm. (9) Panel 9 shows dorsal surface. Inlay shows ventral surface. (10) Arrow in panel 10 points
at dorsal mesoderm. Inlay shows dorsal view of the pharynx, black arrow points at dorsal mesoderm. (15) Black arrow in panel 15 points at
posterior endoderm expression of fox!. Inlay shows dorsal view of the forming gill pores. (20) Inlay shows dorsal view of the forming gill
pores. Black arrow heads point to gill pouch endoderm. (30) Inlay shows dorsal view of the forming gill pores. An: animal pole; Veg: vegetal
pole; L: left; R: right; A: anterior; P: posterior; D: dorsal; V: ventral. Brightness and contrast of pictures were adjusted when appropriate to

arrow)). Mesoderm expressing foxF during juvenile devel-
opment always lines the endoderm (visceral mesoderm)
except for the expression at the tip of the proboscis meso-
derm (See also Additional file 11: Figure S3).

foxG

No expression of foxG was detected during the blastula
stage (Figure 3 (6)). Expression is first detected in the
posterior ectoderm during gastrulation in a few single

cells (Figure 3 (7)). From 36 hpf on, it is expressed in a
circumferential ring in the anterior third of the embryo
and in scattered cells throughout the ectoderm (Figure 3
(8)). At 48 hpf, the ring of expression refines into two
separate rings of cells at the base of the proboscis but
does not extend to the dorsal midline (Figure 3 (9 dorsal
view, inlay shows ventral view)). Single cell expression is
detected throughout the proboscis ectoderm with a
greater density at the proboscis tip. In juveniles, foxG is
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detected in the dorsal mesoderm overlaying the pharynx
and gut (Figure 3 (10, black arrow, inlay shows dorsal
view)). A partial description of foxG expression was pre-
viously published [71,73].

foxI

Localized fox! expression was not detected at early de-
velopmental stages (Figure 3 (11-13)) and is first de-
tected at 48 hpf in the most posterior endoderm and in
an ectodermal circumferential ring of expression anter-
jor to the ciliated band (Figure 3 (14)). At juvenile
stages, expression is detected in a small domain in the
center of the gill pouch endoderm (Figure 3 (15, inlay
dorsal view)) and in the posterior gut (Figure 3 (15,
black arrow)) (See also Additional file 11: Figure S3).

foxJ1

No fox]1 expression was detected in blastulae (Figure 3
(16)). fox]1 is expressed from gastrula in an ectodermal
ring marking the forming ciliated band (Figure 3 (17)).
The expression in the ciliated band is persistent in all
later stages examined (Figure 3 (17-20)). In juveniles,
additional broad ectodermal expression is detected in
the proboscis and the anterior trunk (Figure 3 (20)) in-
cluding the apical organ (Figure 3 (20 white arrow head)).
Endodermal expression is detected in the gill pouches
(Figure 3 (20 and inlay, black arrow heads)) (see also
Additional file 11: Figure S3).

foxK

Only weak staining of foxK was observed at the blastula
stage (Figure 3 (21)). An almost ubiquitous expression of
foxK is detected at the late gastrula stage throughout the
ectoderm but excluded from the ciliated band (Figure 3
(22)). This expression persists throughout development
(Figure 3 (22-24)) until it is restricted to the collar ecto-
derm in juvenile embryos (Figure 3 (25)). Endoderm and
mesoderm expression was not examined in early devel-
opmental stages, and no mesoderm or endoderm stain-
ing was observed in juveniles.

foxL1

No foxL1 expression was detected in early development
(Figure 3 (26-28)). foxL1 expression is first detected at
48 hpf in a circumferential ectodermal band at the base of
the proboscis and in the endoderm of the out-pocketing
gill pouches and in all subsequent stages examined
(Figure 3 (29/30 inlay shows dorsal view)).

foxN1/4

Ubiquitous expression of foxN1/4 is observed at blastula
(Figure 4 (1)). At 24 hpf and 36 hpf foxN1/4 is expressed
throughout the ectoderm except the ciliated band. Scat-
tered cells nested within the broad domains of ectodermal
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expression show higher levels of expression compared to
the general ectodermal staining (Figure 4 (2/3)) (See also
Additional file 11: Figure S3). At 48 hpf, foxN1/4 expres-
sion continues in the anterior ectoderm but only faint
staining was detected in the central and posterior collar
region (Figure 4 (4)). At juvenile stages, foxN1/4 expres-
sion is restricted to the proboscis and collar, and to a thin
row of cells (black arrow) posterior to the ciliated band
(white arrow) (Figure 4 (5, inlay shows ventral view of
the trunk tip)). Endoderm and mesoderm expression
was not examined. (For surface views see Additional
file 11: Figure S3).

foxP

Ubiquitous ectodermal foxP expression is detected at
blastula (Figure 4 (6)). From gastrulation, expression is
detected in the entire ectoderm except the ciliated band
(Figure 4 (7)), and stronger expression is detected in sin-
gle cells scattered throughout the anterior (Figure 4 (7-9
white arrows)). From 48 hpf, expression is detected in
single cells throughout the proboscis ectoderm (Figure 4
(9)), this expression persists into the juvenile stage (Figure 4
(10)). Endoderm and mesoderm expression was not
examined.

foxQ1

No foxQ1 expression was detected up to 36 hpf of devel-
opment (Figure 4 (11-13)). Localized expression is first de-
tected at 48 hpf in the anterior endoderm at the position
where the gill pouches are forming (Figure 4 (14/15)). At
juvenile stage, expression continues in the anterior pharynx
(Figure 4 (15)). If embryos are stained long expression in
the overlying ectoderm of the trunk and collar, with the ex-
clusion of the ciliated band, is also observed (Additional
file 11: Figure S3).

foxQ2

All three FoxQ2 paralogs (foxQ2-1, foxQ2-2, and foxQ2-3)
share an apical expression pattern, but each exhibits unique
expression characteristics (Figure 4 (16-30)). foxQ2-1 is
expressed in the animal hemisphere at blastula (Figure 4
(16)). During development from gastrula to juvenile, ex-
pression becomes refined to the most apical cells marking
the site of the ciliated apical organ (Figure 4 (17-20)). A
partial description of the expression pattern of foxQ2-1
was reported previously by Darras et al. [93]. foxQ2-2 ex-
pression also displays an ectodermal apical domain similar
to foxQ2-1 (Figure 4 (21-25)). However, in contrast to
foxQ2-1, foxQ2-2 shows ubiquitous ectodermal expression
throughout the embryo if stained for longer period of time
(Additional file 11: Figure S3). Localized foxQ2-3 expres-
sion is first detected at the gastrula stage in the apical ter-
ritory (Figure 4 (27)). At 36 hpf, expression in the apical
domain extends in a stripe along the dorsal midline of the



Fritzenwanker et al. EvoDevo 2014, 5:17
http://www.evodevojournal.com/content/5/1/17

Page 10 of 25

.

Figure 4 Expression patterns of S. kowalevskii foxN1/4-Q2-3. Spatial expression pattern of S. kowalevskii foxN1/4 - foxQ2-3. Animals are oriented as
indicated in cartoons of Figure 2 (1-5) for the corresponding stage if not differently specified. For a detailed description of the expression patterns see
text. Panels 4, 6, 29, and 30 show surface views. Panels 14/15 and 23-25 show light stained embryos. For longer stained embryos see Additional file 11:
Figure S3. (5) Black arrow points at expression domain of foxN1/4 in the ventral ectoderm at the posterior tip of the trunk, white arrow points at the
ciliated band. Inlay shows ventral view of the posterior tip of the trunk, black arrow points at expression domain of foxN1/4. (7-9) White arrows
point to cells with high levels of foxP expression in the proboscis ectoderm. An: animal pole; Veg: vegetal pole; L: left; R: right; A: anterior; P: posterior;
D: dorsal; V: ventral. Brightness and contrast of pictures were adjusted when appropriate to match overall appearance of the figure.

embryo starting from the most apical part of the embryo
and extending posteriorly, covering approximately two-
thirds of the embryo (Figure 4 (28)). At later stages, this
dorsal stripe becomes restricted anteriorly to the dorsal
proboscis midline (Figure 4 (29/30)).

foxJ2/3, foxL2, foxM, foxN2/3, and foxO

For five genes fox]J2/3, foxL2, foxM, foxN2/3, and foxO, reli-

able localization was not detectable by in situ hybridization.
For a comprehensive summary of all localized S.

kowalevskii Fox genes see Figure 5.

Discussion

Fox gene complement of Saccoglossus kowalevskii

The Fox gene family is a large group of transcription fac-
tors with at least 24 family members. Our characterization
of the Fox gene complement in S. kowalevskii revealed 21
of the 22 Fox family members predicted for the ancestral
bilaterian. This includes a member of the FoxE family,
which is absent in sea urchins, suggesting a loss of FoxE
somewhere in the echinoderm lineage. S. kowalevskii only
lacks a representative of the FoxH family, a gene that is
absent from the genome of the sea urchin S. purpuratus
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Figure 5 Expression summary. (A-l) Expression summary of all S. kowalevskii Fox genes with clear localized expression patterns.

(A-E) Blastula -, Gastrula -, 36 h embryo -, 48 h embryo -, 72 h embryo - surface view. (F-H) Gastrula -, 36 h embryo -, 48 h embryo - cross section.
(1) Cross section of the gill pore area of a 72-h-old embryo. For details see text. *Potential co-expression is inferred from single gene expression analysis.
No double in situ hybridization was performed. **The expression of foxF is very dynamic and only a more detailed analysis will be able to show all expression
domains at any given developmental time point. An: animal, Veg: vegetal, A: anterior, P: posterior, D: dorsal, V: ventral.
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and likely secondarily lost in the ambulacrarian lineage
(See Results and Figure 1). We further identified three
FoxQ2 genes in S. kowalevskii. The FoxQ2 family likely
arose in the lineage leading to the common cnidarian bila-
terian ancestor since no FoxQ2 homologs have been de-
scribed in sponges [17,33,66] or ctenophores [112]. From
our phylogenetic analysis, we have identified a subdivision
of the FoxQ2 family into two distinct groups that occurred
at least at the base of the bilaterians, but possibly earlier
(Figure 1b and Results). This interpretation is supported
by the position of the EH-I binding motif, which is located
either on the C-terminal or N-terminal side of the bilater-
ian FoxQ2 proteins. Each of the two bilaterian FoxQ2
groups is characterized by either the C-or N-terminal
motif. All cnidarian FoxQ2 genes with one exception are
characterized by a C-terminal EH-I motif. Two of these
group with the bilaterian FoxQ2 group characterized by
the EH-I motif at the N-terminus. It is therefore likely
that the position of the EH-I motif was ancestrally at
the C-terminus and was relocated to the N-terminal
domain in one copy of the bilaterian FoxQ2 paralogs
at the base of the bilaterians. The presence of an N-terminal
motif in the Hydra gene HmFoxQ2a, which is long branch-
ing and could not be placed in our phylogenetic analysis, ap-
pears to be secondarily derived.

The question remains whether a duplication in the
FoxQ2 family occurred at the bilaterian base or before
the bilaterian/cnidarian split. The latter scenario is the
most parsimonious based on our analysis, but more data
from cnidarians are needed to answer this question

definitively: most available cnidarian sequences cur-
rently group outside all bilaterian FoxQ2 sequences with
only a few inside the N-terminal clade making this a diffi-
cult issue to resolve.

Conserved expression domains of Fox genes

By comparing the results of our expression analyses
(Figures 2, 3, 4, and 5) to the current literature we highlight
the expression of several Fox genes that may represent an-
cestral deuterostome or bilaterian developmental roles.

Apical ectoderm patterning and tissue specification
(foxQ2)
FoxQ2 gene expression has been characterized during
the development of a phylogenetically wide range of
bilaterian and non-bilaterian animals (For references see
Result section for FoxQ2 and Table 1). In bilaterians
FoxQ2 genes are commonly expressed at the animal
pole early in development and quickly restricted to a
narrow region at the most apical region of the embryo
[20,21,37,61]. Since this pattern is observed in many
bilaterians it is proposed that FoxQ2 has an evolution-
arily conserved role in apical ectoderm patterning [45,61].
Functional studies in bilaterians further imply that the re-
striction of FoxQ2 to the apical tip of the ectoderm is me-
diated by Wnt/p-catenin signaling [45,93,113] and imply
that this regulation is also evolutionarily conserved.
Recent functional studies outside bilaterians also dem-
onstrate a regulatory interaction between Wnt/[-catenin
signaling and FoxQ2 expression [19,65]. In the cnidarian
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Gene name Observed expression in S. kowalevskii Related gene expression domain in other
organisms
foxA Late blastula: Protostomes:
Vegetal plate. Endoderm specification [103,114-116].
48 hpf: Hemichordates:
Anterior collar groove ectoderm; entire endoderm. Vegetal plate, endoderm/foregut [117].
Juvenile stage: Echinoderms:
Entire endoderm with the exception of the Presumptive ventral ectoderm [118]; Endomesoderm
dorsolateral outpocketing gill pores; most anterior specification [44,46].
collar ectoderm with a gap in expression on the .
dorsal midline Vertebrates:
Gastrulation, endoderm patterning, notochord
formation [18,119].
Urochordates:
Gastrulation, axis formation [120].
Cnidarians:
Preendodermal plate, pharynx [62,121].
foxAB 24 hpf: Protostomes:
Circumferential ectodermal ring which localizes to In the bryozoans larval ciliated cleft and apical
the anterior collar groove during later development. ectodermal territory [103].
Juvenile stage: FoxAB orthologues are further identified in
) echinoderms [20], cephalochordates [21],
The develop\ng_ mouth of the embry_o breaks through cnidarians [19] but expression is unknown.
at the ventral side of the embryo inside the foxAB
expression domain
foxB Late blastula: Sea urchins:
Ring pattern surrounding the vegetal plate. Ingressing primary mesenchyme cells; asymmetrically
48 hof: expressed along the oral-aboral axis in the oral
pt: ectoderm and endoderm [122-124].
\égggal ectoderm anterior and posterior to the ciliated Cnidarians:
Juvenile stage: Around the site of gastrulation, larval endoderm
9e: region, in the statocyst, gonad and tentacle bulb
Ventral ectoderm and ventral pharyngeal endoderm. of the medusa [19,63].
Chordates:
Dorsal ectoderm, mesoderm, brain: Xenopus [125-127],
ascidians [59], B. floridae [128].
Protostomes:
Ventral ectoderm [40,129]; ventral nervous system [35].
foxC Late blastula: Chordates:

Vegetal plate.

24 hpf:
Anterior endomesoderm.
48 hpf:

Circumferential ectodermal expression in the anterior
and posterior collar groove; endomesodermally at the
positions of mesoderm formation.

Juvenile stage:

Endodermal expression in the pharyngeal endoderm
associated with gill pouch formation.

Pharyngeal mesoderm patterning [31,32,34,130-132].
Pharyngeal endoderm [34].

Vertebrates:

Ventral and lateral mesoderm, lateral border of
neuroectoderm, eye, pronephros [133,134] (Xenopus,
reviewed in [122])

Cnidarians:

Presumptive endoderm and mesenteries [63].
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foxD 24 hpf:
Anterior ectodermal circumferential ring.
36 hpf:
Anterior ectodermal circumferential ring.
Posterior endomesoderm.
48 hpf:
Anterior ectodermal circumferential ring.
Ectodermal single cells throughout the proboscis.

Juvenile stage:

Posterior-most endoderm forming the hindgut;
ventrolateral mesoderm.

Chordates:
Notochord [52,57]

Diencephalon: reviewed in [61]

Neural crest [52,76,135-142] (Reviewed in [52,122]).

Maintenance of dorsolateral mesoderm (Xenopus)
[130,143] (reviewed in [122]). Hindgut [135,144].

Urochordates:
Dorsal anterior ectoderm [57].
Cephalochordates:

Anterior neural plate, the anterior somites, the
neural tube, and later in the cerebral vesicle,
hindgut [52,122,145-149].

Sea urchins:
Hindgut [20].
Protostomes:

Dorso-ventral circumferential cell migration and
axon projection; ventral mediolateral muscles,
intestinal precursor cells (C. elegans) [150-153].
Ventral nervous system (Drosophila) [19].

Cnidarians:

Aboral third of the embryo, tentacle buds [63].
Interaction with BMP/TGF-beta pathway:
[36,40,55,130,143,150,151,154,155].

foxE 12 hpf:
Ectodermal ring around the animal pole.
48 hpf:

Ectodermal circumferential ring localized at the base
of the prosome (48 hpf).

Juvenile stage:

Anterior-dorsal pharynx endoderm including the

Vertebrates:
Thyroid (Endoderm) [156]
Urochordates:

Endostyle (Endoderm) [58] Reviewed in [157].

Cephalochordates:
Club shaped gland (Endoderm) [51,158].

stomochord.
foxF 24 hpf: Chordates:
Anterior endomesoderm. Mesoderm patterning [19,31,32,34,159-161].
36 hpf: Gill slit formation in chordates: reviewed in [34].

Developing lateral and posterior mesoderm.

48 hpf:
Posterior, central, and anterior mesoderm.
Juvenile stage:

Mesoderm surrounding the pharynx; mesoderm
around the posterior gut; a mesodermal spot
underneath the site of apical organ formation;
heart-kidney complex; the pharyngeal mesoderm
with accumulation of foxf expressing cells anterior
and posterior to the forming gill pores. (Expression
is absent at the position where the evaginating
gill pore endoderm connects to the ectoderm.)

Neural plate border, cephalic neural crest,
pronephros: Xenopus, reviewed in [122].

Protostomes:

Mesoderm [36].
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foxG 24 hpf: Vertebrates:
Few single cells in the ectoderm. Telencephalon (reviewed [50]) [162-164].
36 hpf: Cephalochordates:
Strong ectodermal circumferential ring in the Scattered cells surrounding the cerebral vesicle and
anterior third of the embryo. inside the cerebral vesicle [50]
48 hpf:

Two ectodermal rings with a gap of expression
on the dorsal midline; single cell expression
throughout the proboscis with a density of
single cells at the proboscis tip.

Juvenile stage:

Additionally to 48 hpf expression: dorsal
mesoderm overlaying the pharynx and gut.

foxH Not present in the S. kowalevskii genome

foxI 48 hpf: Vertebrates:
Most posterior endoderm; weak ectodermal Craniofacial development [122,127,165].
cblaritér'nferemlal ring of anterior to the ciliated Sea urchins:

. Larval hindgut with high expression levels on the
Juvenile stage: aboral side [20].

Small domain in the center of the outpocketing
gill pouch endoderm; posterior gut.

foxJ1 24 hpf: Vertebrates:
Ectodermal in the ciliated band domain. Master regulator in the formation of motile cilia
[60,166-172].

Juvenile stage:

Ectodermal in the ciliated band, anterior proboscis Mediates left-right asymmetry [166,173-177]
ectoderm including the apical organ; gill pores; Echinoderms:

osterior collar.
P Oral side of the apical plate [20]; Larval ciliary

band [48].
Protostomes:

Ampullary cells, crescent cells, and prototroch
(Platynereis) [113]

Cnidarians:
[17,178]
Yeast: [178]

(Hcm1p) is involved in spindle pole body
formation [179].

FoxJ1 orthologues are further identified in
Choanoflagellates [180], sponges [66], other
deuterostomes and protostomes [33], but
expression and function is not known.

foxJ2/3 Not determined.

foxK >12 hpf: Vertebrates:
Ubiquitous throughout the ectoderm with the Dorsal midline, lateral cephalic neural crest, brain, eye,
exception of the ciliated band. lateral muscle precursors (Xenopus) [122,168].

Juvenile stage:
Collar ectoderm.
foxL1 48 hpf: Chordates:

Circumferential ectodermal band in the anterior Pharyngeal mesoderm patterning [31,32,34].
collar groove and in the endoderm of the outpocketing
gill pores. This expression persists until the one gill slit
stage.

Gill slit endoderm (Scyliorhinus canicula) [34].
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foxL2 Not determined.
foxm Not determined.
foxN1/4 12 hpf: Mammals:
Ubiquitous expression in the ectoderm. foxN1 is essential for proper immune response in mice
24 hpf: [181]. Downstream target of the Wnt-pathway [182].
Ubiquitous ectodermal expression with the foflw iSthVOht/,ed in zpecifyir;g amacfritr;]e ag:Lt'onontrz\a/l‘ "3
exception of the ciliated band. cells in the retina and is upstream of the gene Math3,
P NeuroD1, and Prox1 [113,183,184] (reviewed in [185]).
48 hpf: It is necessary for the development of V2a and V2b
Entire ectoderm with the exception of the central interneurons in the spinal cord using lateral inhibition
and posterior collar region and the ciliated band. via the Delta-Notch pathway by activating the transcription
Nested inside these expression domains are single of Delta4 and the bHLH gene Mash-1 [186,187].
cells that show a high levels of expression.
Juvenile stage:
Proboscis and collar region; thin row of cells
posterior to the ciliated band.
foxN2/3 Not determined
foxO Not determined
foxP 24 hpf: Vertebrates:
Entire ectoderm with the exception of the ciliated Basal ganglia, cerebral cortex, cerebellum, and thalamus,
band. hippocampus [127,188-190]. In Medaka foxP1 expression
hof: indicates a role during striatum projection neuron
>36 hpf: development [191] and basal ganglia development of
High levels of expression in single cells in the the developing and central nervous system [192].
antder\gr ect?derm O.f the embryo; weak Mutations in human foxP2 gene lead to severe
endodermal expression. language disorders [193-195] (reviewed in [127,196]).
Urochordate:
Developing brain [59].
Echinoderms:
Fore- and mid-gut of the larva [20].
Protostomes:
In Drosophila the two splice variants of foxP (fd85ka
and fd85Eb) are expressed in the developing CNS [37,197].
A FoxP ortholog is also found in other ecdysozoans,
cnidarians, and sponges [33,66], but expression
patterns are not yet reported.
foxQ1 48 hpf: Vertebrates:
Anterior endoderm at the position where the gill Prospective pharynx, pharyngeal pouches [60],
pores are forming; faint circumferential ectodermal Cephalochordates:
ring at the position where the gill pores are forming. ephalochordates:
Juvenile stage: Endostyle [54].
) Urochordates:
Anterior pharynx.
Pharyngeal gills, endostyle [58].
Protostomes:
Pharyngeal endoderm [32].
foxQ2-1 12 hpf: Deuterostomes:

Animal hemisphere.
>24 hpf:

During the development from gastrula to juvenile,
the ectodermal expression becomes refined to cells
forming the apical organ.

Apical ectoderm [20,21,53,198].
In protostomes:

Anterior tip of the embryo at the blastoderm stage,
pharyngeal structures and the brain hemispheres
(Drosophila) [37]. Apical ectoderm (Platynereis) [113]
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Table 1 Literature summary (Continued)
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Cnidarians:
Apical tuft [19,178].

Linke to Wnt/B-catenin signaling:

[19,45,64,73].
foxQ2-2 foxQ2-2 expression resembles the expression
of foxQ2-1 with additional ubiquitous expression
throughout the embryo ectoderm.
foxQ2-3 24 hpf:

Apical ectodermal territory.
36 hpf:

Ectodermal stripe along the dorsal axis of the
embryo starting from the most apical part of

the embryo and extending posterior, covering
approximately two-thirds of the embryo.

Juvenile stage:

Ectodermal stripe along the dorsal proboscis
midline.

Clytia hemisphaerica, CheFoxQ2a is expressed opposite
the site of gastrulation, which is marked by nuclear
[B-catenin and the expression of multiple Wnt genes
[19,64]. Knock down of CheWnt3a prevents the restric-
tion of CheFoxQ2a to the most aboral ectodermal tip of
the embryo [64,65] demonstrating a regulatory inter-
action of CheFoxQ2a with the canonical Wnt signaling
pathway during axial patterning and supporting the hy-
pothesis of an evolutionarily conserved interaction of
FoxQ2 and Wnt/B-catenin signaling predating the split
between cnidarians and bilaterians.

In addition to the role of FoxQ2 in apical ectoderm
patterning it is also proposed to be involved in apical organ
formation, a neural rich structure located at the apical tip
of many bilaterian and non-bilaterian larvae [199] generally
comprised of sensory cells, neurons, and long motile cilia
that form the apical tuft. Even though a homology of
the apical organ among metazoans is favored [113,178,
200-203] there remain dissenting views [61,204,205].

In both bilaterian and cnidarian larvae with an apical
organ/tuft, FoxQ2 expression coincides with the position
of this structure (see Figure 6) [19,178]. Functional stud-
ies specifically investigating the role of FoxQ2 in apical
organ formation have been demonstrated in sea urchins
and cnidarians [178,206]. Loss of function in sea urchins
compromises the development of the long apical tuft
cilia [206]. In the cnidarian N. vectensis expression of
one out of four FoxQ2 genes has been reported [178].
At the planula stage it is expressed around the apical
organ/apical tuft. Knock down experiments show that
NvFoxQ2a is involved in the determination of the size of
the apical organ/apical tuft [178].

Expression data and functional studies further suggest
an evolutionarily conserved core regulatory network for

apical organ formation including an apical Six3 domain,
with FoxQ2 and FoxJ1 expressed in the apical organ do-
main in a Wnt negative territory [113,178].

In S. kowalevskii expression of all three FoxQ2 genes is
localized at the apical tip of the ectoderm during develop-
ment. foxQ2-1, which shows the most resemblance in ex-
pression to other reported FoxQ2 expression patterns,
begins broadly in the animal hemisphere at early blastula
stage. At later developmental stages, expression becomes
restricted to the apical tip at the site of the apical organ
(Figure 4 (16-20)) similar to other bilaterian groups. foxQ2-
1 is co-expressed with the motile cilia marker fox/I in the
apical organ (see below and Result section for fox/I), but
unlike other groups foxQ2-1 is co-expressed with six3 [71],
and fox/1 has other broad expression domains not tightly
localized to the apical organ. Experimental manipulations
of Wnt/B-catenin signaling in S. kowalevskii provide sup-
port for a Wnt/p-catenin dependent localization of foxQ2-1
to the apical ectoderm [93], but a role of foxQ2-1 in apical
tuft patterning will still need to be directly tested by ex-
perimental knockdown. Our analysis of S. kowalevskii
FoxQ2 genes therefore supports the hypothesis that they
play an evolutionarily conserved role in patterning an an-
terior ectodermal territory in bilaterians and that an-
terior restriction of FoxQ2 is mediated by Wnt/B-catenin
signaling.

Formation of motile cilia (foxJ71)

In contrast to primary cilia which have a 9 + 0 arrange-
ment of their microtubules and only sometimes possess
dynein arms (Nodal cilia), motile cilia show a 9 +2 ar-
rangement of their microtubules, are generally longer
than primary cilia, and possess outer dynein arms medi-
ating motility (reviewed in [207,208]). In vertebrates,
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Figure 6 Examples of conserved Fox gene expression domains. (A-E) FoxB expression (blue) in multiple species. The expression of FoxB
seems to be correlated to the expression of chordin, a BMP inhibitor. The endodermal gut expression domain seems to be unique to
echinoderms and hemichordates. (F-1) FoxD expression (blue) in the hindgut of different species. The conservation of the expression in the
hindgut across deuterostomes indicates that it was likely already present in the hindgut of the deuterostome ancestor. (J-O) Ectodermal
expression domains of FoxQ2 (blue) in multiple species across phyla. Expression across bilateria suggest a conserved role in apical (apical neural)
patterning. Expression at the aboral side in cnidarians suggests a deep evolutionary origin for this expression in patterning terminal neural
structures. For literature summary see Table 1 and for additional discussion see Additional file 12. A: anterior, P: posterior, D: dorsal, V: ventral,

Saccoglossus kowalevskii Xenopus laevis

motile cilia are mainly found in tissues where fluid
movement is necessary, like lung epithelia or in the em-
bryo node where it is involved in mediating left-right
asymmetry [166,173-176,209]. Expression and functional
studies in vertebrates imply that FoxJ1 is a master regula-
tor of the formation of these motile cilia [60,166-169,210]
(reviewed in [209]). A conserved role of FoxJ1 in motile
cilia formation is supported from expression patterns out-
side chordates. fox/I expression has been described during
sea urchin development where it is expressed in the most
apical ectoderm marking the apical organ/apical tuft, and
the ciliated bands [20,48], the sea star Patiria miniata
where fox]1 is expressed throughout the ectoderm at the
blastula stage and the ciliated bands at the larval stage

[48], the planarian Schmidtea mediterranea where Smed-
foxJ1-2 and Smed-fox]1-2 are expressed along the AP axis
in a ventral stripe of presumptive motile ciliated sensory
cells [210], the annelid Platynereis dumerilii where fox]1 is
expressed in the apical plate and the ciliated bands, and
the cnidarian Nematostella vectensis where NvFoxJI is
marking the apical organ territory [178].

In S. kowalevskii fox]1 is also expressed in the region
forming motile cilia; the ciliated band (Figure 3 (17-20))
and the gill pore endoderm in juveniles (Figure 3 (20)).
In juveniles it is further expressed broadly in the anterior
ectoderm which incorporates the territory of the apical
organ. Our data therefore support the hypothesis that
FoxJ1 has an evolutionarily conserved function in motile
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cilia formation that predates the bilaterian-cnidarian split.
Further, our data support an evolutionarily conserved
function of FoxJ1 in cilia formation in the apical organ
despite the rather broad anterior ectodermal expression in
S. kowalevskii when compared to the tightly localized ex-
pression of Fox]1 in the developing apical organs of other
metazoans. However, since the expression of Fox]J1 is cor-
related with all motile ciliated cells with a 9 + 2 arrange-
ment of their microtubules, FoxJ1 expression provides
limited insights into the homology of this structure.

Anterior endoderm and mesoderm patterning (foxQ1,
foxF, foxC, foxL1)

The third germ layer of bilaterians, mesoderm, likely
evolved at the base of the bilaterians and gives rise to
many essential components of the bilaterian body. The
emergence and evolution of mesoderm is therefore of
special interest to understand bilaterian body plan evolu-
tion. Several Fox genes, namely FoxF, FoxC, and FoxL1,
are proposed to have evolutionarily conserved functions in
patterning distinct mesodermal populations [31,32,211]. An-
cestral linkage of these three Fox genes, along with FoxQl
in stem bilaterians, has been proposed to be related to their
conserved developmental functions [31,32,34,159,211]. The
analysis from Shimeld et al. [32] suggests that FoxC and
FoxL1 play a conserved role in somatic mesoderm forma-
tion (mesoderm lining of ectoderm), FoxF in visceral
mesoderm formation (mesoderm lining of endoderm),
and FoxQ1 in anterior gut endoderm formation.

Our genomic analysis of foxQI, foxE, foxC, and foxLl
in S. kowalevskii shows a possible link of these four
genes in the S .kowalevskii genome (see Additional file 9:
Figure S2). Expression studies show that foxL1 is only
expressed in the endoderm in S. kowalevskii but not in
the mesoderm. Expression of FoxL1 in the mesoderm of
protostomes and other deuterostomes suggests this likely
represents secondary loss in hemichordates. Expression of
foxQ1I in the foregut of S. kowalevskii is consistent with
the proposed conserved role in anterior endoderm forma-
tion. Early expression of foxF in the forming mesoderm
suggests a conserved role in mesoderm patterning, but the
division of early mesoderm into somatic and visceral terri-
tories remains to be characterized in S. kowalevskii. How-
ever, in later stages (juveniles) foxF marks the mesoderm
surrounding the gut (Figure 3 (1-5 and Additional file 11:
Figure S3)) in both the collar and trunk, consistent with a
role in visceral mesoderm patterning. foxC is expressed in
all the mesodermal compartments during initial specifica-
tion and before out-pocketing of coeloms. However, our
analysis did not detect later expression in the differenti-
ated mesoderm making it difficult to speculate whether
this gene plays a conserved role specifically in somatic
mesoderm development.
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In conclusion, our data provide support for an ances-
tral bilaterian chromosomal linkage of foxQI-foxF-foxC-
foxL1, and an evolutionarily conserved role of FoxF in
visceral mesoderm patterning and FoxQl1 in foregut pat-
terning. However, whether the early expression of foxC
in mesoderm patterning is related to somatic mesoderm
formation will require further investigation.

Gill slit patterning (foxC, foxl, foxJ1, foxL1)

Hypotheses of homology of deuterostome pharyngeal
gill slits have a long history in comparative studies
[74]. Morphological and molecular studies in hemichor-
dates support the homology of pharyngeal gills between
ambulacrarians and chordates [75-79,212,213]. In this study
we describe the expression of several Fox genes that can
further contribute to this discussion. In S. kowalevskii foxC,
foxl, fox]1, and foxL1 are expressed in the endoderm of the
first gill pouch (Figure 2 (24/25), 3 (15), 3 (29/30)). Recent
molecular data revealed that FoxC, and FoxL1 play con-
served roles in gill slit formation in chordates, with
conserved expression in the forming gill slit mesoderm
(reviewed in Wotton et al. [34]). However, endodermal
expression of foxC and foxLI during gill formation has
only been described in the dogfish Scyliorhinus canicula
[34]. Endodermal expression of FoxI during pharyngeal
pouch development has been described in mice (foxi3
[165]) and zebrafish (foxil [214,215]). In S. kowalevskii
endodermal expression of foxI is detected during the de-
velopment of the first gill pouch (Figure 3 (15)), support-
ing a conserved role for this gene in deuterostome gill
formation. Our data suggest that endodermal expression
of FoxC, FoxL1, and FoxI was involved in patterning the
pharyngeal gill endoderm in stem deuterostomes, extend-
ing the analysis of Gillis et al. [79] and further strengthen-
ing hypotheses of deuterostome gill slit morphological
homology by reconstructing ancestral gene regulatory net-
works involved in early deuterostome pharyngeal endo-
dermal patterning.

Ventral endoderm, mesoderm, and ectoderm patterning
(foxB, foxD)

Basic anatomical comparisons on the relative organization
of organ systems across the dorsoventral axis of arthro-
pods and chordates have resulted in hypotheses suggesting
the equivalence of the dorsal side of chordates and the
ventral side of arthropods. This so-called dorsoventral axis
inversion hypothesis has gained molecular support from
comparative developmental genetics [216,217] (reviewed
in [218,219]). In S. kowalevskii bmp2/4 and chordin, which
are involved in mediating DV patterning in bilaterian
groups, are expressed in the same relative position as pro-
tostomes during DV patterning; bmp2/4 dorsally, and
chordin ventrally, which is inverted relative to their ex-
pression in chordates. These data suggest a molecular
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inversion of the DV axis after the split of ambulacrarians
and chordates [83,219]. In our survey, we revealed two
Fox genes, foxB and foxD, with differential expression
along the DV axis, further supporting this observation of
DV inversion.

In chordates, FoxB and FoxD are consistently expressed
dorsally. In Xenopus laevis foxD1, foxD2, and foxD3 are all
expressed in the dorsal mesoderm [122] and are necessary
for dorsolateral mesoderm identity [130,143]. In proto-
stomes FoxD expression is detected in the ventral nervous
system of D. melanogaster [35], and the ventral mediolat-
eral muscles of C. elegans [150,151] where it is known for
its function in dorso-ventral cell migration and axon
projection [152,153]. FoxB is expressed in the dorsal
ectoderm and mesoderm in chordates (frogs [122,125],
ascidians [59], and cephalochordates [128]). In proto-
stomes, FoxB expression in C. elegans (lin-31) is localized
to ventral ectodermal cells [129], and in D. melanogaster,
the two FoxB orthologs (FD4 and FDS5) are expressed in
the ventral nervous system [35].

The localized expression of FoxD and FoxB along the
bilaterian DV axis raises the possibility of a link to the
BMP/TGF-beta pathway. Limited comparative functional
studies confirm a link between FoxD and the BMP/TGE-
beta pathway [55,154,155,220,221]. In chordates (Xenopus),
foxD1 (XBF-2) is downstream of BMP-antagonists like
Cerberus, Noggin, and Gremlin, and plays a role in
maintaining dorsolateral mesoderm during gastrulation
by downregulating BMP-4 [130,143]. In protostomes
(C. elegans) FoxD (UNC-130) acts as a transcriptional
repressor and inhibits the expression of UNC-129, a C.
elegans TGF-beta ortholog [40,150,151]. However, expres-
sion data from sea urchins and ascidians are inconsistent
with a link to BMP signaling [20,57]. In S. kowalevskii,
foxD and foxB are expressed ventrally opposite the side of
BMP expression [83] (Figure 2 (17-20), 2 (30)) (Figure 5)
supporting a link to BMP signaling and DV patterning,
but this will need to be functionally validated.

Through gut evolution (foxAB, foxD, foxl)

In our study we found three Fox genes that are expressed
either in the mouth or hindgut of the embryo. foxAB, is
expressed in a circumferential ectodermal ring in the an-
terior collar groove in S. kowalevskii at the position where
the mouth forms (Figure 2 (12-15)). S. kowalevskii foxD
and fox! are expressed in the hindgut (Figure 2 (30), 3
(15)). FoxD is also expressed in the hindgut of several
other deuterostome species, including the sea urchin
S. purpuratus, the cephalochordate B. floridae, the
frog X. laevis, and the fish O. latipes, and D. rerio
[20,52,135,144,192] (illustrated in Figure 6 F-I). In the
protostome groups examined, D. melanogaster and C. ele-
gans, there is no support for a conserved role of FoxD
in gut pattering [35,150]. Hindgut FoxI expression similar

Page 19 of 25

to S. kowalevskii has so far only been described in sea ur-
chins, where foxI is expressed in the larval hindgut with
strong expression on the aboral side [20].

A FoxAB ortholog was also identified in echinoderms
[20], cnidarians [19], cephalochordates [21], and bryo-
zoans [103]. Expression however, is only known from
bryozoans where it is expressed only transiently in larval
structures in the ciliated cleft and abapical ectodermal
territory [103]. Further expression analyses will be re-
quired before evolutionary hypotheses of its role in
mouth formation can be tested.

From these data we conclude that FoxD likely plays a
conserved role in deuterostome hindgut patterning, FoxI
was likely co-opted into hindgut patterning during ambu-
lacrarian evolution, and a broader bilaterian role of FoxAB
in mouth patterning will require additional data from
other phyla.

For a literature summary, see Table 1 and for additional
discussion on expression patterns see Additional file 12.

Conclusions

Analyzing the expression patterns of Fox genes in the
hemichordate Saccoglossus kowalevskii builds on com-
parative data from echinoderms and chordates and helps
to reconstruct the evolutionary history of the develop-
mental roles of this important family of transcription
factors during deuterostome evolution. Further compar-
ing these data to available studies from all metazoans
helps us to construct more robust hypotheses about the
role of Fox genes as components of evolutionarily con-
served gene regulatory networks by distinguishing them
from lineage specific co-option.

Our sequence analysis demonstrates that all 23 Fox
genes of S. kowalevskii fall into their respective families.
It further refines our understanding of the evolution and
diversification of the FoxQ2 gene family revealing a split
of this family deep in metazoan evolution. We provide
evidence for a clustered arrangement of foxQI-foxF-
FoxC-foxL1 in the S. kowalevskii genome, which has
been proposed to be an ancestral feature of bilaterians.

From our expression analyses we propose several evo-
lutionarily conserved expression domains. In multiple
cases these gene expressions support hypotheses of ana-
tomical homology between phyla; conserved expression
of foxC, foxI, foxJ1, and foxL1 during gill slit formation
provides additional molecular support for the presence of
pharyngeal gills in the common deuterostome ancestor;
mesodermal foxF expression supports an evolutionarily
conserved role for FoxF in visceral mesoderm patterning;
expression of foxQI supports an evolutionarily conserved
role of FoxQl in pharyngeal endoderm patterning; foxJI
expression supports a conserved role of FoxJ1 in forming
motile cilia throughout metazoans; and a conserved role
of FoxI and FoxD in hindgut patterning in ambulacrarians
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and deuterostomes is supported by their expression
pattern in S. kowalevskii, respectively. In other cases,
expression in S. kowalevskii supports conserved inter-
actions with signaling pathways such as FoxQ2 and
Wnt/B-catenin signaling, and FoxB and FoxD with the
BMP pathway.

Further studies of other phyla, particularly the lopho-
trochozoans, acoels, and cnidarians, are now required to
broaden the phylogenetic scope of these comparisons.
Functional studies are further required to confirm the
proposed interactions of Fox genes with signaling path-
ways to further elucidate the evolution of this transcrip-
tion factor family and its roles in embryonic patterning.

Additional files

Additional file 1: Table S1. S. kowalevskii Fox gene sequence
references/ accession numbers.

Additional file 2: Table S2. S. kowalevskii Fox gene prediction
sequences.

Additional file 3: Table S3. Sequence IDs for all sequences used for
phylogenetic analysis.

Additional file 4: Table S4. Alignment for Fox phylogeny (Figure 1a).
Additional file 5: Table S5. EH I-like motif in the FoxQ2 family.
Additional file 6: Table S6. Alignment for Figure 1b (FoxQ2 family).

Additional file 7: Figure S1. Phylogenetic analysis of the FoxAB family.
S. kowalevskii FoxAB groups together with previously found members of
this new Fox gene family supporting the idea that this new family is a
separate ancestral Fox family. Bayesian analysis was performed using the
mixed amino acid substitution model applying four independent
simultaneous Metropolis-coupled Markov Chains Monte Carlo in two
independent simultaneous runs. The likelihood model was set to
gamma rates = 4. A tree was sampled every 250 generations for two
million generations. The first 25% of the sampled trees were excluded
via ‘burnin’ prior to consensus tree calculation. Xenopus laevis FoxE4
was used as outgroup. The trees converged to a standard deviation of
0.0071. Maximum likelihood analysis was performed using the Le-Gascuel
(LG) amino acid substitution model [101] with estimated proportion of
invariable sites and gamma shape parameters. The number of substitution
rate categories was set to 4. Starting tree was computed with BIONJ and
1,000 bootstraps were performed. The input alignment comprises 39
sequences with 78 characters (see Additional file 8: Table S7). For sequence
accession numbers see Additional file 1: Table S1 and Additional file 3: Table
S3. Baysian posterior probabilities are displayed on top of each branch and
maximum likelihood values underneath each branch. Stars indicate differing
tree topologies which lead to no support value at that position. Branches
with posterior probabilities below 50% are condensed. Abbreviations: Hs:
Homo sapiens; Bf: Branchiostoma floridae; Nv: Nematostella vectensis, Ci: Ciona
intestinalis; Sk: Saccoglossus kowalevskii; XI: Xenopus laevis; Sp: Strongylocentrotus
purpuratus; Ce: Caenorhabditis elegans; Dm: Drosophila melanogaster; Hv: Hydra
wulgaris; Hm: Hydra magnipapillata; Ch: Clytia hemisphaerica.

Additional file 8: Table S7. Alignment for Additional file 1: Figure S1
(FoxAB family).

Additional file 9: Figure S2. Fox gene cluster analysis. By using the
current S. kowalevskii genome assembly at Baylor College of Medicine
(BCM), the HudsonAlpha assembly, HudsonAlpha Institute for
Biotechnology, AL (unpublished data), as well as by performing manual
genome walks and bidirectional blasts we were able to identify two Fox
clusters, a foxQ2-1 - foxQ2-3 cluster and a foxQ1-foxF-foxC-foxL1 cluster.
foxC and foxL1 are joined on one scaffold and foxQ2-1 and foxQ2-3 are
closely linked on a separate scaffold. In addition, foxF clusters with the
foxC -foxL T scaffold depending on the algorithm used (it is linked in the
BCM assembly but not in the HudsonAlpha assembly). Further, we
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provide evidence of a link of foxQT to the foxf, foxC, and foxL1 containing
scaffold by manual genome walking using unassembled trace sequences
and by bidirectional blast of the scaffold ends (see Additional file 10:
Table S8). However, even though no better match was found in the
genome, the scaffold ends mostly contain repeats and a final assignment
of foxQ1 and foxF requires further characterization. The S. kowalevskii foxQ2-1
and foxQ2-3 cluster indicates a species-specific tandem duplication event.
Red arrows indicate orientation of the genes, black arrows indicate the
continuation of a scaffold, and distances are given in kilobase pairs
underneath each cluster. Black line connecting foxQT and the foxf-foxC-foxL
cluster indicates area of manual genome walking.

Additional file 10: Table S8. Bridging contigs for foxQT and foxL 1-foxF
contig.

Additional file 11: Figure S3. Additional stages and views of Fox gene
expression patterns.

Additional file 12: Discussing various Fox gene expression patterns
and their potential evolutionary relevance.
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