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Abstract

Background: One of the key pieces of information which biomedical text mining
systems are expected to extract from the literature are interactions among different
types of biomedical entities (proteins, genes, diseases, drugs, etc.). Several large
resources of curated relations between biomedical entities are currently available,
such as the Pharmacogenomics Knowledge Base (PharmGKB) or the Comparative
Toxicogenomics Database (CTD).
Biomedical text mining systems, and in particular those which deal with the
extraction of relationships among entities, could make better use of the wealth of
already curated material.

Results: We propose a simple and effective method based on logistic regression
(also known as maximum entropy modeling) for an optimized ranking of relation
candidates utilizing curated abstracts. Furthermore, we examine the effects and
difficulties of using widely available metadata (i.e. MeSH terms and chemical
substance index terms) for relation extraction. Cross-validation experiments result in
an improvement of the ranking quality in terms of AUCiP/R by 39% (PharmGKB) and
116% (CTD) against a frequency-based baseline of 0.39 (PharmGKB) and 0.21 (CTD).
For the TAP-10 metrics, we achieve an improvement of 53% (PharmGKB) and 134%
(CTD) against the same baseline system (0.21 PharmGKB and 0.15 CTD).

Conclusions: Our experiments with the PharmGKB and the CTD database show a
strong positive effect for the ranking of relation candidates utilizing the vast amount
of curated relations covered by currently available knowledge databases. The tasks of
concept identification and candidate relation generation profit from the adaptation
to previously curated material. This presents an effective and practical method
suitable for conservative extension and re-validation of biomedical relations from
texts that has been successfully used for curation experiments with the PharmGKB
and CTD database.
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Background
The wealth of published information in the biomedical domain is at the same time an

opportunity and a challenge. Accessing this information, and making sense of it, becomes

an increasingly difficult task which requires a considerable expertise. In order to help the

biologists quickly locate the essential information that they need, different organizations

provide curated databases, which organize the available knowledge about a particular spe-

cific subject, for example UniProt/SwissProt [1] is one of the most authoritative resources

concerning proteins, BioGrid [2] is the broadest database describing gene and protein

interactions. Most reference databases are created and maintained using a very costly and

expensive manual curation procedure, which involves highly skilled professionals. It has

been observed already a few years ago that such an approach is not sufficiently efficient in

order to cope with the increasing quantity of published results [3]. In order to support this

process, researchers are turning their attention to text mining methodologies, not with the

aim of replacing manual curation, which we consider not possible in the foreseeable

future, but rather with the aim of providing tools that can make the curation process

more efficient. Clearly such tools will need to be tailored to the specific task or database

where they are going to be deployed, however some major tendencies are already clear

and will shape the future development of the field. Some of the fundamental tasks that

text mining systems are required to deal with are: term recognition, entity identification

and the detection of important relations between entities.

The text mining community has been organizing a number of shared tasks aiming at

providing an infrastructure for the comparative evaluation of different text mining tech-

nologies. One such task, which is of particular relevance to the work described in this

paper, is the protein-protein interaction task which took place in the 2006 and 2009 edi-

tions of the BioCreative competitive evaluations [4,5]. The organizers provide a collection

of annotated documents as a training dataset (typically derived from one of the curated

databases) and a separate collection of unannotated documents as a test dataset. Partici-

pants have a limited time frame to process the training data and deliver results back to the

organizers, who will then score these results against a previously withheld gold standard,

using a set of metrics suited to the task. In this paper we focus on a different type of rela-

tions, namely those among genes, drugs/chemicals and diseases, and we use information

derived from the PharmGKB database [6,7] and the CTD database [8] as our gold stan-

dard. These gold standards could be used in a text mining task analogous to the protein-

protein interaction task defined in the BioCreative competitions.

We propose and evaluate a simple and practical method to achieve a high-quality

ranked list of candidate relations based on the output of a term recognizer. Once enti-

ties have been identified, candidate relations can be generated with simple techniques,

for example, co-occurrence within the same text span. However, such candidates

would be too numerous to be useful, so proper ranking techniques are necessary in

order to render these results accessible and really useful for a curation task. We use a

machine learning approach suited for reranking of candidate relations by applying a

maximum entropy method that integrates information from the vast amount of already

curated relations from the PharmGKB and the CTD. This paper concludes with a brief

overview of an integrated curation environment where the results described in the

paper are applied.
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Methods
First we give a proper characterization of the resources and the gold standard data derived

from the PharmGKB and the CTD databases. Next we present the evaluation measures

and tools used for the experiments. Then we continue to describe our methods for term

recognition, entity scoring, relation extraction and relation candidate ranking.

Resources

In order to perform simple and replicable experiments we refrain from more sophisticated

and resource-intensive entity recognition approaches and do not use any external database

of names and identifiers, for instance, by leveraging synonyms from the UMLS [9] or

BioPortal [10]. Instead we restrict the terminological dictionaries to the ones provided by

the PharmGKB resp. the CTD that can be downloaded in a plain textual format. These

resources include terms used in the curated papers and their unique identifiers for each

corresponding entity. For the PharmGKB, we have 30351 terms (2986 IDs) for drugs,

28633 terms (3198 IDs) for diseases, 176366 terms (28633 IDs) for genes. For the CTD,

we have 388384 terms (101030 IDs) for chemicals, 69483 terms (9657 IDs) for diseases,

711631 terms (79837 IDs) for genes. The terms for chemicals and disease of the CTD are

largely from MeSH. The relationship data as available from the databases are represented

as binary combination between two typed identifiers, supplemented with additional infor-

mation regarding the type of evidence supporting the relationship. For all experiments

described in this paper, we limit the set of relations to the ones based upon manually

curated evidence from PubMed. In particular, we do not use inferred relations from the

CTD and automatically created relation annotations from the PharmGKB, which were

accessible in the past through their web interface.

From the PharmGKB, we get 26122 binary relations, which are based upon 5062 dis-

tinct PubMed articles. However, the number of relations attributed to an article varies

strongly between just 1 up to 600 relations per article. Given that we consider only

abstracts and not full-text, the task of extracting more than two dozens of relations

seems not realistic. We therefore decided to restrict the data set for our experiments to

all articles containing at most 20 relations. The resulting 4658 articles, which we then

used for our experiments, contain 14825 relations. The source databases include some

reflexive relations, i.e. relations between identical concepts, which we removed from our

dataset. Table 1 shows the exact distribution of all relation types in our experimental

data set split up by the number of relations in an article. As can be seen there, relations

between the three different entity types, i.e. diseases (henceforth “Di”), drugs ("Dr”) and

genes ("Ge”), do not occur uniformly. In our data set, about 42% of all relations are of

type Drug-Gene (Dr-Ge), about 37% of type Disease-Gene (Di-Ge) and only 18% of type

Disease-Drug (Di-Dr). Relations between entities of the same type do exist, but they are

marginal and contribute only about 3% of all relations.

From the CTD, we get 294151 binary relations, which are based upon 27960 distinct

PubMed articles. However, the number of relations attributed to an article varies strongly

between just 1 up to more than 9500 relations per article. Given the fact that the CTD

provides a lot more gold standard relations we restrict the data set for our experiments

with the CTD to all articles containing at most 12 relations. The remaining 23257 articles

contain 71856 relations. The lower part of Table 1 shows the exact distribution for these

relations for the CTD. In this data set, about 73% are of type Chemical-Gene (for the sake
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of comparability with the PharmGKB, we recast the CTD entity type “chemical” as “Dr”),

about 17% are of type Disease-Chemical (Di-Dr), and only 10% are of type Disease-Gene

(Di-Ge). The CTD contains no relations between entities of the same type.

Measures and tools for evaluation

The format of the relationship file provided by the knowledge bases lends itself to an

easy transformation into a format equivalent to the one used for the protein-protein

Table 1 Distribution of relations per article in experimental data sets.

PharmGKB data set

#Rels Di-Di Di-Dr Di-Ge Dr-Dr Dr-Ge Ge-Ge all

per Art abs rel abs rel abs rel abs rel abs rel abs rel sum

1 2 0.1 129 6.6 842 43.0 29 1.5 938 47.9 19 1.0 1959

2 6 0.5 138 10.9 484 38.1 18 1.4 611 48.1 13 1.0 1270

3 1 0.0 705 26.5 925 34.8 12 0.5 993 37.4 22 0.8 2658

4 9 1.2 98 13.1 231 30.9 21 2.8 372 49.7 17 2.3 748

5 0 0.0 397 24.3 575 35.2 15 0.9 636 38.9 12 0.7 1635

6 7 1.1 62 9.6 237 36.6 19 2.9 301 46.5 22 3.4 648

7 1 0.1 154 20.0 293 38.1 6 0.8 296 38.4 20 2.6 770

8 0 0.0 155 18.5 334 39.8 17 2.0 320 38.1 14 1.7 840

9 12 1.6 153 19.8 283 36.6 12 1.6 279 36.0 35 4.5 774

10 10 4.2 32 13.3 74 30.8 0 0.0 114 47.5 10 4.2 240

11 1 0.1 205 28.2 236 32.5 4 0.6 270 37.2 10 1.4 726

12 12 3.4 67 19.3 87 25.0 11 3.2 165 47.4 6 1.7 348

13 0 0.0 47 18.1 100 38.5 6 2.3 107 41.2 0 0.0 260

14 0 0.0 52 19.5 118 44.4 0 0.0 93 35.0 3 1.1 266

15 7 1.7 77 18.3 144 34.3 0 0.0 189 45.0 3 0.7 420

16 0 0.0 40 19.2 100 48.1 0 0.0 68 32.7 0 0.0 208

17 0 0.0 39 17.6 51 23.1 7 3.2 106 48.0 18 8.1 221

18 0 0.0 2 1.2 56 34.6 0 0.0 100 61.7 4 2.5 162

19 0 0.0 36 23.7 59 38.8 0 0.0 57 37.5 0 0.0 152

20 0 0.0 127 24.4 203 39.0 4 0.8 166 31.9 20 3.8 520

TOTAL 68 0.5 2715 18.3 5432 36.6 181 1.2 6181 41.7 248 1.7 14825

CTD data set

#Rels Di-Dr Di-Ge Dr-Ge all

per Art abs rel abs rel abs rel sum

1 1482 23.3 1333 21.0 3539 55.7 6354

2 2454 21.9 1539 13.7 7219 64.4 11212

3 1806 17.6 1154 11.3 7294 71.1 10254

4 1717 15.5 994 9.0 8357 75.5 11068

5 1144 15.3 507 6.8 5824 77.9 7475

6 1248 14.5 525 6.1 6855 79.5 8628

7 578 12.7 270 6.0 3688 81.3 4536

8 648 14.1 225 4.9 3719 81.0 4592

9 396 14.4 165 6.0 2184 79.6 2745

10 285 12.7 88 3.9 1867 83.3 2240

11 193 13.7 93 6.6 1122 79.7 1408

12 203 15.1 63 4.7 1078 80.2 1344

TOTAL 12154 16.9 6956 9.7 52746 73.4 71856

This table shows how many relations between which entities occur per article in both data sets. PharmGKB has some
relations between entities of the same type. CTD contains only relations between entities of different types. In order to
keep the tables of both databases easily comparable, entities of type “chemical” from CTD are labeled with “Dr” (drugs).
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interaction (PPI) task of BioCreative II.5 [5]. Given a text mining tool which can produce

a ranked list of gene/drug/disease relations, it becomes then possible to score these

results against the knowledge base data by using a scoring tool provided by the BioCrea-

tive organizers.

The BioCreative PPI evaluation tool returns results according to the standard metrics

used in information retrieval (Precision, Recall, F-Measure) as well as a more novel

measure called “AUC iP/R” (area under the curve of the interpolated precision/recall

graph). The AUC iP/R measure (not to be confused with the more frequently used

“AUC of the ROC curve” metric) provides an indication of the quality of the ranking of

the candidate relations. The intuitive idea is that, given equivalent P/R/F figures, correct

predictions which occur towards the top of the ranked list are more useful than the

ones which are lower in the ranking. The implicit assumption is that a curator could

use the ranking to decide where to stop looking at the candidate results, therefore a bet-

ter ranking provides a better user experience. The AUC iP/R curve is defined in [11], a

detailed operative description of AUC iP/R, as used in the BioCreative evaluations, can

be found at http://www.biocreative.org/tasks/biocreative-ii5/biocreative-ii5-evaluation/.

A recently proposed alternative evaluation measure for ranked results is the “Thresh-

old Average Precision” (TAP-k) [12], which (in slightly simplified terms) averages preci-

sion for the results above a given error threshold. The TAP-k metric is easier to

interpret and also directly relevant for the end user, who in most cases would not be

willing to inspect a long list of candidate relations containing many false positives.

The TAP-k mirrors the fact that a curator will stop validating a list of ranked relation

candidates after having rejected a certain number k of false positives. In our main experi-

ments, we set k = 10.

Note, that the values of the evaluation metrics reported here are always macro-aver-

aged, i.e. the mean of the evaluation score is computed separately for each article.

Text processing and term recognition

For the experiments we use PubMed abstracts corresponding to the PubMed IDs men-

tioned by the relationship files from the knowledge bases. It would of course be desirable

to work on full papers rather than abstracts, however, not all these publications are

freely accessible, and most importantly, they are not available in a common format. The

lack of a common format hinders the usability of full-text publications for practical text

mining purposes, as it makes it more difficult to identify significant parts of the papers

(e.g. results sections) or distinguish elements that require special processing (e.g. tables).

In the experiments, we apply the first processing steps of our OntoGene relation mining

system (OG-RM) in order to annotate the input documents with the terminology provided

by the respective knowledge bases. First, in the preprocessing stage, the PubMed XML is

transformed into a custom XML format where sentences and tokens boundaries are iden-

tified using the LingPipe framework (for more information see http://alias-i.com/lingpipe).

Second, the OntoGene pipeline proceeds with a step of term annotation [13,14]. In order

to account for possible surface variants and in order to allow for partial matches, a nor-

malization step is included in the annotation procedure. The annotations generated by the

OntoGene pipeline can then be used to generate candidate relations using a number of

different criteria. Since each token in the OntoGene annotation framework is assigned a

unique identifier, extracted terms can be related back to their position in the text.
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Selecting textual material and metadata

The experimental settings described below vary according to the amount of metadata

that is included in the text mining process:

1. only title and abstract of the article are used (henceforth t);

2. additionally to t the names in the chemical substance list of an abstract are used

(henceforth tc);

3. additionally to t the MeSH descriptors and their qualifiers are used (henceforth

tm);

4. all possible information is used (henceforth tmc).

The motivation for the inclusion of metadata such as MeSH or chemical substance lists

is an improved recall of the term recognition. Table 2 shows the exact improvement for

our experimental data set from the PharmGKB. Diseases have the lowest coverage of 67%

and profit, as expected, substantially from the inclusion of MeSH terms (+8%). Drug

recognition improves using the list of chemical substances (+3%), but does not further

improve by adding the MeSH terms. As our term recognizer is tuned towards the detec-

tion of proteins and genes, we reach the highest coverage for genes, as expected. Using the

metadata still gives an improvement of 2%. For all entities we cover 74% with text only (t)

and 78% using all metadata (tmc).

Table 2 Coverage of term recognition for concepts and relations in experimental data

PharmGKB data set

t tm tc tmc

Entity N abs rel abs rel abs rel abs rel

Di 3830 2550 66.58 2872 74.99 2557 66.76 2872 74.99

Dr 4751 3527 74.24 3632 76.45 3668 77.20 3668 77.20

Ge 7522 5838 77.61 5930 78.84 5989 79.62 5994 79.69

TOTAL 16103 11915 73.99 12434 77.22 12214 75.85 12534 77.84

Di-Di 68 22 32.35 24 35.29 22 32.35 24 35.29

Di-Dr 2715 1279 47.11 1484 54.66 1326 48.84 1494 55.03

Di-Ge 5432 3102 57.11 3555 65.45 3181 58.56 3585 66.00

Dr-Dr 181 128 70.72 132 72.93 135 74.59 135 74.59

Dr-Ge 6181 3858 62.42 4016 64.97 4097 66.28 4099 66.32

Ge-Ge 248 141 56.85 142 57.26 145 58.47 145 58.47

TOTAL 14825 8530 57.54 9353 63.09 8906 60.07 9482 63.96

CTD data set

t tm tc tmc

Entity N abs rel abs rel abs rel abs rel

Di 12639 6939 54.90 9502 75.18 6941 54.92 9502 75.18

Dr 38523 27541 71.49 29531 76.66 30119 78.18 30129 78.21

Ge 39150 28389 72.51 28975 74.01 29169 74.51 29199 74.58

TOTAL 90312 62869 69.61 68008 75.30 66229 73.33 68830 76.21

Di-Ge 6956 4117 59.19 5100 73.32 4163 59.85 5126 73.69

Dr-Di 12154 5335 43.90 8219 67.62 5700 46.90 8356 68.75

Dr-Ge 52746 31015 58.80 33971 64.40 34832 66.04 34883 66.13

TOTAL 71856 40467 56.32 47290 65.81 44695 62.20 48365 67.31

Distribution of identifiable gold standard concepts and relations given the output from our term recognizer and split
according to the inclusion of metadata: text only (t), text and MeSH terms (tm), text and chemical substance list (tc),
text and all metadata (tmc).
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The lower half of Table 2 shows the corresponding numbers for the CTD data. Diseases

again have the lowest coverage for text only (55%) and profit heavily from MeSH terms

(+20%). Chemical coverage improves mostly by information from the chemical substance

list (+7%), but the MeSH terms add also most of the important information. Detection of

genes based on the text only is again high and improves slightly (+2%) when metadata is

added, but remains clearly beyond the recognition rate achieved for the PharmGKB.

Regarding the coverage of relations, we see an improvement of 6% in the case of the

PharmGKB, and almost 11% for the CTD.

Relation extraction and relation ranking

There are several ways in which the entities recognized in an abstract can be combined,

for example by co-occurrence in the same sentence, or by using a set of syntactic filters

as done in our previous work on protein-protein interactions [15,16]. The approach

which delivers the maximal recall is to generate all pairwise undirected combinations of

all entities identified in the abstract.

As shown in Table 2 for the PharmGKB, this approach can deliver a recall of 58% using

only text (t), 63% using additionally MeSH (tm) and 64% using all the metadata (tmc).

Note, that the upper limit of the recognition rate varies strongly by the type of entities

involved in a relation, disease-drug relations have an unexpected low upper limit in

PharmGKB. The lower part of Table 2 shows similar numbers for the CTD, i.e., a recall of

56% (t), 66% using MeSH (tm) and 67% using chemical substance lists as well (tmc).

Considering that only abstracts were used, this seems a reasonable term recognition cover-

age for our experiments. However, this approach will massively overgenerate, therefore

ranking of the results becomes absolutely necessary.

In order to reduce the overgeneration of relation candidates, one could limit the set of

candidate relations to entities that co-occur at least once in the same sentence. How-

ever, experiments we performed with such co-occurrence limits resulted in inferior per-

formance. Table 3 explains this rather unexpected effect to some degree: for about 30%

of the relations from the gold standard where our term recognizer is able to detect both

entities in the article there is no sentence containing a hit for both entities in the

PharmGKB. For the CTD, about 32% of the gold standard relation cannot be found in

the same sentence. A term recognizer with improved acronym detection and corefer-

ence resolution may alleviate this problem.

Ranking relations by frequency

A baseline ranking of all candidate relations of an abstract can be generated on the basis

of the number of occurrences of the respective entities:

relscore(e1, e2) =
f (e1) + f (e2)

f (E)

where f(e1) and f(e2) are the number of times the entities e1 and e2 are observed in the

abstract, while f(E) is the total count of all entities in the abstract. Once a score is assigned

to each candidate pair, it is possible to filter out the most unlikely candidates, either by

setting a threshold value for the score, or by selecting only the N-best candidates. Using

one of these filtering techniques will result into variable values of Precision, Recall and F-

Measure, depending on the exact value of the score threshold, or N parameter.
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Title occurrence boosting

We know from our previous experiments [15] that giving a “boost” to the entities

contained in the title can produce a measurable improvement of ranking of the

results (measured by the AUC or TAP metrics). We have empirically verified that a

sensible boost for abstracts is around 10. This is equivalent to counting the entities

in the title ten times. In the rest of this paper, boosted frequencies of entities are

expressed as fb(e).

The baseline approach for relation ranking described above will be referred to as m0

in the rest of this paper.

Preferring relations between unequal types

As shown in Table 1, relations between entities of the same type occur far less often in the

PharmGKB than relations between different types. We can model this empirical fact by

applying a type preference coefficient to the relation score that affects relations between

entities of the same type. An empirically set coefficient of 1/10 proved to be useful:

typepref (e1, e2) =
{
0.1 if both entities have the same type
1 otherwise.

In the experiments described in Section ‘Results and discussion’, we express the

application of the type coefficient in the following way:

1. no type preference applied (henceforth e0);

2. type preference applied (henceforth e1).

Additionally, we experimented with using the relative frequency of a relation type taken

from the training set as a type preference coefficient. Because results deteriorated

Table 3 Occurrence of gold standard relations in the same sentence

PharmGKB data set

In Same Sentence In Diff. Sentences

Relation Absolute Relative Relative Total

Dr-Dr 111 86.7 17 13.3 128

Ge-Ge 113 80.1 28 19.9 141

Dr-Ge 2 895 75.0 963 25.0 3 858

Di-Ge 2 009 64.8 1 093 35.2 3 102

Di-Dr 816 63.8 463 36.2 1 279

Di-Di 13 59.1 9 40.9 22

All 5 957 69.8 2 573 30.2 8 530

CTD data set

In Same Sentence In Diff. Sentences

Relation Absolute Relative Relative Total

Di-Ge 3 457 75.6 1 118 24.4 4 575

Dr-Ge 23 123 67.0 11 365 33.0 34 488

Dr-Di 3 948 66.6 1 982 33.4 5 930

All 30 528 67.9 14 465 32.1 44 993

Distribution of all gold standard relations where both entities could be identified by our term recognizer. An occurrence
of a relation is categorized as “In Same Sentence” if there exists at least one sentence in a given abstract where both
entities co-occur. An occurrence of a relation is categorized as “In Different Sentences” if both entities can be found in a
given abstract but never co-occur together in the same sentence. For these tables metadata such as MeSH terms and
chemical substance lists were not included.
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consistently when using this setting, we do not take it into account for the evaluation.

Note that the CTD does not contain relations between equal types, therefore the experi-

mental settings for the CTD do not vary this parameter.

Scoring entities for being part of curated gold standard relations

The ranking of relation candidates using a simple frequency-based confidence score

derived from textual evidence can be further optimized if we apply a supervised

machine learning method (in our case a Maximum Entropy technique) that models the

relevance of an entity using the curated relations from the gold standard and the docu-

ments where these relations occur. In our experiments described below, results com-

puted using this technique will be tagged as m1.

There are two motivations for scoring concepts with regard to relation ranking:

First, we want to identify automatically the false positive entities that our term

recognizer detects in order to penalize them. The term recognizer eagerly modifies

term entries from the dictionary while matching, i.e. material is removed from an

entry in the term dictionary in order to allow for partial matches, or on-the-fly acro-

nyms are created. For instance, the term form “neuronal“ may be identified as the

genes PA134898200, PA134924203, PA134896732 from the term database

because they have “neuronal protein“ as one of their lexical entries. Once iden-

tified such false positive partial matches could be ruled out by ad-hoc rules. How-

ever, for different terminological resources different rules may be necessary. We

regard a general approach that works independently from the used terminological

resources and that achieves an automatic adaptation as highly beneficial. In order to

deal with such cases, we need not only to condition on the entities, but also on

their textual representation.

Second, we need to adapt to highly ranked false positive relations which are gener-

ated by our frequency based approach by frequent but irrelevant entities. The goal is

to identify some global (dis)preference that can be found in the PharmGKB or the

CTD relationships.

Normalizing term forms

For a precise description of the ME-optimized ranking approach, we need to introduce

some notation. In the following, the notation t refers to a normalized textual form of a

recognized term. In the experiments, we vary four levels of normalization:

1. no normalization except lower-case initial characters (henceforth n0);

2. lower-case characters and some punctuation removed: ’\\()\ /- (henceforth n1);

3. lower-case characters and only alphanumeric characters retained in tokens (hence-

forth n2);

4. same as 3, but token boundaries are removed (henceforth n3).

For instance, “Fc ( gamma ) - receptor“ is normalized to “fc gamma receptor“

in mode n1, in mode n3 we get “fcgammareceptor“. Multiple spaces resulting from

the deletion of characters are squeezed into one. [17] have shown that the removal of

punctuation symbols does not harm the term recognition quality. The combination of a

term t and one of its valid entities e is noted as t:e.

Applying counting caps

Because term frequency in an article seems crucial for an estimation of the relevance

of a concept, we condition valid term-entity combinations additionally on their number

of occurrences in an article. In order to reduce the resulting problem of data
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sparseness we apply different upper limits (so-called caps) on the raw frequencies:

f c (t : e) =
{
cap if f (t : e) ≥ cap
f (t : e) otherwise.

In the experiments, we test different settings:

1. cap = ∞, i.e no cap is used (henceforth c0);

2. cap = 1, i.e. a term-entity is present or not (henceforth c1);

3. cap = 3, cap = 6, cap = 9 (henceforth c3, c6, c9).

Estimating gold probabilities

Next we define a predicate gold(A, e) which is true (i.e. 1) for an article A if there is at

least one relation in the gold standard where entity e is part of, and false (i.e. 0) other-

wise. Using the notions defined beforehand, we specify the overall probability of an

entity e of being part of a gold relation given the entity e, a term form t, and their fre-

quency f c (t:e) in article A:

P(gold (A, e) = 1|e, t, f c(t : e))

We estimate P(gold(A, e) = 1 | e, t, f c(t : e)) with the help of the Maximum Entropy

Modeling tool megam [18] using the recognized terms of the abstracts from a training

set together with the gold standard information from the same document set.

Technically, each value e, t, fc(t:e) from an article serves as a joint feature for the maxi-

mum entropy classifier and the value of gold(A, e) as its binomial class, i.e. a number

between 0 and 1. This numeric value will be predicted by the model when features from

unseen articles are presented. The model of a maximum entropy classifier consists of a

weight for each feature of the training material. Formally, a conditional Maximum

Entropy Model (aka. Logistic Regression) has the following exponential form:

pλ(y|x) = 1
Z(x)

exp(
∑
i

λiFi(x, y))

Z(x) =
∑
y

exp(
∑
i

λiFi(x, y)),

where y is the joint feature e, t, f c(t :e) and x is the value of the gold predicate gold(A, e).

In the formula, we designate Maximum Entropy features by Fi as the notation f is used for

frequencies in this paper. The Maximum Entropy Modeling tool iteratively optimizes the

feature weights l in such a way that they maximize the conditional log-likelihood of the

training material. There are two practical reasons for our choice for Maximum Entropy

modeling: Firstly, this classifier does not suffer when dependent features are used, such as

our smoothing features introduced below. Therefore, an approach as for instance a Naive

Bayes classifier is not generally feasible for our method. Secondly, the Maximum Entropy

tools performs very efficiently with ten thousands of features and it requires no parameter

tuning as for example most Support Vector Machine tools.

Smoothing counts

For features not present in the training material there are no weights available. In order to

reduce the resulting sparse data problem, we apply a smoothing method that works as fol-

lows: for each feature e,t, f c(t:e) add all additional features e, t, n with f c(t:e) >n ≥ 1. In our
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experiments described in the section ‘Results and discussion’, we evaluate the effect of fea-

ture smoothing as follows:

1. do not smooth (henceforth s0);

2. apply smoothing (henceforth s1).

In the case of applying a cap of 1 (i.e. c1), smoothing (i.e. s1) is not necessary and

the equation for the gold probability simplifies to the following:

P(gold(A, e = 1|t : e)

For unseen terms t, i.e. terms not present in the training data, the maximum entropy

classifier assigns a default probability based on the distribution of all training instances.

However, we can specify better back-off probabilities if we take into account the admissi-

ble entity/entities e of term t. Our current back-off model works as follows: if the entity e

of an unseen t is seen in the article, the averaged probability of all seen term-entity pairs is

used. Otherwise, the averaged probability of all entities of the same type as e is used.

Scoring entities

Finally, the resulting score of an entity e in an article A is the sum of the boosted term

frequency weighted by the gold probability:

score(e) =
∑
t:e∈A

fb(t : e) × P(gold(A, e) = 1|e, t, f c(t : e))

Scoring relations

Having determined the score of each entity e, we add them to a relation score similar

to the baseline method:

relscore(e1, e2) = (score(e1) + score(e2)) × typepref (e1, e2)

This simple relation score function has the disadvantage that a single entity score with

a high value produces a high relation score even if the other entity has a very low entity

score. As an alternative we use the harmonic mean of both entity scores in order to

decrease the relation score of entity combinations with highly disparate entity scores.

relscoreh(e1, e2) = 2 × score(e1) × score(e2)
score(e1) + score(e2)

× typepref (e1, e2)

In the evaluation we encode the different relation score metrics as follows:

1. simple sum of entity scores (henceforth r0);

2. harmonic mean of entity scores (henceforth r1).

Experimental settings at a glance

For the cross-validation experiments described in the next section, we vary the following

settings:

• title and abstract (t), including MeSH (tm), including chemical substances (tc),

including all metadata (tmc);

• no type preference coefficient (e0); preference coefficient for unequal type (e1);
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• relation score as sum (r0) or as harmonic mean (r1) of entity score;

• baseline approach (no weighting of entities) (m0) vs. maximum entropy (ME)

weighting (m1);

• normalization of term forms for ME: first letter in lower-case (n0), all characters

in lower-case and some punctuation marks removed (n1), lower-case alphanumeric

characters with spaces (n2), lower-case alphanumeric characters without spaces

(n3);

• caps for ME features: no cap, i.e. raw counts (c0), cap of 1, 3, 6 or 9 (cn);

• smoothing of ME features is off (s0) or on (s1).

Note that the settings n, c and s are only meaningful for the ME approach. The

baseline system as mentioned in the following section is identified by the settings t-

e0-r0-m0-n0-c0-s0 or t-e0-r0-m0 for short. The setting e1 is only applicable

to the PharmGKB.

Results and discussion
In this section, we report on the systematic stratified 10-fold cross-validation evaluation

using all different experimental settings mentioned in the preceding section. All numbers

presented in this section are means of 10 different runs. Our data sets from the PharmGKB

and the CTD were split into subsets stratified according to the number of relations per

article. See Table 1 for the distribution of the frequency of relations per article. Note that

we did not enforce a stratified distribution of different relation types in all subsets.

Taking into consideration all valid configurations of experimental settings leads to sev-

eral hundred combinations to test for and to the same number of results to compare. For

reasons of space we focus our presentation and discussion on the most important question

to be answered by our results: which feature setting contributes how much performance

increase to the baseline system or improvements thereof? We give a tabular overview of

performance increase in terms of TAP-10 (Table 4) and AUCiP/R (Table 5) separately for

the PharmGKB and the CTD.

These tables give a concise compilation of the following information:

The mean and standard deviation (noted as “sd”) from the 10-fold cross-validation

results of a given setting.

• The single experimental parameter setting that needs to be changed in order to

achieve the highest performance increase. Only if no single parameter with better

performance can be found, two parameters (or more) may be changed at once.

• The absolute (Δabs) and relative (Δrel) amount of performance improvement.

• The statistical significance of the improvement given as the p value of a Wilcoxon

signed rank test for dependent pairs.

• An estimate of the minimal improvement expected in 95% of all cases, i.e. the

lower limit of the 95% confidence interval (ΔCIl) taken from the Wilcoxon test.

• Finally, the relative performance improvement in comparison to the baseline

(Δrelbs).

The Wilcoxon signed rank test for dependent pairs is used to assess whether the

improvement is significant or due to chance. The experimental setting of 10-fold cross
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Table 4 Evaluation of performance increase of TAP-10

PharmGKB data set

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-e0-r0-m0-n0-c0-s0 0.27 0.010

t-e1-r0-m0-n0-c0-s0 0.32 0.010 e1 +0.042 +15.3 9.8-4 +0.039 +15.3

t-e1-r0-m1-n0-c0-s0 0.35 0.010 m1 +0.030 +9.6 9.8-4 +0.028 +26.4

t-e1-r0-m1-n0-c1-s0 0.37 0.012 c1 +0.019 +5.5 9.8-4 +0.017 +33.4

t-e1-r1-m1-n0-c1-s0 0.39 0.012 r1 +0.028 +7.6 9.8-4 +0.025 +43.6

tmc-e1-r1-m1-n0-c1-s0 0.41 0.012 tmc +0.016 +4.2 9.8-4 +0.011 +49.6

tmc-e1-r1-m1-n2-c1-s0 0.41 0.011 n2 +0.003 +0.7 9.8-4 +0.001 +50.6

tmc-e1-r1-m1-n2-c6-s1 0.42 0.009 c6-s1 +0.005 +1.1 9.8-4 +0.002 +52.3

tmc-e1-r1-m1-n3-c6-s1 0.42 0.009 n3 +0.002 +0.5 2.9-3 +0.001 +53.0

CTD data set

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-r0-m0-n0-c0-s0 0.15 0.006

t-r0-m1-n0-c0-s0 0.22 0.004 m1 +0.074 +49.5 9.8-4 +0.072 +49.5

t-r0-m1-n0-c1-s0 0.28 0.007 c1 +0.055 +24.7 9.8-4 +0.052 +86.5

tmc-r0-m1-n0-c1-s0 0.31 0.021 tmc +0.029 +10.2 2.0-3 +0.030 +105.6

tmc-r1-m1-n0-c1-s0 0.32 0.021 r1 +0.014 +4.6 9.8-4 +0.013 +115.0

tmc-r1-m1-n3-c1-s0 0.34 0.005 n3 +0.019 +5.8 2.0-3 +0.010 +127.5

tmc-r1-m1-n3-c3-s1 0.35 0.005 c3-s1 +0.010 +3.0 9.8 -4 +0:007 +134.4

These tables show the amount of performance increase by exchanging one experimental parameter by another
parameter (or a parameter combination, if no single parameter exchange increases the performance). From one row of
the table to the following row we select the parameter(s) that gives the highest performance increase as measured by
the mean TAP-10 from the cross validation runs. The absolute performance increase (Δabs) and the relative increase
(Δrel) between two adjacent rows are reported in the corresponding columns. A Wilcoxon signed rank test for
dependent pairs is used to assess whether the improvement is significant or due to chance. The last column shows the
relative increase compared to the baseline setting (Δrelbs).

Table 5 Evaluation of performance increase of AUCiP/R

PharmGKB data set

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-e0-r0-m0-n0-c0-s0 0.39 0.015

t-e1-r0-m0-n0-c0-s0 0.44 0.012 e1 +0.048 +12.1 9.8-4 +0.044 +12.1

t-e1-r0-m1-n0-c0-s0 0.49 0.014 m1 +0.044 +10.0 9.8-4 +0.042 +23.2

t-e1-r0-m1-n0-c1-s0 0.51 0.017 c1 +0.027 +5.5 9.8-4 +0.023 +30.0

tmc-e1-r0-m1-n0-c1-s0 0.53 0.015 tmc +0.018 +3.4 9.8-4 +0.013 +34.5

tmc-e1-r1-m1-n0-c1-s0 0.54 0.015 r1 +0.012 +2.3 9.8-4 +0.010 +37.6

tmc-e1-r1-m1-n2-c1-s0 0.55 0.015 n2 +0.003 +0.6 9.8-4 +0.002 +38.4

tmc-e1-r1-m1-n2-c3-s1 0.55 0.013 c3-s1 +0.003 +0.5 1.5-2 +0.001 +39.1

tmc-e1-r1-m1-n3-c0-s1 0.55 0.014 n3-c0 +0.002 +0.4 1.4-2 +0.000 +39.7

CTD data set

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-r0-m0-n0-c0-s0 0.21 0.008

t-r0-m1-n0-c0-s0 0.30 0.006 m1 +0.090 +42.4 9.8-4 +0.087 +42.4

t-r0-m1-n0-c1-s0 0.37 0.009 c1 +0.072 +23.7 9.8-4 +0.068 +76.1

tmc-r0-m1-n0-c1-s0 0.41 0.026 tmc +0.040 +10.6 2.0-3 +0.042 +94.9

tmc-r0-m1-n3-c1-s0 0.43 0.006 n3 +0.018 +4.3 2.9-3 +0.005 +103.3

tmc-r1-m1-n3-c1-s0 0.45 0.007 r1 +0.015 +3.5 9.8-4 +0.013 +110.4

tmc-r1-m1-n3-c3-s1 0.46 0.007 c3-s1 +0.012 +2.8 9.8-4 +0.009 +116.2

This table gives the corresponding overview of feature-wise performance increase as in Table 4. See Table 4 for a
detailed explanation on the interpretation of the columns.
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validation leads to a small sample size and additionally the differences of means used

for this kind of comparison are not always normally distributed in our data. In order

to be able to apply the same significance test to all settings, such a non-parametric sig-

nificance test is more appropriate than the parametric t-test. The p values and the

non-parametric 95% confidence interval are exact values and not normal approxima-

tions (the test for improvement is one-sided and therefore only the lower limit of

improvement is actually shown in the tables). We use the function wilcox.exact() from

the library exactRankTests of the statistical software framework R. See the documenta-

tion for more technical details. Further discussion of the appropriateness of signifi-

cance tests on results gained by cross-validation can be found in [19,20].

Although the tables mentioned above iteratively answer the question which settings

actually increase the system performance, we know nothing about the upper limit of

ranking performance (given the results from our term recognizer). In order to assess the

distance to this upper bound, we take the results of our best system and build a perfect

ranking on top of it by pushing all true positives in front of all its false positives.

The Figures 1 and 2 plot this information for varying cut-off limits: the lower limit of

performance is given by the baseline (t-e0-m0), the upper limit is derived from our

best setting for the respective metrics.

Evaluation of relation ranking: TAP-10

The evaluation metrics of TAP-k is of utmost significance for our application scenario

of database curation due to the fact that curators are not willing to sort out a large

number of false positive relation candidates. For both data sets we take k = 10, which

means that after having seen 10 false positives no further results are taken into

consideration.

The upper part of Table 4 shows the feature-specific performance increase of TAP-10

for the PharmGKB. The type preference coefficient e1 improves the baseline most, fol-

lowed by the application of ME. Note that metadata (tmc) improves results only modestly

for the PharmGKB, in fact, using metadata without applying ME optimization performs

worse than the baseline. A cap of 9 (c9) never results in the best increase for TAP-10 on

the PharmGKB nor does it in any other ranking evaluation. However, applying a cap of

6 seems to be the best strategy for the PharmGKB. As the baseline for the PharmGKB is

already well performing, the overall relative improvement is limited to 53%.

As shown for the CTD in the lower part of Table 4, the order of features leading to the

highest performance is similar to the one from the PharmGKB. However, the addition of

metadata has a much stronger impact for the CTD. One reason for that may be the use of

MeSH terminology in the CTD dictionaries. Having frequency counts in the gold

probability features (i.e. having a setting other than c1) leads to a relatively small perfor-

mance increase. The best settings for the PharmGKB and the CTD only differ in the cap

(c6 vs. c3), which supports the conclusion that the techniques are generally applicable. In

the case of the CTD, the rather low baseline performance is improved by more than 134%.

The plots in Figure 1 show that the best setting for the PharmGKB not only performs

better in terms of absolute TAP scores than the best setting for the CTD. Additionally,

the best setting from the PharmGKB reduces the distance to the upper limit far more

than the best setting for the CTD. One possible explanation for this fact may be given

by the different distribution of articles containing a single relation: in the PharmGKB
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almost 40% of all articles contribute just one relation whereas in the CTD only about

22% do this.

Evaluation of relation ranking: AUCiP/R

According to our application scenario we apply a cut-off limit of 50 relations to all evalua-

tions of AUCiP/R. The upper part of Table 5 shows the feature-specific performance

increase for the PharmGKB. In contrast to the TAP measure, the addition of metadata is
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Figure 1 Evaluation of TAP-k. Mean macro-averaged results from the TAP-k tool. The horizontal axis
shows the k value limiting the number of results that are evaluated by the tool by specifying a threshold
on the number of false positives.
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more important, thus expressing the fact that AUCiP/R is more sensitive to the improve-

ment of recall than TAP-k. Again, determining the best settings for the CTD is more

straightforward than for the PharmGKB. Although the improvement for the different

performance increase steps are statistically significant, there are only small differences

between the top settings. Note that the top setting for TAP-10 and for AUCiP/R are

different for the PharmGKB. In contrast, the lower part of Table 5 shows almost the same
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Figure 2 Evaluation of AUCiP/R. Mean macro-averaged results for different cut-off limits using the
BioCreative evaluation tool. The horizontal axis shows the cut-off value limiting the number of hits that are
evaluated by the tool. The vertical axis shows macro averaged results of AUC iP/R for our different settings.
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feature ranking for the CTD for both evaluation metrics. We regard the switch between

the order of n3 and r1 not as important, given the fact that the lower improvement confi-

dence interval CIl for n3 is much lower than the “random” empirical improvement of

0.0018. For the PharmGKB we achieve an overall improvement of 40%. For the CTD,

which again has a much lower baseline, the best setting improves by 116%.

The plots in Figure 2 illustrate the dependency of AUCiP/R on recall. Note that

whereas in Figure 1 the best settings for the PharmGKB seems apparently closer to the

perfect ranking than the CTD, this difference is less prominent in terms of AUCiP/R.

Evaluation of metadata contribution

The inclusion of metadata such as MeSH or chemical substances into the text mining pro-

cedure improves the overall performance of relation ranking. Although this information is

widely available from PubMed (or directly from the publishers), it may be missing for

some texts. In Tables 6 we show how the performance of the best settings decreases from

missing metadata. For the PharmGKB the difference is modest (under 5%) if all metadata

is discarded. For the CTD the TAP-10 score is almost 13% higher if metadata is used.

This difference correlates with the coverage improvements for metadata inclusion as

shown in Table 2.

Evaluation of Precision, Recall, and F-Measure

The plots in Figure 3 show the corresponding numbers as computed by the Biocreative

evaluation tool for the best system settings as resulting from the TAP-10 evaluation. Note

that for small cut-offs, precision is high, e.g. the first solution is a correct relation in almost

60% of all cases on average in the PharmGKB, and almost 50% in the CTD. However, pre-

cision drops quickly given the fact that there are not that many articles with more than

5 relations. For the PharmGKB the baseline performs better than the best system using

cut-off limits n > 30, which could be an adverse effect that our training material is limited

to articles with at most 24 relations.

Evaluation of the estimation of gold probabilities

A substantial part of the performance of the maximum-entropy-based ranking depends on

the proper estimation of the probability of an entity to be part of a true positive relation.

Therefore, we evaluated the probability scores separately with regard to the experimental

settings. Table 7 shows significant performance improvements by smoothing the feature

counts (s1), by using metadata (tmc), and by applying the strongest normalization (n3).

Applying a cap of 9 (c9) improves minimally but is not statistically significant. Note that

the best setting for the gold probability does not carry over as the best setting for TAP

oder AUCiP/R.

Usage in a curation environment

Advanced text mining techniques are now reaching a maturity level that makes them

increasingly relevant for the process of curation of biomedical literature. As part of our

research in this area we developed a curation system called “OntoGene Document INspec-

tor” (ODIN [21]) which interfaces with our OntoGene text mining pipeline (OG-RM). We

have used a version of ODIN for our participation to the ‘interactive curation’ task (IAT)

of the BioCreative III competition [22]. This was an informal task without a quantitative
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evaluation of the participating systems. However, the curators who used the system com-

mented positively on its usability for a practical curation task.

More recently, we have created a version of ODIN which allows inspection of abstracts

automatically annotated with PharmGKB entities (the annotation is performed using

OG-RM). Users can access either preprocessed documents, or enter any PubMed identi-

fier and the corresponding abstract will be processed “on the fly”. For the documents

already contained in the PharmGKB it is also possible to compare the results of the sys-

tem against the gold standard. The curator can inspect all entities annotated by the

system, and easily modify them if needed (removing false positives with a simple click,

or adding missed terms if necessary). The modified documents can be sent back for pro-

cessing if desired, obtaining therefore modified candidate interactions. The user can also

inspect the set of candidate interactions generated by the system, and act upon them

just as on entities, i.e., confirm those which are correct, remove those which are incor-

rect. Candidate interactions are presented sorted according to the score which has been

assigned to them by the text mining system, therefore the curator can choose to work

with a small set of highly ranked candidates only, ignoring all the rest (see Figure 4).

Recent user experiments using our curation environment, which makes use of the rank-

ing proposed by the method described above, have shown positive results [23]. Addition-

ally, a relation reranking on a CTD dataset, based on the approach described in this

paper, has contributed to competitive results in the recent triage task (task 1) of the Bio-

Creative 2012 shared task [24].

Table 6 Evaluation of metadata contribution

PharmGKB data set TAP-10

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-e1-r1-m1-n3-c6-s1 0.40 0.011

tc-e1-r1-m1-n3-c6-s1 0.41 0.010 tc +0.006 +1.4 9.8-4 +0.004 +1.4

tm-e1-r1-m1-n3-c6-s1 0.41 0.011 tm +0.008 +2.0 2.0-3 +0.005 +3.4

tmc-e1-r1-m1-n3-c6-s1 0.42 0.009 tmc +0.004 +1.1 2.0-3 +0.002 +4.5

PharmGKB data set AUCiP/R

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-e1-r1-m1-n3-c0-s1 0.53 0.015

tc-e1-r1-m1-n3-c0-s1 0.53 0.014 tc +0.007 +1.4 2.0-3 +0.004 +1.4

tm-e1-r1-m1-n3-c0-s1 0.54 0.015 tm +0.010 +1.8 2.0-3 +0.006 +3.2

CTD data set TAP-10

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-r1-m1-n3-c3-s1 0.31 0.006

tc-r1-m1-n3-c3-s1 0.33 0.005 tc +0.022 +7.0 9.8-4 +0.019 +7.0

tm-r1-m1-n3-c3-s1 0.34 0.004 tm +0.007 +2.0 9.8-4 +0.005 +9.2

tmc-r1-m1-n3-c3-s1 0.35 0.005 tmc +0.011 +3.3 9.8-4 +0.010 +12.8

CTD data set AUCiP/R

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-r1-m1-n3-c3-s1 0.40 0.008

tc-r1-m1-n3-c3-s1 0.43 0.007 tc +0.030 +7.5 9.8-4 +0.027 +7.5

tm-r1-m1-n3-c3-s1 0.45 0.006 tm +0.014 +3.3 9.8-4 +0.012 +11.1

tmc-r1-m1-n3-c3-s1 0.46 0.007 tmc +0.014 +3.0 9.8-4 +0.011 +14.5

This table shows the increase of performance for each step of inclusion of metadata as applied to best settings of TAP-
10 and AUCiP/R. See Table 4 for a detailed explanation on the interpretation of the columns.
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Outlook

As a continuation of this work, we would like to estimate the number of relations to be

found in a paper on the basis of its textual content. Being able to provide this information

before or at the initial stages of the curation process would help the curators to decide at

which point of the curation process it is most sensible to stop after having found a given
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Figure 3 Evaluation of Precision, Recall and F-Measure. Mean macro-averaged results from the
BioCreative evaluation tool. The horizontal axis shows the cut-off value limiting the number of hits that are
evaluated by the tool. The vertical axis shows macro averaged results of precision (P), recall (R) and F-
Measure (F) for our different approaches. Note that these results were computed by ignoring documents
without hits in the system responses (this is the default setting for the BioCreative evaluations).
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number of correct relations. This is particularly relevant because documents differ greatly

in the number of relations they describe, ranging from a single relation to several hundred

ones in a few documents describing high-throughput experiments. In the PharmGKB we

have observed that 40% of the documents contain only one relation, however they contri-

bute less than 10% of all relations. Approx. 90% of the documents contain 10 or less

relations, however these documents contain around 50% of all relations. So the remaining

10% of documents (which contributes more than 50% of the relations) have a much higher

number of relations per document. In the CTD 23% of the documents contain only one

relation and contribute to 2.2% of all relations. Approx. 90% of the documents contain

12 or less relations.

A possible limitation of the proposed approach is that it favors conservative assump-

tions, i.e. it privileges entities and relationships which have already been seen over totally

Table 7 Evaluation of performance increase of gold probability

PharmGKB data set

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-m1-n0-c0-s0 0.85 0.003

t-m1-n0-c0-s1 0.89 0.002 s1 +0.031 +3.7 9.8-4 +0.030 +3.7

tmc-m1-n0-c0-s1 0.90 0.002 tmc +0.016 +1.8 9.8-4 +0.015 +5.5

tmc-m1-n3-c0-s1 0.91 0.002 n3 +0.009 +1.0 9.8-4 +0.008 +6.5

tmc-m1-n3-c9-s1 0.91 0.002 c9 +0.000 +0.0 3.5-1 +0.000 +6.5

CTD data set

setting mean sd Δ Δabs Δrel p value ΔCIl Δrelbs

t-m1-n0-c0-s0 0.91 0.001

t-m1-n0-c0-s1 0.94 0.000 s1 +0.028 +3.0 9.8-4 +0.027 +3.0

t-m1-n3-c0-s1 0.95 0.001 n3 +0.010 +1.1 9.8-4 +0.010 +4.2

tm-m1-n3-c0-s1 0.95 0.001 tm +0.005 +0.5 9.8-4 +0.005 +4.7

tm-m1-n3-c6-s1 0.95 0.001 c6 +0.000 +0.0 1.2-1 +0.000 +4.7

tmc-m1-n3-c6-s1 0.95 0.001 tmc +0.000 +0.0 5.0-1 +0.000 +4.7

tmc-m1-n3-c9-s1 0.95 0.001 c9 +0.000 +0.0 3.8-1 +0.000 +4.7

This table gives the corresponding overview of feature-wise performance increase as Table 4. See Table 4 for a detailed
explanation on the interpretation of the columns. The performance of the gold probability shows the quality of the
Maximum Entropy approach for the estimation of an entity being part of a relation from the gold standard.

Figure 4 ODIN curation interface. Example of interaction with the ODIN system. Terms identified by the
system are underlined in the abstract. Candidate relations are shown in the left-hand-side panel. Selecting
a relation automatically highlights the terms in the document which correspond to the entities in the
relation.
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new entities and relationships. The inclusion of contextual and linguistic features might

help compensate for this bias. A further question left for future work concerns the use

and impact of alternative term recognizers (e.g. BANNER [25], MetaMap [26]) and addi-

tional terminological resources [9,10].

Conclusions
We have presented a simple and practical approach for the mining and ranking of

pharmacogenomic and toxicogenomic relations, and evaluated this approach system-

atically against two different knowledge bases, the PharmGKB and the CTD. We

have implemented a Maximum Entropy technique for the optimized ranking of can-

didate relations using a purely frequency-based text mining approach. In order to

estimate the relevance of a relation candidate for a new article, we combine textual

evidence from the article with the evidence derived from the large set of relations

found in curated articles. Our experiments show that this approach is feasible, and

our results might offer a useful baseline for further developments that apply more

sophisticated techniques from the field of protein-protein interaction detection [27].

Whereas for the experiments described in this paper we use only simple frequency-

based features, the next step is to include contextual [28,29] and linguistic [30] fea-

tures. The Maximum Entropy technique we applied so far is ideally suited for doing

this.

We have used existing tools to score the results and to provide reliable evaluation

metrics, including not only the traditional Precision, Recall and F-Measure, but also the

increasingly important measures of ranking quality, such as AUC iP/R or TAP-k. The eva-

luation shows that the reranking techniques described in this article bring a considerable

improvement to the results.

Finally, we have briefly mentioned the usage of these results within an assisted cura-

tion environment (ODIN), which is discussed more extensively in separate publications

[23,24]. The experience from these experiments suggests that the usability of a curation

environment is enhanced considerably by the presentation of properly ranked relation

candidates.
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