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Abstract

Identifying relationships between hitherto unrelated entities in different ontologies is
the key task of ontology alignment. An alignment is either manually created by
domain experts or automatically by an alignment system. In recent years, several
alignment systems have been made available, each using its own set of methods for
relation detection. To evaluate and compare these systems, typically a manually
created alignment is used, the so-called reference alignment. Based on our
experience with several of these reference alignments we derived requirements and
translated them into simple quality checks to ensure the alignments’ validity and also
their reusability. In this article, these quality checks are applied to a standard
reference alignment in the biomedical domain, the Ontology Alignment Evaluation
Initiative Anatomy track reference alignment, and two more recent data sets
covering multiple domains, including but not restricted to anatomy and biology.

Background
In knowledge-intensive domains such as the life sciences, there is an ever-increasing

need for concept systems and ontologies to organize and classify the large amounts of

clinical and lab data and to describe such data collections with value-adding meta data.

For this purpose, numerous ontologies with different levels of coverage, expressiveness

and formal rigor have evolved that, from a content point of view, complement each

other and in some cases even overlap. To facilitate the interoperability between infor-

mation systems using different ontologies and to detect overlaps between them, ontol-

ogy alignment has become a crucial need.

Since the manual alignment of ontologies is quite labor-expensive and time-consum-

ing, alignment tools have been developed that can automatically detect correspon-

dences between entities in different ontologies. Following Euzenat and Shvaiko [1], we

consider entities to comprise ontology classes, class instances, and properties, the latter

corresponding to roles in the terminology of description logics. A correspondence con-

sists of a pair of entities (e.g., a class from the first input ontology, O1, and a class
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from the second one, O2) and a relation that, according to the creator of the align-

ment, holds between these entities (e.g., an equivalentClass or subClassOf relation

between two classes).

Many different approaches to and techniques for ontology alignment have been pro-

posed up until now (see, e.g., [2-7]), and dedicated scientific workshops have been

organized to accelerate the progress in this field. In 2005, the Ontology Alignment

Evaluation Initiative (OAEI) [8] initiated a series of annual evaluation events to moni-

tor and compare the quality of different alignment systems. A somewhat broader view

on the evaluation of semantic technologies is promoted by the Semantic Evaluation At

Large Scale (SEALS) project [9] that started in 2009. An open source platform is under

development to facilitate the remote evaluation of ontology alignment systems and

other semantic technologies in terms of both, large-scale evaluation campaigns but

also ad hoc evaluations of single systems. Amongst others, the platform provides a test

data repository, a tools repository, and a results repository for the evaluation and com-

parison of systems.

The most valuable contents of the SEALS platform’s test data repository and also the

core of the OAEI campaigns are manually created or at least manually curated refer-

ence alignments which constitute the ground truth against which alignment systems

are to be evaluated. Clearly, the quality of these reference alignments is of paramount

importance for the validity of the evaluation results. For the evaluation of our own

ontology alignment system, we were also looking for valid test data (ontologies and

reference alignments). Some data sets we inspected have been used for several years in

the OAEI campaigns, or have already been integrated in the SEALS test data reposi-

tory. Others have just recently been published and have not been used in any public

challenge up until now. Notwithstanding the enormous efforts that have gone into the

development of such resources, our inspection of many different data sets revealed a

number of content-specific shortcomings and technical deficiencies. Hence, we decided

to formulate a list of basic quality checks which summarize these observations. We

propose to apply these checks to any given alignment as a kind of minimal validity test

before it is used as a reference standard in any evaluation.

In the remainder of this paper, we will first introduce the basic requirements we

have defined and then we will apply them to one of the standard data sets used in the

yearly OAEI campaigns, the Anatomy track reference alignment, and two quite recent

alignment data sets that we think are of interest since they cover various different

domains and hold correspondences based on (strict) subClassOf relations, in addition

to the much more common equivalentClass-based correspondences. Finally, we will

discuss how the application of the checks to these data sets can lead to an improved

version of both, the reference alignments themselves and some of the input ontologies.

Basic quality checks for reference alignments
An alignment consists of a set of correspondences between entities from two different

ontologies. In our current work, we focus on equivalentClass and subClassOf-based

correspondences between ontology classes only. These are the two most popular types

of correspondences considered in the ontology alignment community. The usefulness

of a manually created or curated alignment as reference for the evaluation of ontology
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alignment systems depends on various parameters. The quality checks presented in

Figure 1 address fundamental validity and reusability concerns.

The first five quality checks focus on the (re)usability of an alignment as reference

for the evaluation of alignment systems. Checks 1 and 2a) test whether the correspon-

dences contained in the alignment can be found at all by the alignment systems based

on the available release versions of the input ontologies (imagine the case where a

class has been deleted from an input ontology—consequently, correspondences in the

reference alignment referring to this class cannot be reproduced anymore). Check 2b),

which tests for label (i.e., class name) changes, is targeted at the tacit evolution of the

meaning of a class. In particular for light-weight ontologies lacking thorough formal

class definitions, verbal labels virtually carry the entire meaning of a class and, hence, a

Figure 1 Ten basic quality checks for ontology alignments. Ten basic quality checks for ontology
alignments and the proposed order of execution. Concerning Check 6 and Check 8, if the alignment on
which the checks are made are supposed to incorporate subClassOf-based correspondences, follow the
arrows marked with “⊆”, otherwise those with “no ⊆”.
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new label might indicate a subtle or even severe change of the meaning of an ontology

class requiring further scrutiny. If Check 1 is positive, Check 2 can be skipped. Check

3 is concerned with the accessibility of an alignment, while Check 4 aims at finding

out whether the references to classes are unique. For example, imagine the case where

local names or labels would be given as class references, then those references might

be ambiguous. Note that “local name” refers to the terminal part of a URI. In many

RDF(S)/OWL ontologies, especially if they do not provide explicit class labels, the

name of a class is encoded in its local name, such as “anatomical structure” in “http://

dbpedia.org/ontology/AnatomicalStructure” Check 5 is meant to assure that explicit

semantic types are specified for the relationships asserted between the classes by the

alignment creators.

The remaining five checks address the completeness (Checks 6 to 9) and the non-tri-

vialness of the alignment (Check 10). While Checks 6 and 7 work on the structural

level exploiting the class hierarchy of the input ontologies to find evidences for possi-

bly missing or erroneous correspondences, Checks 8 and 9 address the same concern

but target at the language level instead, exploiting class labels. Since in an alignment a

class from one ontology should be mapped to at most one class in the other ontology

by an equivalentClass relation (or, if it links to several classes, these should be marked

as being equivalent themselves), Check 6 may provide valuable hints for redundant or

even mistaken correspondences in an alignment, but also for implicit class equiva-

lences in the input ontologies. Check 7 exploits the fact that stating an equivalentClass

relation between two classes logically entails subClassOf relations between all sub-

classes of one class and all super classes of the other. We may thus identify missing

sub ClassOf-based correspondences, but may also detect hints to erroneous equivalent-

Class-based correspondences in the alignment or modeling errors in the input ontolo-

gies. Checks 8 and 9 reflect the observation that when two ontologies are aligned,

especially when they show a strong conceptual overlap, label identity between classes

provides strong evidence for class equivalence, whereas labels with identical syntactic

heads that fulfill the condition that one label includes the other are a strong indicator

for concept subsumption. Examples include the label pairs “doctoral thesis” and “the-

sis”, and “professor of biology” and “professor” (with rightmost and leftmost heads,

respectively). Both checks may help in detecting missing correspondences in an exist-

ing alignment. Checks 7 and 9 may be skipped when subClassOf-based correspon-

dences are out of the scope of the alignment under scrutiny. Finally, Check 10 allows

for a stricter evaluation of the capabilities of an ontology alignment system by distin-

guishing between relaxed and tight test conditions. In the relaxed mode, the determi-

nation of lots of trivial correspondences may overestimate the true potential of an

alignment system, simply because for finding trivial correspondences exact (sub)string

matching is entirely sufficient. As “trivial” we define equivalentClass-based correspon-

dences that can be detected via the identity of class labels (or local names), and sub-

ClassOf-based correspondences that can be detected via mere syntactic head analysis

of class labels (or local names), both after applying a simple term normalization proce-

dure. In the strict mode, however, only non-trivial correspondences are taken into

account rendering evidence for the true sophistication of the alignment finding proce-

dure. Certainly, a large proportion of trivial correspondences in an alignment (an indi-

cation of strongly overlapping input ontologies) decreases its value as reference
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alignment, although trivial correspondences do play a certain role as anchors for

advanced alignment strategies [2].

Sample data sets
To illustrate the power of the proposed quality checks we apply them to three different

data sets (see Table 1). The first one (referred to as ANATOMY) is a standard refer-

ence alignment in the biomedical domain that has been used in the Anatomy track of

the OAEI campaign since 2007. The second and third one (referred to as LOD, and

BRIDGE, respectively) are two more recent data sets, one created for evaluating align-

ments of Linked Open Data schemas, the other for assessing upper ontology-based

alignment approaches. Both excel in a broad domain coverage and in the provision of

equivalentClass and subClassOf-based correspondences. Yet, two of the data sets have

complementarily balanced correspondences, ANATOMY favoring equivalentClass rela-

tions, LOD featuring subClassOf relations. According to the authors of the three data

sets all correspondences concern pairs of ontology classes.

OAEI anatomy track reference alignment

The original OAEI Anatomy track reference alignment links pairs of equivalent classes

from the anatomy branch of the NCI Thesaurus (NCI) [10], describing human anat-

omy, and the mouse adult gross anatomy ontology (MA) based on the Anatomical Dic-

tionary for the Adult Mouse [11]. This alignment was created in a combined manual

and automatic effort — the automatic alignment, exploiting lexical and structural tech-

niques, was followed by an extensive manual curation step [12]. In the OAEI 2010

Anatomy track, a slightly revised version of the original alignment was used that con-

tains 1,520 equivalentClass-correspondences.

Reference alignments for linked open data schemas

To evaluate an alignment system tuned to cross-link schemas of Linked Open Data

(LOD) sets, Jain et al. [5] manually created seven reference alignments between

selected pairs of eight such schemas, covering general information as well as particular

domains ranging from geography over scientific publications to entertainment and

social networks. The reference alignments comprise a total of 2,339 distinct correspon-

dences, the vast majority of which (over 96%) relating to subClassOf relations, the

remaining ones to equivalentClass relations.

Reference alignments for testing upper ontology-based alignment approaches

Another multi-domain data set has been created by Mascardi et al. [4] to evaluate

structural alignment approaches exploiting upper ontologies as semantic bridges in the

alignment process. The data set consists of ten manually created reference alignments

between selected pairs of 17 input ontologies covering various domains, ranging from

Table 1 Overview on the Anatomy, Lod and Bridge data sets.

Data set Domain Alignments Ontologies ≡ ⊆ All corresp.

ANATOMY Anatomy 1 2 1,520 0 1,520

LOD Various 7 8 85 2,260 2,339

BRIDGE Various 10 17 Unknown Unknown 4,876

Overview on the ANATOMY, LOD and BRIDGE data sets. The symbols ≡ and ⊆ stand for equivalentClass and subClassOf-
based correspondences, respectively.
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anatomy, biology and geography to gastronomy, travel and entertainment. The refer-

ence alignments contain a total of 4,876 distinct correspondences based on three dif-

ferent relation types: equivalentClass, subClassOf, and a generic relatedTo relation.

However, according to the authors of the data set, in the evaluation for which the

alignments have been created, no distinction was made between the three relation

types so that Table 1 lacks coverage statistics for equivalentClass and subClassOf

correspondences.

Results of applying the quality checks
We ran the ten basic quality checks on the data sets introduced above and achieved

the following results:

Check 1

In the ANATOMY data set, the reference alignment is used together with a version of

the NCI Thesaurus anatomy branch as from 2006-02-13, and a version of the MA as

from 2007-01-18 (both in OWL format), while the alignment itself was created based

on the NCI Thesaurus release version 04.09a (from 2004-09-10) and the MA version

as from 2004-11-22 [12]. Obviously, different release versions of the input ontologies

have been mixed up for the creation of the reference alignment and for running the

OAEI Anatomy track. In the LOD and the BRIDGE data sets no input ontologies are

included at all. Instead, in the respective publications URLs for download are provided

[4,5].

When we tried to download the ontologies from the specified URLs, we encountered

two major problems with that approach. First, we observed that many ontology URLs

do not point to a distinct ontology version. Instead, they either specify a webspace at

which always the most recent version of the respective ontology is available, or they

refer to a general website of the ontology that provides download links for both, the

most recent but also older versions of the ontology. While in the first case, the user

cannot choose among alternative (in particular, older) ontology versions anymore at

the specified URL, in the second case the user misses the information which version is

the required one. We decided to download always the most recent ontology version.

The second problem emerges from the fact that the Web is not static at all. Contents

can be moved or deleted, resulting in broken URLs. This happed already to 8 of the 17

URLs specified as sources for input ontologies of the BRIDGE alignments and, addi-

tionally, to a number of ontologies imported by them. Six of the “vanished” ontologies

we were able to retrieve from the cache of the semantic web search engine Swoogle

[13], two we could find searching the Web. So, at least we were able to proceed and

run the remaining quality checks.

Check 2a)

Check 1 revealed that we were working with input ontology versions different from

those the respective alignments were based on (or, at least, we cannot guarantee that

we were dealing with the correct versions). Thus this check was compulsory for all

three data sets. For the ANATOMY data set we found that all classes involved in the

alignment (i.e., participating in at least one correspondence), are still contained in the

available versions of the input ontologies. Hence, class consistency is preserved. For
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the LOD alignments we found a total of 143 classes missing in the downloaded input

ontologies affecting 413 correspondences, and for the BRIDGE alignments 12 classes

had disappeared affecting 18 correspondences.

However, analyzing the set of “vanished” correspondences in the LOD and the

BRIDGE data set we discovered that actually much fewer classes were missing than

one might have thought considering the results from Check 2a). In fact, in many cases

simply errors in the alignment files (such as ordinary character errors or omissions, or

mixed up name spaces) precluded the recovery of classes in the input ontologies. Just

as an example, when we removed erroneous whitespace from local names of classes in

the LOD alignment mapping tables, the number of classes referred to in the align-

ments but not available in the corresponding input ontologies dropped from 143 to

the much smaller number of 47, and the number of vanished correspondences

decreased from 413 to 182. (Because of the strong impact of whitespace removal we

took the revised versions of the LOD alignments as basis for all further checks.) As

another reason for only seemingly missing classes we found that in rare cases the

BRIDGE alignments refer to ontology elements that are not explicitly specified as

classes in the input ontologies (i.e., they are not typed as owl:Class or rdfs:Class, a

requirement that we included in our implementation of the quality checks) and thus

were not found.

Check 2b)

Although in the ANATOMY alignment classes involved in correspondences were spe-

cified by URIs, we received from a curator of the alignment the original mapping table

on which the alignment was based. The mapping table lists both, URIs as well as the

labels of class pairs. We tested whether the URI-class label combinations are still valid

in the new versions of the input ontologies and found 85 NCI classes and 34 MA

classes for which the labels had changed. A manual inspection revealed that in most

cases labels had been made more precise in the new ontology versions (e.g., the label

of class NCI_C12443 was changed from “Cortex” to “Cerebral Cortex”), were replaced

by synonyms (e.g., the label of class NCI_C33178 was changed from “Nostril” to

“External Nare”), or minor spelling or syntax modifications were inserted (e.g., the

label of class MA_0000475 was changed from “aortic arch” to “arch of aorta”), while

the meaning of the classes remained stable and the correspondences were still valid.

However, the check also pointed us to six mistakes in the alignment that seem to have

been caused by shifts in the mapping table. For example, the class NCI_C49334 “brain

white matter” was mapped to MA_0000810 “brain grey matter” and NCI_C49333

“brain gray matter” to MA_0000820 “brain white matter”. For the LOD and the

BRIDGE alignments we did not have access to URI-label pair data and so we could

not run this check.

Check 3

The ANATOMY and the BRIDGE reference alignments are distributed in the Align-

ment API format proposed by Euzenat and thus can easily be accessed and used via

the associated JAVA-based Alignment API [14]. In contrast, the LOD alignments are

not represented in a standard format but come in a comma delimited three column

format. They contain typical mistakes often found in manually created documents,
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such as additional whitespace or (few) missing values, which, however, hinder auto-

matic processing.

Check 4

While classes in the ANATOMY and the BRIDGE alignments are referred to by class

URIs, in the LOD data set local names are used to refer to classes. A major problem with

the local names approach is that although local names are unique within a particular

name space, across different name spaces they are generally not. Many ontologies mix up

classes from different name spaces or even import whole ontologies with classes from a

different name space. This almost inevitably leads to ambiguities (i.e., in case of an ambig-

uous local name in an alignment file, it is not clear to which ontology class the local name

refers to). In all LOD alignments together we found 30 cases of ambiguous local names.

Check 5

In the ANATOMY and the LOD data set, for each correspondence the relation hold-

ing between the two classes involved is explicitly specified. In contrast, regarding the

BRIDGE data set, we encountered the problem that although all correspondences are

marked as being based on the equivalentClass relation, according to a curator of the

data set these specifications are rather a technical artifact, while, in fact, many of the

correspondences are based on subClassOf and relatedTo relations (as mentioned

before, the distinction between relation types had no relevance in the evaluation the

data set has originally been created for). To cope with this situation, we decided to

consider all relation types in the BRIDGE data set as being unknown (or more pre-

cisely, as being “one of equivalentClass, subClassOf or relatedTo”). Unfortunately this

also meant that we could not run the remaining checks on this data set, since they

require type information.

Check 6

We found 39 cases in the ANATOMY data set and 10 cases in the LOD data set in

which a class from one input ontology was associated with more than one (target)

class in the other input ontology of an alignment by an equivalentClass relation. In

none of the cases, the target classes were linked by an equivalentClass relation in the

respective input ontology themselves. We manually inspected all cases of multiple

mapping targets. We found for the ANATOMY data set that in 20 cases, the target

classes, in fact, seem to be equivalent classes that are just not yet marked appropriately

in the given versions of the respective ontologies. Cross-checking with the most recent

versions of the input ontologies revealed that from this set 12 target class pairs from

the NCI meanwhile have been merged. For another three cases, we proposed a merger

to the NCI team (for example, for the classes NCI_C33708 “suprarenal artery” and

NCI_C52844 “adrenal artery”). Meanwhile they have been accepted and included in

the new version release. Furthermore, we identified 18 cases in the ANATOMY align-

ment and five in the LOD alignments in which the target classes were linked by rela-

tions other than equivalentClass in the respective input ontologies. In twelve cases the

target classes were linked by partOf relations (ANATOMY), in eight cases by subClas-

sOf relations (four cases being from ANATOMY, another four from LOD), in two

cases they were treated as sibling classes (ANATOMY), and in one case as disjoint
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classes (LOD). We inspected these relations and judged the majority of them as being

correct. This allowed us to draw the conclusion that for the classes concerned only the

mapping to one target class is correct, while the others should be removed from the

alignment. The same, we found, applies for other five cases of multiple mapping tar-

gets in the LOD alignments, although in these cases no relations between the target

classes were present in the respective input ontologies.

Check 7

10,415 subClassOf-based correspondences could be inferred for the ANATOMY data

set and 772 for the LOD data set simply by exploiting equivalentClass-based corre-

spondences from the manual alignments in combination with the taxonomic structure

of the corresponding input ontologies. While in the case of the ANATOMY data set

all detected correspondences are new (because of its innate focus on equivalentClass-

based correspondences), for the LOD data set we still found 70% (540) of the detected

correspondences to be new (i.e., not contained in the alignments, yet).

Check 8

After applying a simple term normalization procedure to all class labels (splitting of

“Camel-Case” expressions, lowercasing, and underscore removal), for the ANATOMY

data set we found 13 class pairs and for the LOD alignments a total of 37 class pairs

(each consisting of a class from one and a class from the other input ontology) with

identical labels for which no equivalentClass-based correspondence existed in the

respective manual alignment. A manual inspection revealed that in the ANATOMY

data set in two cases the respective classes, in fact, referred to slightly differently

defined concepts. For example, the classes MA_0000323 and NCI_C12378 share the

label “gastrointestinal system”. However, the MA class fits the usual understanding of

“gastrointestinal system” comprising the stomach, intestine and the structures from

mouth to anus, while the NCI class does not, but includes, in addition, accessory

organs of digestion, such as the pancreas and the liver. (The NCI anatomy branch

comes with another class, NCI_C22510 “gastrointestinal tract”, which corresponds to

MA_0000323 “gastrointestinal system”). In the LOD data set we found three cases in

which we think that, indeed, a subClassOf and not an equivalentClass-based corre-

spondence can be stipulated for the class pair with a common name. For example, for

a class pair sharing the name “Genre” one class seems to refer to the general notion of

“genre”, while the other seems to be restricted to “music genre”. However, in the

remaining 11 cases in the ANATOMY data set and 34 in the LOD data set equivalent-

Class-based correspondences are effectively missing in the respective alignments. An

example is the class pair (NCI_C33460, MA_0002730) from ANATOMY sharing the

label “renal papilla”. In the LOD data set some input ontology pairs import classes

from the same third-party ontologies, e.g., the Time Ontology [15]. Thus, in nearly

half of the analyzed cases it turned out that the classes did not only have identical

names, but, in fact, denoted the same classes.

Check 9

After class label normalization (see above), we found 3,127 class pairs in the input

ontologies of the ANATOMY alignment and 57 class pairs in input ontologies of the
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LOD alignments for which the following conditions applied: the label of one class

included the label of the other one, both shared the same syntactic head, and no sub-

ClassOf-based correspondence for the class pair existed in the respective manual align-

ment. We manually analyzed the cases from the LOD data set and found that 52

subClassOf-based correspondences were, in fact, missing in the respective alignments,

of which 24 had already been detected by Check 7. Five proposed subClassOf relations

we judged to be imprecise or wrong. For example, for the classes named “Label” and

“RecordLabel” we judged that in fact an equivalentClass-based correspondence should

be added to the LOD alignments, instead of a subClassOf-based one and for the classes

named “Book” and “InBook” and “Conference” and “Attending-A-Conference” no cor-

respondence should be added at all.

Check 10

We found that in the ANATOMY data set 916 correspondences (60%) and in the LOD

data set 158 correspondences (7%) are trivial ones. In the BRIDGE data set we could

not compute the number of trivial correspondences because of the missing relation

type specification for the correspondences in the alignments.

Table 2 summarizes our observations.

Discussion
Checks 1 to 5 mainly address technical issues (data availability and format require-

ments, etc.). They revealed that the available reference alignments are usually distribu-

ted without the original input ontologies they are based on. Additionally, various

distributions suffer from shortcomings which typically occur in manually created docu-

ments for later use in automatic processing pipelines (coding errors, inconsistent for-

mats, naming errors, etc.).

Before we were able to run the checks on the LOD and the BRIDGE data sets at all,

we had to carry out extensive and time-consuming preparatory work. This dilemma

arose for the input ontologies (search the Web for missing ontologies, solve recursive

ontology import problems, etc.), as well as for the alignments themselves. The align-

ments, in particular, posed all sorts of problems. For example, the use of non-standard

formats containing certain irregularities hampered automatic processing. Furthermore,

Table 2 Results of applying the ten basic quality checks to the Anatomy, Lod and
Bridge data sets.

Check Description ANATOMY LOD BRIDGE

Check 1 Correct input given? No (other versions) No (only URLs) No (only URLs)

Check 2a) Missing classes 0 143 (47) 12

Check 2b) URI-label pair changes 121 Not applicable Not applicable

Check 3 Standard format? Yes No Yes

Check 4 URIs? Yes No (local names) Yes

Check 5 Explicit relation types? Yes Yes No (untyped)

Check 6 Multiple targets 39 10 Unknown

Check 7 New ⊆ inferred from ≡ 10,415 540 Unknown

Check 8 Label identity but no ≡ 13 37 Unknown

Check 9 Label inclusion but no ⊆ 3,127 57 Unknown

Check 10 Trivial correspondences 916 (60%) 158 (7%) Unknown

Results of applying the ten basic quality checks to the ANATOMY, LOD and BRIDGE data sets. The symbols ≡ and ⊆
stand for equivalentClass and subClassOf-based correspondences, respectively.
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the allowance for ontology elements other than those of type rdfs:Class or owl:Class as

constituents of correspondences often caused problems depending on the tool

employed for processing the alignments. Finally, the use of ambiguous local names to

refer to classes, instead of unique identifiers, as well as spelling mistakes and name

space confusions in the alignment files hindered the automatic lookup of classes from

the alignment in the input ontologies. Interestingly enough, we encountered problems

with spelling mistakes not only in alignments represented in non-standard formats

(although they contained considerably more mistakes), but also in those available in a

machine-processable format. A simple reason for this might be that a manually typed

list of class names or URIs was used as input for the automatic creation of the final

alignment files. For manually created documents (ontology files, mapping tables, etc.)

that undergo a lot of copy-and-paste activities and for which proper spelling as well as

case-sensitivity and special delimiters are crucial for distinctive naming, we thus

recommend automatic forms of sanity-checking and data cleansing.

On top of that, it was simply disappointing that the very promising BRIDGE data set

(which looks impressive both in terms of its domain coverage and the number of cor-

respondences it contains) comes without any relation type encodings. This is even

more deplorable because the creators of the alignments must have known the relation

type holding for each single correspondence. According to the authors, the information

was not kept, because it was not needed in the evaluation at that time.

Checks 6 to 9 target the content level of alignments. Much to our surprise, already

simple procedures like searching for evidence of missing or erroneous correspondences

in the alignment itself or in the respective input ontologies (exploiting structural and

language features) turn out to be quite effective. Whether results from Check 7 are

included in an alignment or not is rather a design choice that has to be justified by an

alignment creator. We recommend either to consider all automatically inferable sub-

ClassOf-based correspondences in an alignment, or none of them. But we would defi-

nitely refrain from the inclusion of only some of them, a decision taken for the LOD

data set. Certainly, the results from these checks can only be judged with caution since

we cannot guarantee that we really worked with the ontology versions from the origi-

nal settings as input (see the results of Check 1).

When we applied the quality checks to the ANATOMY, LOD and BRIDGE data sets

the individual strengths and weaknesses of each data set became apparent. For the

LOD data set we could derive suggestions for improvement from all ten checks. For

the LOD and the BRIDGE data sets the format checks proved to be particularly helpful

for clarifying how the usability of the data set could be substantially improved. In con-

trast, the ANATOMY data set has been used in a public evaluation campaign for sev-

eral years now and possible technical obstacles have already been removed. For this

data set, the checks at the content level, in particular, rendered very positive effects.

By far the most interesting results were achieved analyzing the outcomes of Check

2b), 6, and 8 for the ANATOMY data set. These checks helped us detect a total of 30

erroneous correspondences that needed to be removed from the reference alignment

(this accounts for 2% of the complete alignment and 5% of its non-trivial subset) and

14 new ones that we proposed to add to the alignment. The list of invalid and newly

proposed correspondences was communicated to the anatomy alignment curators and
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the organizers of the OAEI Anatomy track, and meanwhile has been incorporated in

the OAEI 2011 campaign.

In addition, the results of Checks 7 and 9 can be taken as a “first aid” for a possible

effort to extend the alignment to subClassOf-based correspondences. Finally, Check 10

revealed that only one third of the correspondences in the ANATOMY alignment are

non-trivial, i.e., they cannot be detected by simple string matching tools. Since the

alignment is quite large with respect to the number of correspondences, this makes it

still a valuable evaluation data set. However, the large percentage of trivial correspon-

dences must be considered by evaluation metrics when interpreting the results align-

ment systems achieve on this data set, or when comparing these results to those

achieved by the same systems on different data sets. (The OAEI Anatomy track organi-

zers are aware of this fact and compute, in addition to standard recall and precision, a

measure they call “recall+”. It refers to the non-trivial correspondences a system is able

to detect.)

For the LOD data set, the analysis of the results of Checks 6, 8 and 9 revealed that at

least 10 erroneous equivalentClass-based correspondences exist in the LOD alignments

that should be removed (Check 6) and 35 new equivalentClass-based correspondences

(34 from Check 8, one from Check 9) as well as 52 subClassOf-based correspondences

should be added (Check 9). If, in addition, full results from Check 7 are considered,

the number of newly proposed subClassOf-based correspondences is even higher.

An issue we did not focus on in our study relates to checking the logical consistency

of an alignment. With regard to this challenging problem, we refer the reader to

related work, e.g., by Meilicke et al. [16] who propose a Web-based tool that supports

the human alignment curator in detecting and solving conflicts in an alignment by

capitalizing on the outcome of logical reasoning processes.

We would like to emphasize that although we focused in this work on RDF(S)/OWL

ontologies (i.e., we used the respective terminology and implemented the quality

checks accordingly) the basic idea behind each proposed quality check is independent

from the representation format being used.

Related work
Apart from very few exceptions (such as the work by Ceusters, introducing a metric for

measuring the quality of both, the input ontologies of an alignment and the ontology

resulting from it [17]), in the literature, alignment quality is primarily discussed in the

light of the evaluation of automatically created alignments. Different approaches have

been proposed to evaluate the performance of automatic alignment systems and the out-

put they produce. These include the manual analysis of correspondences in the align-

ment [7], comparing the alignment against a reference alignment [4,5], measuring the

extent to which the alignment preserves the structural properties of the input ontologies

[18], checking the coherence of the alignment with respect to the input ontologies [19],

and evaluating the alignment within an application (end-to-end evaluation) [20], while

the comparison against (preferably manually created) reference alignments is by far the

most common evaluation approach that has been used in international evaluation cam-

paigns for many years now [21]. However, although the manual creation of ontology

alignments is known to be time consuming and expensive, and in the same time inher-

ently error-prone (Euzenat even states that “humans are not usually very good at
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matching ontologies manually”, p. 202 in [1]), not much work has been published on

quality assurance of existing manual alignments, yet. This particularly concerns techni-

cal aspects, which strongly affect the reusability of alignments (target of our Checks 1 to

5). Regarding validity aspects (target of our Checks 6 to 10), some of the evaluation

approaches proposed for the analysis of automatically created alignments could be

adopted, such as the structural [18] or alignment coherence analysis [19].

Conclusions
We presented ten basic quality requirements and associated checks intended to assist

developers and curators of ontology alignments to create and maintain both, valid and

easy to (re)use references for the evaluation of alignment systems. As we could show –

using the example of the OAEI Anatomy track reference alignment and two additional

reference data sets – very basic checks are already of great help to increase the quality

of alignments. While checks addressing technical issues such as data availability and

format requirements have proven to be important for increasing the usability of man-

ual alignments, checks on the content level have shown they can foster its usefulness

and validity through the detection of missing correspondences that should be added to

an alignment and incorrect correspondences that should be removed from it. We also

observed that the tests can reveal shortcomings in the input ontologies themselves,

such as missing or invalid relations between classes.

The set of basic checks we formulated in this article should be considered as a first,

rather simple, yet effective step in a multi-stage procedure of extensively checking the

quality of an alignment before it is used as a reference in an evaluation setting. Our

work is thus targeted at the sanity of comparison standards, an issue of prime impor-

tance for any conclusion we can draw from the outcome of any evaluation campaign.

We propose to complement the basic checks by more advanced logical consistency

checks and more elaborate considerations on alignment quality as described, e.g., by

Joslyn et al. [18] who check for the structural preservation of semantic hierarchy

alignments.
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