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Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant
impairment in reciprocal social interactions and communication coupled with stereotyped, repetitive behaviors and
restricted interests. Although genomic and functional studies are beginning to reveal some of the genetic
complexity and underlying pathobiology of ASD, the consistently reported male bias of ASD remains an enigma.
We have recently proposed that retinoic acid-related orphan receptor alpha (RORA), which is reduced in the brain
and lymphoblastoid cell lines of multiple cohorts of individuals with ASD and oppositely regulated by male and
female hormones, might contribute to the sex bias in autism by differentially regulating target genes, including
CYP19AT (aromatase), in a sex-dependent manner that can also lead to elevated testosterone levels, a proposed risk
factor for autism.

Methods: In this study, we examine sex differences in RORA and aromatase protein levels in cortical tissues of
unaffected and affected males and females by re-analyzing pre-existing confocal immunofluorescence data from
our laboratory. We further investigated the expression of RORA and its correlation with several of its validated
transcriptional targets in the orbital frontal cortex and cerebellum as a function of development using RNAseq
data from the BrainSpan Atlas of the Developing Human Brain. In a pilot study, we also analyzed the expression
of Rora and the same transcriptional targets in the cortex and cerebellum of adult wild-type male and female
C57BL/6 mice.

Results: Our findings suggest that Rora/RORA and several of its transcriptional targets may exhibit sexually
dimorphic expression in certain regions of the brain of both mice and humans. Interestingly, the correlation
coefficients between Rora expression and that of its targets are much higher in the cortex of male mice relative to
that of female mice. A strong positive correlation between the levels of RORA and aromatase proteins is also seen
in the cortex of control human males and females as well as ASD males, but not ASD females.

Conclusions: Based on these studies, we suggest that disruption of Rora/RORA expression may have a greater
impact on males, since sex differences in the correlation of RORA and target gene expression indicate that
RORA-deficient males may experience greater dysregulation of genes relevant to ASD in certain brain regions
during development.
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Background

Autism spectrum disorder (ASD) refers to a group of
neurodevelopmental disorders that are diagnosed on the
basis of impaired social interactions and communication,
especially social reciprocity, and the presence of aber-
rant, repetitive, and stereotyped behaviors [1]. Because
of the strong heritability of ASD based on monozygotic
twin and sibling studies [2,3], there have been extensive
searches for genetic mutations and variations that may
cause ASD [4-13]. To date, there are hundreds to thou-
sands of genes that are considered autism candidate or
susceptibility genes in the autism gene databases [14,15],
with the number of genes continually growing. However,
the combined genetic variations account for only ap-
proximately 20% of the cases, with no single gene or
genetic variation associated with more than 1% of the
cases. Thus, the etiology of the majority of ASD cases is
still unknown.

Interestingly, ASD is consistently reported as having a
higher incidence (approximately 4:1) in males than in fe-
males [16]. Yet, the mechanism for the sex bias is un-
known. Several hypotheses for the sex bias in ASD
include: (1) genetic mechanisms which might involve
(a) genes on the X or Y chromosomes; (b) skewed X-
inactivation, (c) sex-specific imprinting defects on either
the X chromosome or autosomes; (2) the extreme male
brain hypothesis which posits that elevated fetal testoster-
one is a risk factor for ASD; and (3) gene-environment
interactions that predispose an individual to ASD. All of
these hypotheses have been comprehensively described in
several recent reviews [17-19]. To date, none of these
hypotheses, discussed briefly in the next paragraph, have
been either proven or disproven. Given the clinical and
genetic heterogeneity of ASD, it is possible that each of
these mechanisms for sex bias may apply to specific
cohorts of individuals with ASD. What is clear, however, is
that a validated mechanism for sex bias will reveal a
fundamental process inherent to the core biology of ASD.

With regard to genetic mechanisms for sex bias, there
are a few candidate genes for ASD on the sex chromo-
somes, but the reported genetic variations in them can-
not account for the majority of cases. On the other
hand, the extreme male brain hypothesis proposed by
Baron-Cohen and colleagues focuses on elevated testos-
terone levels as a risk factor for ASD. This hypothesis
has been investigated primarily by correlating autistic
behaviors and traits with fetal testosterone levels in am-
niotic fluid during gestation of the individuals [17,20-23].
More recently, this group has investigated differences in
brain morphology linked to circulating testosterone levels
in adults. Their studies demonstrated both morpho-
logical and volumetric changes in the brain that are
both sex-dependent [24] as well as dependent on diag-
nosis of ASD [25,26]. Direct investigation of the third
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hypothesis regarding gene by environment (GxE) inter-
actions that may predispose an individual to ASD has
been hampered by lack of knowledge regarding the
genes that may be involved and the environmental fac-
tors that are relevant to ASD. We suggest that the recipro-
cal regulatory interaction between retinoic acid-related
orphan receptor alpha (RORA) and sex hormones which
includes RORA-mediated transcriptional regulation of
CYPI19A1, described below, may be a candidate for GxE
interactions that modulate risk for ASD.

Our recent integrative genomic analyses of ASD in-
volving gene expression and methylation profiling of
lymphoblastoid cell lines (LCL) from monozygotic twins
and pairs of siblings discordant for autism diagnosis
revealed the dysregulated expression of many genes in
ASD [27,28], some of which have been associated with
aberrant methylation of the gene promoters [29]. One of
the downregulated and hypermethylated genes was the
nuclear receptor RORA. Further analysis of this gene
(which exhibits steroid hormone receptor binding sites
in its promoter region) revealed that its expression was
upregulated by estradiol but downregulated by the andro-
gen dihydrotestosterone (DHT) [30]. Moreover, RORA
was shown to transcriptionally regulate CYP19A1, a gene
coding for aromatase, an enzyme that converts testos-
terone to estradiol. This intriguing relationship between
RORA and sex hormones led us to propose a model in
which RORA deficiency may lead to an elevation of tes-
tosterone and depletion of estradiol through suppression
of CYPI9A1 expression. This model provides a plausible
biochemical explanation for the elevated testosterone
levels seen in studies by the Baron-Cohen group. It also
suggests a more direct mechanism for the sex bias in ASD
in which normal females, with higher estrogen levels,
might exhibit higher expression of RORA, thus buffering
against agents that induce RORA deficiency. This model
further predicts that during development, RORA expres-
sion may be sexually dimorphic at least in some regions of
the brain.

This pilot study was undertaken to examine the possi-
bility of sex differences in the expression of RORA in
several brain regions at different stages of development
of the normal human brain using RNAseq data from the
BrainSpan Atlas. In addition, sex differences in RORA
and aromatase protein levels were investigated by re-
analysis of our published confocal immunofluorescence
data from the cortex of both male and female controls
and age-matched male and female ASD donors. To re-
duce heterogeneity in the expression patterns due to the
genetics as well as age of the brain donors, we also con-
ducted expression analyses of the cortex and cerebellum
of a strain of mice at 3 months of age. Together, these
studies suggest sexual dimorphism in the expression of
RORA/Rora in some brain regions during certain stages
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of development as well as a high correlation with the
expression of its target genes, especially CYPI9A1.

Methods

Re-analysis of pre-existing confocal immunofluorescence
data from tissue arrays

Data from a previous study [30] employing confocal im-
munofluorescence to quantitate protein levels of RORA
and aromatase on a tissue array containing specimens of
the frontal cortex of ASD cases and age-matched con-
trols were reanalyzed on the basis of gender. The tissue
array was obtained through the Autism Tissue Program
(San Diego, CA, USA) and kindly provided by Dr. Janine
LaSalle (UC Davis). Each array contained 600 pm in
diameter x 5 um thick sections in triplicate from the
BA9 region of the frontal cortex of autistic individuals
and age- and sex-matched controls as well as samples
from individuals with a variety of other neurodeve-
lopmental disorders as previously described [31]. Only
specimens from neurotypical controls (without any de-
velopmental disorder) were used as ‘Controls’ for this
study. The amounts of protein are determined by cal-
culating the ‘mean fluorescence’ for RORA and aroma-
tase across 40 to 50 neurons per sample. Furthermore,
comparisons of protein levels between females and
males and between cases and controls are made for
samples that are matched for donor age within + 3 years.
Additional file 1 contains the ages and mean fluores-
cence levels of antibody staining for RORA and aroma-
tase in all of the ASD donors and controls from the
tissue array.

Analysis of RNAseq data from the BrainSpan atlas of the
developing human brain

RNAseq data (RPKM) for gene expression of RORA and
that of selected transcriptional targets of RORA in spe-
cific brain regions were downloaded from the BrainSpan
Atlas of the Developing Human Brain [32]. The down-
loaded data for the orbital frontal cortex and the cere-
bellum are presented in Additional file 2. The samples,
divided by gender, were grouped into three developmen-
tal periods: (1) before birth (BB), which was designated
in BrainSpan as ‘pcw’ for post-conception weeks; (2)
birth to 18 years of age; and (3) older than 19 years of
age. Within each group, the samples were matched for
age + 3 years (or+3 pcw for the prenatal samples) for
comparisons between males and females or between
cases and controls. The validated transcriptional targets
of RORA selected for RNAseq data analyses were
A2BPI1, ITPR1, and NLGN1, which are among the aut-
ism susceptibility genes represented in the SFARI gene
and AutismKB databases [14,15]. CYP19A1 was not in-
cluded in these analyses because the RNAseq values were
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either zero or too low for confidence. The functions of
these genes in the context of ASD will be discussed later.

Extraction of frontal cortex and cerebellum from
wild-type C57BL/6 mice

Wild type C57BL/6 mice were obtained from our colony
at the IFR 83 Biologie Integrative, UPMC (Paris, France).
Animal housing and all handling procedures for this
study followed ethical guidelines established by Le
Comité National d’Ethique pour les Sciences de la Vie et
de la Santé (animal ethics committee for France), in
accordance with the European Communities Council
Directive 2010/63/EU. Male and female mice (three per
group) aged 3 months were euthanized with an over-
dose of sodium pentobarbital (300 mg/Kg i.p.) and the
brain rapidly dissected into RNase-free normal saline
(0.9% NacCl). Female mice were not synchronized with
respect to estrous cycle before the brains were har-
vested. The frontal cortex and cerebellum were isolated
and placed into 100 uL. RNALater (Qiagen, France) and
maintained at 4°C for 24 h prior to freezing at -80°C.

RNA isolation and quantitative RT-PCR analysis

Mouse brain tissues were homogenized in a Bullet
Blender Homogenizer (Next Advance, Averill Park, NY,
USA), after which total RNA was isolated using an
RNeasy Mini Kit (Qiagen, Gaithersburg, MD, USA). A
total of 1 pg purified total RNA was used for cDNA
synthesis using the iScript cDNA Synthesis Kit (BioRad,
Hercules, CA, USA) according to the manufacturer’s pro-
tocols. The reaction (20 uL) was incubated at 25°C for
5 min, followed by 42°C for 30 min, and ending with 85°C
for 5 min. After reverse transcription, the cDNA reac-
tion mixture was diluted to a volume of 50 pL with
nuclease-free water and used as a template for qPCR
analyses. Real-time PCR analyses were conducted using
the Applied Biosystems 7300 Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). Each sam-
ple was run in triplicate and the average deviation of
the CT values was calculated to assess the consistency
of the assays. An average CT deviation of 0.25 or less
was considered acceptable for replicates. Primers for
RT-qPCR analyses were designed using Primer3 soft-
ware for mouse Rora as well as A2bpl, Cypl19al, Itpri,
and Nignl. The primer sequences for these mouse
genes are listed in Additional file 3. Cyp19al expression
was not determined for the cerebellum because the ex-
pression levels were either zero or too low for confidence.
Primers for the human genes have been previously pub-
lished [33]. The relative quantity of transcripts in each
sample was calculated using the standard curve method
with 185 RNA expression as a reference.
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Statistical analyses

The Student’s t-test within the StatPac Statistical Program
(StatPac, Inc., Bloomington, MN, USA) was used to deter-
mine t-values and P values for differences between the
means of gene expression in age-matched males and
females and between the means of age-matched cases and
controls. T-values derived from the t-tests and degrees of
freedom (sum of the number of samples in two groups
minus 2) were also used to determine Cohen’s d and effect
size-r to provide an additional measure of the magnitude
of the effect of sex (or autism diagnosis) on protein or
gene expression level. Cohen’s d and effect size-r were cal-
culated using the open-access online Effect Size Calculator
http://www.uccs.edu/lbecker/indexhtml made available
by Dr. Lee A. Becker (University of Colorado, Colorado
Springs, CO, USA). StatPac was also used to determine
correlation coefficients and P values for comparisons of
gene expression levels for RORA/Rora and each of the
transcriptional targets. Two-tailed P values are reported
for all statistical analyses.

Power and sample size analyses for the experiments
involving comparisons of independent group means (for
example, case vs. control or female vs. male) were per-
formed using the open-access online Power/Sample Size
Calculator http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
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which is kindly provided by Dr. Rollin Brant (University of
British Columbia, Vancouver, Canada). For power calcula-
tions involving a given number of samples in each group
(n), a two-sided test was selected with a set to 0.05. The
parameters used for sample size calculation were two-
sided test, with o = 0.05 and power = 0.80.

All boxplots were generated using the open-source
software BoxPlotR (http://boxplot.tyerslab.com) kindly
made available online by the Tyers (IRIC-Universite de
Montreal, Montreal, Quebec, Canada) and Rappsilber
(University of Edinburgh, UK) Laboratories.

Results

Confocal immunofluorescence data on the human frontal

cortex suggests lower RORA and aromatase protein levels
in males

We have previously demonstrated reduced expression of
RORA and aromatase protein in ASD cases relative to
controls using confocal immunofluorescence analyses of
tissue arrays containing postmortem frontal cortex spec-
imens [30]. Here, we reanalyze the confocal immuno-
fluorescence data from age-matched male (n=9) and
female (n =8) controls and show that there is a nomin-
ally higher level (1.22-fold) of RORA protein in females
relative to males (Figure 1). Similarly, the female-to-male
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Groups compared Age-matched Controls Age-matched ASD cases
(# samples/group) (8 female™ vs. 9 male) (5 female vs. 4 male*)
F/M ratio for RORA protein
(P-val: 2-tailed) 1.22 (0.47) 1.01 (0.97)
T-val (df) [Effect size - r] 0.74 (15) [0.19] 0.03 (7) [0.01]
F/M ratio for Aromatase protein 1.21 (0.58)
(P-val: 2-tailed) 1.48° (0.26)° 1.61 (0.28)

0.57 (15) [0.14]
T-val (df) [Effect size - r] 1.17° (14) [0.30)° 1.18 (7) [0.41)

*There were no age- and sex-matched samples for 5 of the female controls and for 3 of the male
‘Without outlier for Aromatase protein in Control males; F: Female; M: Male

Figure 1 RORA and aromatase protein in the postmortem frontal cortex (BA9) of females and males. Comparison of RORA (A) and
aromatase (B) protein levels in postmortem tissues from the frontal cortex of control females (n=8) and age-matched control males (n=9) as
well as age-matched females (n =5) and males (n = 4) with ASD. Results were obtained by re-analysis of data from confocal immunofluorescence
analyses of tissue arrays previously reported by Sarachana et al. [30]. The dark bars in the boxes represent the medians, the box limits indicate the
25th and 75th percentiles as determined by the statistical software R, and the whiskers extend 1.5 times the interquartile range from the 25th
and 75th percentiles. The open circle above the boxplot represents an outlier in the aromatase level for control males. The female-to-male (F/M)
protein ratios (shown in C) were calculated based on the average mean fluorescence values for the respective groups, and two-tailed P values,
t-values, and effect sizes are given for the comparisons between the protein levels in females and males.
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(F/M) ratio for aromatase is 1.21. However, these mod-
est differences are not statistically significant (two-tailed
P >0.47 for RORA). There is no apparent sex difference
in RORA protein in the cortex of male and female indi-
viduals with ASD (F/M = 1.01, P = 0.97, effect size = 0.01),
while the F/M ratio for aromatase is 1.61 (P = 0.28). Table 1
summarizes the case-control comparisons of both RORA
and aromatase protein levels for the combined (males +
females) set of ASD and control specimens as well as for
age-matched females and males. While the lower protein
levels for the combined cases vs. combined controls are
statistically significant as previously reported [30], the
nominally lower levels of RORA and aromatase in tissues
from cases are not statistically significant from that of
controls when the samples are divided into age-matched
females and age-matched males. Because the correlation
between RORA and aromatase protein levels was previ-
ously found to be highly correlated for the combined sam-
ples (R*=0.91), we examined the correlation between
these protein levels in both control samples and ASD
samples as a function of sex. Figure 2 shows that the cor-
relation between RORA and aromatase is very high for
both control and ASD male samples (R*>0.96; P <0.01)
as well as for female controls (R* = 0.96; P <0.0001), while
R?is only 0.62 (P =0.11) for samples from ASD females.

Correlation of RORA and target gene expression in

human postmortem brain tissues

Because of the strong correlation between RORA and
aromatase protein levels on tissue arrays of cortical spec-
imens from males and females, we examined the correl-
ation between the mRNA expression of RORA and that
of several validated transcriptional targets of RORA in
postmortem tissues from the prefrontal cortex of male
controls and ASD donors using RT-qPCR data from an
earlier study which investigated genome-wide transcrip-
tional targets of RORA [33]. Table 2 summarizes the
results of the correlation analyses for the expression of
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CYPI9A1, A2BPI, ITPR1, and NGLN1 vs. RORA expres-
sion. As shown, the correlation coefficients are in the
range of 0.72 to 0.99 for the control samples, indicating
a relatively strong positive correlation between expres-
sion of each of these four genes and RORA expression.
Interestingly, the correlation between CYPI19AI1 and
RORA expression is identically high and significant for
both male controls and age-matched ASD males (not
shown) as was seen for the protein correlation in these
groups on tissue arrays (Figure 2), while the correlation
between the other three target genes and RORA are
much lower for cases (R* < 0.36).

Expression of RORA and selected transcriptional targets
of RORA across brain development based on RNAseq

data from BrainSpan

As ASD is a developmental disorder, we examined gender-
related developmental changes in RORA through meta-
analyses of RORA expression using RNAseq data from the
BrainSpan Atlas of Human Development [32]. Here, we
analyzed the expression of RORA and its correlation with
that of three of its transcriptional targets (A2BP1, ITPRI,
and NLGNI) in two brain regions which are involved in
ASD: the orbital prefrontal cortex and the cerebellum.

Orbital prefrontal cortex

Although there is suggestive evidence for sexually di-
morphic expression of RORA in the frontal cortex (pre-
sented above), at present, there is no known biological
or anatomical correlate for this difference between fe-
males and males. However, because a recent magnetic
resonance imaging study on brain morphometric dif-
ferences between adult females and males reported in-
creased volume in the orbital frontal cortex (OFC) of
unaffected females in comparison to age-matched unaf-
fected males [26], we examined RORA expression in this
region across several developmental periods. Figure 3
shows that there are developmental differences but no

Table 1 Comparisons of Aromatase and RORA protein levels in the frontal cortex of cases (A) and controls (C) as a

function of sex

Combined
(12 ASD; 22 controls)

Case/control comparisons
(no. of samples/group)

Age-matched case-control
females (5 ASD; 5 controls)

Age-matched case-control
males (7 ASD; 6 controls)

A/C Ratio of RORA protein 0.68

(P val: 2-tailed) (0.046)

T-val (df) [Effect size - 1] 2.07 (32) [0.34]
A/C Ratio of Aromatase protein 0.56

(P val: 2-tailed) (0.028)

T-val (df) [Effect size - 1] 2.30 (32) [0.38]

077 078

031) (0.46)

1.09 (8) [0.36] 0.76 (11) [0.22]
072 055

031) (.21

111 (8) [0.36] 134 (11) [0.37]

A: ASD cases; C: Controls.

The table shows the case-control (A/C) ratio of RORA and Aromatase protein levels determined by confocal immunofluorescence analyses of tissue arrays
containing specimens from the BA9 region of individuals with ASD and age-matched controls with no evidence of neurodevelopmental disorder. The P values,
t-values, and effect sizes relate to the comparisons of protein levels for cases and controls, each divided by sex.
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CYP19A1 (aromatase) vs. RORA protein level in cortical tissue
Group (#in group) Control_F (8) ASD _F (5) Control_ M (9) ASD_M (4)
Correlation Coefficent 0.98 0.79 0.98 0.99
P-val (2-tailed) <0.0001 0.11 <0.0001 0.01
R 0.96 0.62 0.96 0.98

relationship between aromatase and RORA protein levels.

Figure 2 Correlation between aromatase and RORA protein levels in the frontal cortex of age-matched male and female controls and
age-matched male and female donors with ASD. (A) Correlation between aromatase and RORA protein levels in control females (diamond
shapes) and females with ASD (squares). (B) Correlation between aromatase and RORA protein levels in control males (diamond shapes) and
males with ASD (squares). (C) The table shows the correlation coefficients, P values, and coefficient of determination (R?) values for the

significant sex differences in the average level of RORA
expression in this brain region. There is, however, a
suggestive difference in expression of RORA (F/M = 1.40;
P=0.21, effect size = 0.6) in the adult group (=19 years of
age), which is the age group represented in the imaging
study by Lai et al. [26]. Table 3 and Additional file 4 show
the correlation coefficients and R* plots, respectively, for
the expression of RORA and each of its three target genes
in the OFC in the three defined developmental periods.
For both females and males, there is very little correlation
between RORA expression and that of the three target
genes before birth, but relatively high correlation between

Table 2 Correlation coefficients for RORA and target gene
expression in the postmortem frontal cortex of control
males

Comparison CYP19A1  A2BP1 ITPR1 NLGN1
vs. RORA* vs. RORA vs. RORA vs. RORA

Correlation coefficient  0.99 0.83 0.72 0.81

P val (2-tailed) 0.03 038 049 039

R’ 099 069 052 066

The correlation coefficients between RORA expression and that of several of its
target genes were derived from a re-analysis of previously published gene
expression data [33]. The two-tailed P values for the correlations and the
coefficient of determination (R?) are also shown. Ages of the control male
donors were 19, 22, and 28 years. Not shown are the analogous correlation
data for male donors with ASD, aged 20, 22, and 30 years.

*With the ASD group, the correlation coefficient, P value, and R? was identical
to that of the male controls for the relationship between RORA and CYP19A1,
while the correlation between RORA expression and that of the other three
target genes was low (R? < 0.36).

RORA and all three genes in females in the 0 to 18 years
age group. While the high correlation with NLGNI is
maintained in the adult females, the correlation for two
genes, A2BP1 and ITPRI, decreases in this group. Males,
on the other hand, have a much more variable pattern of
correlations for RORA and these target genes in the OFC,
in which each of the genes exhibits a high correlation with
RORA expression, but in different postnatal periods and,
in one case (A2BP1I), in a negative direction.

The cerebellum

In order to further probe the sexually dimorphic expres-
sion of RORA, we also studied during several develop-
mental periods the expression of RORA in the cerebellar
cortex where it is known to play key roles in develop-
ment and function [34-36]. Moreover, cerebellar pathology
has been consistently reported in ASD [37]. Figure 4
shows that there were no significant sex differences in
RORA expression in the cerebellum of age-matched males
and females at any of these developmental periods. Table 4
and Additional file 5 further show the correlation data and
graphs, respectively, for the expression of RORA and three of
its target genes both before and after birth. Interestingly, the
correlation between the prenatal expression levels of RORA
and all three genes is significantly high (R*>0.96, P <0.04)
for females, but only significantly high for RORA and A2BP1
in males. The postnatal female pattern of correlations be-
tween RORA and the three genes approximately mirrors the
trend seen for correlations in the OFC in females, with high
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Figure 3 Expression of RORA in the human orbital frontal cortex of age-matched females and males as a function of developmental
stage. (A) RORA expression in the orbital frontal cortex (OFC) of age-matched females (F) and males (M) before birth (BB), and at different
intervals after birth (birth to 18 years and 219 years) using RNAseq data from the BrainSpan Atlas of the Developing Human Brain [32]. The
number of females (F) and males (M) included in each developmental period were: BB (6 F:5 M), birth-18 (3 F:3 M), and 2 19 (3 F:3 M). (B) The
table shows the female-to-male (F/M) expression ratios and associated two-tailed P values, t-values, and effect sizes for differences between the
group means for different developmental periods. *For this comparison, a female whose age difference exceeded (by one year) the age-matching
criteria of + 3 years with respect to the male group was excluded from the analyses.

and significant correlations in the 0 to 18 years age group,
and high correlations of lower significance in the adult group.
The pattern of correlations in the male cerebellum after birth
is more variable, as it was in the OFC.

Analysis of Rora and transcriptional target gene
expression in the frontal cortex and cerebellum of
wild-type male and female C57BL/6 mice

Because the genetic heterogeneity of human subjects most
likely influences gene expression [38], thus rendering direct
comparisons of expression data from a limited number of
postmortem samples (n = 3 to 6) insignificant or at best mar-
ginally significant, we conducted pilot studies with male and
female wild-type C57BL/6 mice to address the question of
sexually dimorphic expression of Rora and that of several of
its validated transcriptional targets [33]. Figure 5 shows that,

even with only three mice of each sex, there is a significant dif-
ference between the expression of Rora, Cyp19al, and Nignl
in the cortex of male and female mice (P = 0.008 - 0.026), with
expression of all three genes being higher in the females. The
strength of this association between gene expression and sex
is also reflected in the large effect sizes (0.85 - 0.93) for these
three genes. The expression of A2bpI and Itprl is also nom-
inally higher in females (F/M ratio approximately 1.2), but
the P values for sex differences fall below the standard
level of significance.

Table 5 and Figure 6 show the results of correlation analyses
between the expression of Rora and that of three transcrip-
tional targets in the mouse cortex. It is interesting to note that
when separated by sex, the correlation of expression between
Rora and each of the four targets represented here is much
higher in males than in females, with correlation coefficients
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Table 3 Correlation of RORA and target gene expression in the orbital frontal cortex (OFC) of age-matched females

and males

A2BP1 vs. RORA Females

Group (no. of samples) F_BB (6) F 0-18 (3)
Correlation coefficient -0.68 0.99

P val (2-tailed) 0.13 0.08

R’ 047 098
ITPR1 vs. RORA Females

Group (no. of samples) F_BB (6) F_0-18 (3)
Correlation coefficient 036 0.99

P val (2-tailed) 049 0.10

R’ 0.14 097
NLGNT1 vs. RORA Females

Group (no. of samples) F_BB (6) F_0-18 (3)
Correlation coefficient -0.26 097

P val (2-tailed) 0.61 0.16

R’ 0.08 093

Males

F>19(3) M_BB (5) M_0-18 (3) M >19 (3)

035 -039 0.73 -0.99

0.77 0.51 048 0.09

0.12 0.15 0.54 0.99
Males

F>19(3) M_BB (5) M_0-18 (3) M >19 (3)

0.72 0.29 0.96 -0.76

049 0.64 0.18 045

0.52 0.08 092 0.54
Males

F>19(3) M_BB (5) M_0-18 (3) M >19 (3)

1.00 -052 -0.03 0.95

0.02 037 0.98 0.21

1.00 0.27 0.00 0.90

The correlation coefficients, P values, and R? values are shown for RORA expression and that of A2BP1, ITPR1, and NLGNT across each of the three

developmental periods.

in the range of 0.92 to 0.99 (P values: 0.06 to 0.25), and R?
values (an indicator of effect size) in the range of 0.85 to
0.99. Also of interest is the strongly negative correlation
coefficient (-0.97) between Cypl9al and Rora in
females.

With respect to the cerebellum, there were no signifi-
cant sex differences in the expression of Rora and any of
its target genes. This is comparable to the lack of signifi-
cant sex differences in RORA expression in the human
cerebellum. Table 6 and Figure 7 show that the correl-
ation of Rora expression with that of the target genes is
high for both males and females (R*>0.94), with the
exception of A2bpl in females, for which R* is 0.64. It
should be noted that the high correlation between the
expression of Rora and its targets in both brain regions
of adult male mice is distinctly different from the more
variable patterns seen in the OFC and cerebellum of
adult human males. On the other hand, the correlation
of Rora expression with all three gene targets in the
adult female mouse cerebellum is remarkably similar to
that observed for the analogous correlations in the cere-
bellum of adult human females.

Discussion

This exploratory study on sex differences in the ASD
brain examines the sexually dimorphic expression of
RORA, a functionally relevant candidate gene for autism,
in the postmortem brain tissues of humans and mice, fo-
cusing on the frontal cortex and cerebellum. In addition,
we investigated the correlation of RORA (or Rora) ex-
pression with several of its validated transcriptional

targets in the same brain regions. For this study, we
evaluated data for potential sex differences in RORA/
Rora expression and/or its correlation with the ex-
pression of the transcriptional target genes from four
sources: (1) our published confocal immunofluores-
cence analyses of tissue arrays containing cortical speci-
mens from both male and female donors with ASD and
age-matched controls [30]; (2) our prior gene expres-
sion analyses on frozen postmortem brain tissues from
male controls and ASD donors [33]; (3) the collection
of RNAseq data from the BrainSpan Atlas of the Devel-
oping Human Brain [32]; and (4) de novo expression
analyses of Rora and the orthologous target genes in
mouse brain tissues.

Although there was suggestive evidence for sexually
dimorphic expression of RORA (F/M ratio approxi-
mately 1.2 - 1.4) in the human frontal cortex, these sex
differences were not statistically significant. The lack of
significance for sex differences in RORA expression may
not be surprising given the genetic heterogeneity of hu-
man donors and the limited number of tissues available
for analyses. In this regard, the effect sizes for sex and
ASD influences on RORA expression and protein levels
in the frontal cortex may be more informative because
they are independent of sample size. Notably, the effect
size for RORA protein level in male ASD cases vs. con-
trols is lower (0.22) than the effect size for the female
case—control comparison (0.36) (see Table 1). This dif-
ference suggests a smaller effect of ASD on RORA levels
in males than in females, which may reflect a lower basal
level of RORA in unaffected males relative to that in
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Figure 4 Expression of RORA in the cerebellar cortex of age-matched females and males at different developmental stages. (A) RORA
expression was determined by a meta-analysis of RNAseq data from the BrainSpan Atlas of the Developing Human Brain. The total number of
age-matched females (F) and males (M) included in each developmental period were: BB (4 F:3 M), birth to 18 years (5 F:6 M) and 219 years

(3 F:3 M). (B) The table shows the female-to-male (F/M) expression ratios and associated two-tailed P values, t-values, and effect sizes for
differences between the group means for different developmental periods. *For this comparison, a female whose age difference exceeded

(by 1 year) the age-matching criteria of + 3 years with respect to the male group was excluded from the analyses.

unaffected females. Interestingly, the effect size is virtu-
ally zero (0.01) for sex differences in RORA protein in
ASD cases (see Figure 1), suggesting that both males
and females affected by ASD have a comparably low
level of RORA protein in the frontal cortex. In addition,
the effect size for sex differences in RORA expression
in the OFC of control males and females is at least 0.6
(see Figure 3). Thus, several determinations of effect
size suggest that there may be a modest difference in
the expression of RORA in the frontal cortex of control
males and females which vanishes in males and females
with ASD.

Perhaps of more relevance to the sex bias in ASD are
sex differences in the correlation of RORA expression
with that of some of its target genes in both the cortex
and cerebellum. Studies with wild-type adult male and
female C57BL/6 mice lend support to the existence of

sex differences in RORA expression in the cortex and its
correlation with target gene expression in these two brain
regions. However, although the correlations between
cortical expression of Rora and that of its transcriptional
targets are higher in male mice in comparison to female
mice, the analogous correlations using RNAseq data for
human tissues are more complex and dependent on target
gene and developmental period. It is also possible that the
variability in correlations for human tissues is in part due
to the genetic heterogeneity of the brain donors as well as
the fact that the majority of age-matched samples used for
the RORA-target expression correlations are not from the
same donors. This donor disparity in the BrainSpan
Atlas is in contrast to the samples involved in the
confocal immunofluorescence and gene expression ana-
lyses performed by our laboratory, in which correlations
of protein or gene expression levels (Figure 2 and Table 2,
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Table 4 Correlation of RORA and target gene expression in the cerebellum of age-matched females and males

A2BP1 vs. RORA Females Males

Group (no. of samples) F_BB (4) F_0-18 (5) F>19(3) M_BB (3) M_0-18 (6) M >19 (3)
Correlation coefficient 0.96 0.95 0.82 1.00 0.64 -0.36

P val (2-tailed) 0.04 0.01 0.39 0.05 0.17 0.76

R’ 093 091 067 099 041 0.14
ITPR1 vs. RORA Females Males

Group (no. of samples) F_BB (4) F_0-18 (5) F>19 (3) M_BB (3) M_0-18 (6) M>19 (3)
Correlation coefficient 098 0.95 0.98 0.71 0.89 0.96

P-val (2-tailed) 0.02 0.02 0.14 049 0.02 0.17

R 0.96 0.89 0.95 052 0.79 0.93
NLGN1 vs. RORA Females Males

Group (no. of samples) F_BB (4) F_0-18 (5) F>19 (3) M_BB (3) M_0-18 (6) M>19 (3)
Correlation coefficient 0.99 0.99 0.99 0.90 042 041

P-val (2-tailed) 0.01 0.001 0.07 028 040 0.73

R? 097 0.98 0.99 083 0.18 0.17

The correlation coefficients, P values, and R? values are shown for RORA expression and that of A2BP1, ITPR1, and NLGN1 across each of the three developmental periods.
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Figure 5 Expression of Rora and several of its transcriptional targets* in the frontal cortex of mice. (A) The scatter plot shows the relative
transcript levels of Rora and several of its transcriptional targets (Cyp19al, A2bp1, Itpr1, NignT) in the frontal cortex of female (F) and male (M)
C57BL/6 mice. There are three females and three males per group. (B) Table showing the female-to-male (F/M) expression ratios for each of the
genes analyzed and two-tailed P values, t-values, effect sizes, and power for the comparisons of the group means for females and males. Using
the means and standard deviations for the analyses, power was calculated for a two-sided t-test with three samples/group for which a was set at
0.05. *The transcriptional targets in mice were inferred based on RORA promoter binding analysis in SH-SY5Y cells [33].
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Table 5 Correlation of Rora and target gene expression
levels in the frontal cortex of adult male and female mice
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Table 6 Correlation of Rora and target gene expression
levels in the cerebellum of adult male and female mice

Cyp19a1 vs. Rora All Males Females A2bp1 vs. Rora All Males Females
Correlation coefficient 0.63 092 -097 Correlation coefficient 0.74 1.00 0.80
P val (2-tailed) 0.18 0.25 0.16 P val (2-tailed) 0.09 0.07 041
R’ 04 085 0.94 R’ 055 1.00 0.64
A2bp1 vs. Rora All Males Females Itpr1 vs. Rora All Males Females
Correlation coefficient 0.68 0.99 0.13 Correlation coefficient 0.95 097 0.99
P val (2-tailed) 0.13 0.06 092 P val (2-tailed) 0.003 0.16 0.09
R’ 046 099 002 R’ 091 094 098
Itpr1 vs. Rora All Males Females  NIgn1 vs. Rora All Males Females
Correlation coefficient 0.59 0.96 -040 Correlation coefficient 0.99 1.00 1.00
P val (2-tailed) 022 0.18 0.74 P val (2-tailed) 0.0001 0.05 0.04
R? 035 092 0.16 R 099 099 1.00
Nign1 vs. Rora All Males Females The correlation coefficients, P values, and R? values are shown for Rora

. o expression and that of A2bp1, Itpr1, and Nign1. Three male and three female
Correlation coefficient 0.96 0.95 045 mice were used for each group. The expression values for Cyp79a1 in the
P val (2-tailed) 0.002 02 07 cerebellum were either zero or too low to be confidently included in

’ ’ ’ this analysis.

R’ 0.92 09 0.2

The correlation coefficients, P values, and R? values are shown for Rora
expression and that of Cyp19al, A2bp1, Itpr1, and Nign1. Three male and three
female mice were used for each group.

respectively) were determined for RORA and targets in
the same samples, resulting in consistently higher and
positive correlations. The following sections first high-
light the principal findings of this study, and then dis-
cuss the implications of these findings with respect to
the potential contribution of RORA to the sex bias and
pathobiology of ASD.

Comparison of RORA and aromatase protein levels in the
frontal cortex

Although there were no statistically significant sex
differences in RORA and aromatase protein levels in the
cortical specimens on the tissue array (Figure 1), the
correlation analyses show that the protein levels for both
RORA and aromatase in ASD cases (age-matched
females and males) fall at the lower end of the range of
protein levels for control females and males (Figure 2).
However, the correlation between these protein levels is
higher for ASD males than for ASD females, which may
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Figure 6 Correlation between target gene expression and that of Rora in the frontal cortex of mice. Red: females; Blue: males.
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Figure 7 Correlation between target gene expression and that of Rora in the cerebellum of mice. Red: females; Blue: males.

relate to sex differences in the response to RORA defi-
ciency. Notably, there is a greater percent reduction in
aromatase protein in ASD males in comparison to ASD
females, suggesting that females may be better able to
offset aromatase deficiency caused by RORA deficiency
through compensatory mechanisms.

Correlation of gene expression levels in the frontal cortex
Table 2 reveals a significantly high correlation between
the expression of RORA and that of CYPI9A1 (the gene
coding for aromatase) in frozen postmortem cortical

tissues from both control and ASD males. This high
correlation at the level of gene expression thus reflects
the high correlation seen at the protein level for male
cases and controls. The strong and positive correlation
between CYP19A1 and RORA protein levels suggests
that a deficiency in aromatase is likely to result in higher
testosterone (and lower estradiol) levels in the presence
of RORA deficiency. Physiological disturbances in either
of these hormones during critical periods of develop-
ment may result in impaired neurological development
and function, as discussed later.
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Analysis of RNAseq data for RORA and several of its
transcriptional targets in the orbital frontal cortex (OFC)
and cerebellum

RNAseq data from the BrainSpan Atlas was used as an
experimental tool to explore sexually dimorphic expres-
sion of RORA and that of its target genes in different
human brain regions across different developmental pe-
riods. Although there were no statistically significant sex
differences in RORA expression in the OFC and cerebel-
lum (Figures 3 and 4), there was a suggestively higher
expression (and a correspondingly larger effect size) in
the OFC of adult females in comparison to age-matched
males, with an F/M ratio comparable to that observed
for RORA protein in the frontal cortex (Figure 1). Of
potentially greater interest are the sex differences in the
correlation between RORA expression and that of its
transcriptional targets, specifically A2BPI (RBFOX1I),
ITPRI, and NLGNI, summarized in Tables 3 and 4.
However, the sex-dependent correlations are complex,
being dependent on both brain region and period of
development. In the OFC before birth where the expres-
sion of RORA is very low (approximately 10% of that in
the cerebellum), there is virtually no correlation between
RORA expression and that of any of the three target
genes in either females or males. This suggests that
RORA may not play a major role in the prenatal devel-
opment of this brain region, in contrast to the critical
role of RORA in development of the cerebellum [34],
where the level of RORA expression is consistently high
in both males and females across all developmental
stages. The correlation patterns in the cerebellum are
also different from the OFC, with females exhibiting
significantly high correlations between RORA expression
and that of the target genes through age 18, while the
correlation pattern is more variable for males (Table 4),
with each target gene showing a high correlation in at
least one developmental period. Because some of this
variability may be due to the mismatch of tissue donors
(though age-matched) for the RNAseq studies which
may confound correlation analyses, we performed gene
expression analyses of Rora and the orthologous target
genes in the cortex and cerebellum of a strain of adult
male and female mice.

Sexually dimorphic expression of Rora and its
transcriptional targets in the mouse brain

The strongest evidence for sexually dimorphic expression
of RORA in the brain is provided by the pilot studies using
wild-type adult male and female C57BL/6 mice. Here, we
show sex-dependent differences in the cortical expression
of Rora and two of its transcriptional targets, Cypl9al
and Nignl, with expression of all three being significantly
higher in females, which is also consistent with the large
effect sizes for these genes. Power analyses, based on the
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expression data for these three genes, indicate sufficient
power (=0.98) to detect significant differences, even with
only three mice per group. In part, these results using gen-
etically homogeneous female and male mice support the
sex differences in RORA protein that were suggested by
our confocal immunofluorescence analyses of postmortem
tissue specimens from the frontal cortex of males and fe-
males as well as that suggested by RNAseq data from the
OFC of donors =19 years of age. However, there were no
significant differences in Rora and target gene expression
in the mouse cerebellum, mirroring the results of our
analyses of the RNAseq data from the human cerebellum.

Correlation of Rora and target gene expression in the
mouse brain

Unlike the variable correlations of RORA and target gene
expression in the brain of genetically heterogeneous
human males and females, the correlations derived from
the adult male and female mouse brain may be more in-
formative and relevant to sex differences that potentially
impact brain function. Interestingly, the correlation coef-
ficients are high between Rora and all targets (including
Cyp19al) in the male cortex but variable and generally
lower in the female cortex (Table 5). In contrast, the
Rora-target gene correlations in the cerebellum are com-
parably high for both males and females with respect to
all targets except for A2bpl in females (Table 6). Based
on the more than 2,500 putative transcriptional targets
of RORA that were identified by our previous chromatin
immunoprecipitation-promoter chip hybridization (ChIP-
on-chip) analyses [33], the higher correlation between the
expression levels of Rora and each of its transcriptional
targets suggests that Rora deficiency may have a greater
impact on neurological development and function in
males than in females, especially in the cortex. This is
particularly relevant since over 400 of the identified
transcriptional targets of RORA are listed in SFARI Gene
and AutismKB databases as autism candidate/susceptibil-
ity genes [14,15]. Moreover, RORA and estrogen receptor
(ER) are both nuclear receptors that share the same DNA
consensus binding sites and regulate the transcription of
some of the same genes [39]. Thus, the higher concentra-
tion of estrogen, which has been demonstrated even in
prepubescent females versus age-matched males [40], may
offset the loss of transcriptional control due to RORA de-
ficiency by activating ER-mediated transcription, resulting
in a lesser impact on neurological development in females.
Also intriguing is the strong negative correlation coef-
ficient between Rora and Cypl19al expression levels in
female mice. In contrast to the expected increase in
Cypl9al (aromatase) expression with increasing Rora
expression which is seen in males, it is possible that
aromatase expression in vivo is instead tightly regulated
to maintain estrogen homeostasis (that is, to prevent
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overproduction of estrogen) in females under normal
conditions. Such homeostatic regulation of estrogen in
females is particularly important inasmuch as RORA
and ER share overlapping transcriptional targets.

Complex regulation of RORA expression in the brain
Regardless of sex differences, the underlying mechanisms
driving regional and developmental differences in RORA
expression, such as those seen in the OFC, are unclear.
Recently, we described differential recruitment of co-
regulator proteins that are involved in the sex hormone-
dependent regulation of RORA in the SH-SY5Y neuronal
cell model [41]. We demonstrated that estrogen-mediated
upregulation of RORA expression required both the
estrogen receptor (ER-alpha) and the coactivator NCOAS5,
while androgen (DHT)-mediated downregulation of
RORA required the androgen receptor (AR) and the
corepressor function of SUMOL. Thus, the regional
and temporal patterns of RORA expression in males
and females during development may reflect both the
tissue-dependent and developmental patterns of co-
regulator and/or sex hormone receptor expression in
the respective brain regions. Likewise, transcriptional
regulation of target genes by RORA, a nuclear receptor
whose function requires interaction with co-regulator
proteins, is also dependent on the regional and tem-
poral patterns of co-regulator expression.

A model connecting RORA to the sex bias in autism

Based on our previous studies showing the reciprocal
regulatory relationship between RORA and the sex
hormones, we proposed a mechanistic model in which
RORA deficiency may biochemically explain the increase
in testosterone in ASD, which has been reported by
Baron-Cohen and colleagues [21,23]. The strong correl-
ation between RORA and aromatase protein and gene
expression levels in the human brain from our earlier
study [30] and this study lends support to this model
explaining, in part, the higher testosterone levels associ-
ated with some cases of ASD. However, the question
regarding a direct role for RORA in the sex bias of ASD
remains unresolved since there were no significant sex
differences in RORA expression, despite a marginally
higher level of RORA expression in the frontal cortex of
normal adult females. Indeed, whether a 20% to 40%
higher level of RORA expression in females can protect
against genetically, physiologically, or environmentally-
induced RORA deficiency during critical periods of de-
velopment remains to be determined, possibly by using
gene-knockdown animal models. It is noted that the
levels of RORA protein in the cortex of male and female
individuals with ASD are quite similar (Figure 1), per-
haps reinforcing the idea of a ‘higher threshold for ASD
in females’ which may include greater tolerance to RORA
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deficiency down to a level at which some of the pathobio-
logical processes associated with ASD are triggered. At
present, it is unclear what the functional consequences
might be for sex differences in RORA expression, particu-
larly in the adult OFC. However, given the known neuro-
protective function of RORA [42-46], it is worth noting
that the reported volume of the OFC is greater in female
than in male adults [26]. With respect to sex bias in ASD,
perhaps of more importance than RORA expression per se
is the correlation between RORA expression and that of
its transcriptional targets, the functions of which are
described in the next section.

RORA, a molecular link between sex hormones,
neurodevelopment, and autism pathobiology

The involvement of sex hormones in brain development
has been well-documented [47-50], yet the precise mo-
lecular mechanisms through which the hormones affect
neuronal processes, such as neurogenesis, neuron migra-
tion, synaptogenesis, synaptic plasticity, axon guidance,
and dendrite formation, are not well understood. Equally
unclear are the mechanisms through which the sex
hormones (in particular estradiol) mediate the observed
sexually dimorphic effects on dendritic spine formation
and synaptogenesis in certain brain regions during de-
velopment [51,52]. A reasonable assumption is that these
hormones act through their respective hormone receptors.
However, although there is little evidence for genetic or
functional alterations of the primary estrogen and andro-
gen receptors (ERa and AR) in a significant number of
ASD cases, homeostatic imbalance of their circulating
hormones (for example, through altered aromatase
expression) will inevitably alter receptor activation.

We suggest that RORA may be a molecular link bet-
ween the sex hormones and neurodevelopment as well as
a mediator of at least some of the pathobiological pro-
cesses associated with autism. While RORA is a known
regulator of circadian rhythm [53] which in turn has been
linked to synaptic regulation [54], it is also a nuclear
hormone receptor that is involved in the transcriptional
regulation of many genes in different tissues, thus exhibit-
ing tissue-dependent pleiotropic effects. In a neuronal cell
model, we have demonstrated that RORA can bind to
the promoter regions of over 2,500 genes, 438 of which
are included in autism gene databases [14,15]. Gene
ontology analyses of the putative gene targets of RORA
revealed significant overrepresentation of genes involved
in neuronal differentiation, neuron projection morpho-
genesis, axonogenesis, and axon guidance. We validated
six transcriptional targets of RORA (A2BP1, CYPI9AI,
HSD17B10, ITPR1, NLGNI, and NTRK?2) and, in this
study, investigated the correlation between the expres-
sion of RORA and that of four of these targets in both
the human and mouse brain. With regard to functional
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relevance, A2BPI, also known as RBFOX1I, codes for a
neuron-specific splicing factor associated with synaptic
transmission, neurodevelopment, and developmental
delay [55,56]. Furthermore, A2BP1/RBFOXI has been
recently highlighted by a whole exome sequencing study
as an evolutionarily constrained gene that regulates the
splicing of a large number of other genes identified with
high-confidence as ASD risk genes [57]. Interestingly, this
study, which utilized a novel statistical model that inte-
grated transmission and de novo association (TADA)
analyses, also identified NLGN1 as one of the synaptic
proteins encoded by the TADA genes, which included a
number of other still unvalidated transcriptional targets of
RORA (specifically, ANK2, APHIA, CACNA1D, HOMER,
MYO9B, NR3C2, and TRIO). These strong genetic asso-
ciations of putative RORA targets with ASD risk further
suggest that RORA deficiency may have a large impact on
neuronal functions disrupted in autism. Other neurolo-
gically relevant validated targets of RORA include ITPR1,
a calcium signaling molecule involved in synaptogenesis,
plasticity, dendritic contact, and long-term depression
[58,59], and NTRK2, a neurotrophin kinase also involved
in axon guidance, synaptogenesis, plasticity, mood dis-
order, and learning [60,61]. On the other hand, CYPI9A1
and HSD17BI10 both code for metabolic enzymes involved
in the conversion of testosterone to estradiol, suggesting
that RORA deficiency may inhibit both biochemical path-
ways, thus exacerbating the expected increase in testoster-
one or depletion of estradiol. At present, it is not known
what homeostatic mechanisms might restore the hormo-
nal balance when both of these pathways are inhibited.
Moreover, although our model predicts that testosterone
levels would increase when RORA (and aromatase) are
decreased, there is no information to date on the sex hor-
mone levels in brain tissues that are RORA-deficient. It
should be mentioned that, although the sex hormone sta-
tus and possible hormonal imbalance in the heterozygous
staggerer (Rora*"*€) mouse has been discussed at length by
Doulazmi et al. [45], our study on the regulation of RORA
by sex hormones as well as the regulation of CYP19A1 by
RORA only recently demonstrated these associations in a
neuronal cell model [30]. With respect to neurological
functions, CYP19A1 (aromatase) is associated with neuro-
genesis, neuronal differentiation, synaptic plasticity, and
social cognition [62-65], while HSDI17B10 is associated
with mitochondrial integrity, mental retardation, and lan-
guage impairment [66-70], therefore extending the impact
of their dysregulation beyond endocrine metabolism.
Thus, the neuronal activities and high level neurological
functions associated with these validated transcriptional
targets of RORA suggest a mechanism for induction of
autism brain pathology driven by sex hormones under
conditions of RORA deficiency. Finally, we suggest that
RORA deficiency may be the direct result of genetic [71]
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and epigenetic modifications of RORA [29], and/or gene-
environment interactions. With respect to GxE interac-
tions, RORA expression may be dysregulated by intrinsic
metabolic or physiological conditions (for example, sex
hormone imbalance due to alterations in the steroid hor-
mone biosynthetic pathways [20,28,72]) or by extrinsic
environmental factors, such as endocrine disrupting
compounds, which are known to interfere with normal
hormonal signaling [73-76].

Limitations and future directions

While this exploratory study provides suggestive evidence
for sexually dimorphic expression of RORA in certain
brain regions during development, the major limitation is
a lack of sufficient postmortem brain samples to reveal
statistically significant expression differences between
males and females. Power analyses, based on the human
data reported in this study, indicate that at least 121
samples per group would be necessary to significantly
detect a 20% difference in the level of RORA expression
between males and females with a power of 0.8. The
lack of sufficient samples is further compounded by the
need to divide the available samples into subgroups to
evaluate sex-dependent differences in gene expression
across development.

Another confounding factor is the genetic and pheno-
typic heterogeneity of the brain donors as there is ample
evidence that genetics influences gene expression which,
in turn, controls phenotype. Indeed, aside from not hav-
ing ASD or any other diagnosed neurodevelopmental
disorder, the behavioral phenotypes of the control brain
donors are unknown. This pilot study using BrainSpan
data will help to direct attention to certain brain regions
and developmental stages in which sex differences in the
expression of RORA and/or regulation of its target genes
are suggested. This study also suggests that any study of
sex-dependent differences in gene expression in the brain
must take into account both regional and developmental
changes in gene expression.

Regarding the issue of genetic heterogeneity, mouse
strains are much more homogeneous with respect to
genotype, but individual expression differences are still
apparent even within a strain. Some of these differences,
especially in post-pubertal females, may be due to hor-
monal cycling, so future studies on sex differences in gene
expression should utilize more hormonally-synchronized
female mice. At present, it is not possible to predict how
estrous synchronization of female mice would affect sex
hormone levels in the brain and the impact on neuronal
expression of Rora. It is further noted that the effects of
sex steroids in the brain are also mediated by the local
synthesis of neurosteroids [63], and may not be directly
correlated to circulating hormonal levels. Interestingly,
there is greater variance in RORA expression among the
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brain tissue samples from human females included in this
study, especially in the later stages of development. In
analogy to studies with human brain tissues, studies using
animal models to study sex differences in gene expression
should also include different brain regions and develop-
mental periods.

Finally, despite the obvious advantages of studying sex-
dependent differences in gene expression in an animal
model where genotype and other physiological conditions
can be better controlled to reduce heterogeneity, it should
be kept in mind that regulation of gene expression in the
human brain is likely to be much more complex than in
mouse brain. This complexity is in part suggested by the
differences in correlation coefficients for the expression
of RORA/Rora and its respective target genes in male
humans and male mice, where the correlation coeffi-
cients are generally higher in the mouse. Some of these
differences may be due to species-dependent differential
expression and recruitment of co-regulators or hormone
receptors, and/or species differences in epigenetic regula-
tion and alternative splicing.

Conclusions

Through analyses of pre-existing confocal immunofluor-
escence and gene expression data from our laboratory
and publicly available RNAseq data, we present suggest-
ive evidence that RORA may exhibit sex-dependent dif-
ferences in gene expression in the human brain that are
dependent on both brain region as well as stage of devel-
opment. Significant sex differences in Rora and target
gene expression are more readily observed in the cortex
of a genetically homogeneous mouse model. With re-
spect to gene expression in the mouse cortex, the stron-
ger correlation between Rora and target gene expression
in male mice in comparison to female mice suggests that
Rora deficiency may have a greater impact on down-
stream events affecting neurological development and
function in males in comparison to females. While sex
differences in the correlation of RORA expression with
that of its gene targets in the human brain are more
complex, the consistently strong correlation between
RORA and CYP19A1 protein and gene expression levels
in our small number of postmortem human samples
supports our proposed model for the involvement of
RORA deficiency in the higher testosterone levels asso-
ciated with increased risk for ASD.
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