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Insulin-like growth factor-1 rescues synaptic and
motor deficits in a mouse model of autism and
developmental delay
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Abstract

Background: Haploinsufficiency of SHANK3, due to either hemizygous gene deletion (termed 22q13 deletion
syndrome or Phelan-McDermid syndrome) or to gene mutation, accounts for about 0.5% of the cases of autism
spectrum disorder (ASD) and/or developmental delay, and there is evidence for a wider role for SHANK3 and
glutamate signaling abnormalities in ASD and related conditions. Therapeutic approaches that reverse deficits in
SHANK3-haploinsufficiency may therefore be broadly beneficial in ASD and in developmental delay.

Findings: We observed that daily intraperitoneal injections of human insulin-like growth factor 1 (IGF-1) over a
2-week period reversed deficits in hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
signaling, long-term potentiation (LTP), and motor performance that we had previously reported in Shank3-deficient
mice. Positive effects were observed with an IGF-1 peptide derivative as well.

Conclusions: We observed significant beneficial effects of IGF-1 in a mouse model of ASD and of developmental
delay. Studies in mouse and human neuronal models of Rett syndrome also show benefits with IGF-1, raising the
possibility that this compound may have benefits broadly in ASD and related conditions, even with differing
molecular etiology. Given the extensive safety data for IGF-1 in children with short stature due to primary IGF-1
deficiency, IGF-1 is an attractive candidate for controlled clinical trials in SHANK3-deficiency and in ASD.
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Phelan-McDermid syndrome
Findings
SHANK proteins are master scaffolding proteins of the
postsynaptic density (PSD) of glutamatergic synapses
and are critical determinants of glutamate transmission
and synaptic spine dynamics [1]. Loss of one functional
copy of SHANK3 accounts for about 0.5% of the cases of
autism spectrum disorder (ASD) and/or developmental
delay [2], and there is likely a wider role for SHANK3
and glutamate signaling abnormalities in ASD and
related neurodevelopmental disorders [3,4]. Targeted
disruption of the full-length form of Shank3 (sometimes
called Shank3a) in mice leads to deficits in hippocampal
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AMPA signaling, long-term potentiation (LTP), and
motor performance [5-7], likely reflecting delayed synap-
tic development as shown by the reduced AMPA signal-
ing [5] and decreased levels of PSD-95 (unpublished
results). IGF-1, which enters the central nervous system
(CNS) through an interaction with lipoprotein-related
receptor 1 (LRP1) [8], has multiple effects on neuronal
and synaptic development and function, including effects
on neurogenesis and synaptogenesis [9]. IGF-1 treatment
also enhances the PSD as measured both by PSD length
and by levels of PSD-95 [10,11]. Recombinant human
IGF-1 has substantial human safety data and is approved
for use in children, making IGF-1 an attractive com-
pound for evaluation in neurodevelopmental disorders.
To investigate whether IGF-1 could reverse deficits in

a preclinical model of SHANK3-haploinsufficiency, we
made use of a mouse with hemizygous loss of full-length
Shank3 due to targeted disruption of the ankyrin repeat
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:joseph.buxbaum@mssm.edu
http://creativecommons.org/licenses/by/2.0


Bozdagi et al. Molecular Autism 2013, 4:9 Page 2 of 4
http://www.molecularautism.com/content/4/1/9
domain (ARD) [5]. This isoform has been directly impli-
cated in ASD, language delay, and intellectual disability
(ID), as there exist disruptive de novo point mutations in
ARD in patients with ASD and ID [12,13]. In all studies,
we compared heterozygous mice with wild-type litter-
mates using heterozygote × heterozygote mating. Con-
sistent with previous results from our group [5], LTP
induced by high-frequency stimulation was reduced in
the heterozygous mice compared to wild-type littermates
in the current experiments (Figures 1a and 2a) (for
Figure 1 (1–3)IGF-1 reverses deficits in LTP and basal synaptic
properties in Shank3-deficient mice. Wild-type (WT) and
heterozygous (Het) mice were treated with saline or (1–3)IGF-1 for 2
weeks before testing (injections began at postnatal day (PND) 13 to 15
and animals were analyzed immediately after the last injection). Methods
for all experiments were as described previously [5], with 3 to 4 mice per
group, and 1 to 2 slices per animal. (a) Hippocampal LTP was induced
with high-frequency stimulation. Inset: Representative excitatory
postsynaptic potential traces at 90 min after LTP induction from
saline-injected (1) and (1–3)IGF-1-injected (2) heterozygous mice (scale
bar: 0.5 mV, 10 ms). (b) Input–output curves comparing field excitatory
postsynaptic potential (EPSP) slopes (mV/ms) as a function of stimulation
intensity (mA). EPSP: excitatory postsynaptic potential; Het: heterozygous;
LTP: long-term potentiation; PND: postnatal day; WT: wild-type.
example, in Figure 2a, repeated measures ANOVA was
used for analysis of the last five time points, F(1,6) =
33.71, P = 0.001).
We first tested an active peptide derivative of IGF-1,

(1–3)IGF-1, which has been shown to cross the blood–
brain barrier and rescue Rett syndrome symptoms in
Mecp2-deficient mice [11]. We observed that intraperi-
toneal injections at 10 μg/g/day for 2 weeks restored
normal hippocampal LTP in Shank3 heterozygous mice
but had no effect on wild-type mice (repeated measures
ANOVA was used to analyze the last five time points,
F(3,11) = 6.07, P = 0.011). In post hoc analyses, vehicle-
treated heterozygous mice were significantly different from
wild-type mice (P = 0.004), while (1–3)IGF-1 treated het-
erozygous mice were not (P = 0.66). Furthermore, peptide
treatment reversed deficits in the mean slope of the input/
output (I/O) function (Figure 1b) (one-way ANOVA,
F(3,19) = 4.25, P = 0.02). Vehicle-treated heterozygous
mice were significantly different from vehicle-treated
wild-type mice (P = 0.001), while (1–3)IGF-1 treated
heterozygous mice were not different from vehicle-
treated wild-type (P = 0.89), and there were no signifi-
cant differences between vehicle-treated wild-type mice
and wild-type mice treated with IGF-1 (P = 0.812), so
further studies used just three conditions.
We next administered full-length IGF-1, like that used

in children with short stature due to primary IGF-1 defi-
ciency, by intraperitoneal injection at 240 μg/kg/day,
starting at PND 13 to 15 and continuing for 2 weeks
(Figure 2a). This dose, chosen because it represents the
maximum dose according to the current FDA label for
IGF-1, was effective in rescuing deficits in LTP (repeated
measures ANOVA was used to analyze the last five time
points, comparing heterozygous mice with and without
IGF-1, F(1,6)=28.04, P=0.002). In contrast, lower dose IGF-
1 (120 μg/kg/day for 2 weeks) was associated with more
modest reversal of deficits in LTP (for the last five time
points: F(1,6)=2.62, P=0.012), showing a dose–response
effect and providing preclinical dosing information.
Specific deficits in the glutamate AMPA receptor compo-

nent of neural signaling [5] were also reversed by a 2-week
treatment of 240 μg/kg/day full-length IGF-1 (Figure 2b).
The mean slope of the I/O function was 0.50 ± 0.14 for
wild-type, 0.34 ± 0.06 for Shank3 heterozygotes and 0.61 ±
0.059 for IGF-1 injected heterozygotes (one-way ANOVA,
F(2,9) = 8.62, P = 0.008). In post hoc analyses, vehicle-
treated heterozygous mice were significantly different
from vehicle-treated wild-type mice (P = 0.039), while
IGF-1-treated heterozygous mice were not different from
vehicle-treated wild-type mice (P = 0.12).
Patients with SHANK3-haploinsufficiency frequently

present with hypotonia and motor deficits of variable se-
verity, and we have observed subtle motor deficits in
Shank3-heterozygous mice [5,7]. After treating male



Figure 2 IGF-1 reverses deficits in LTP, AMPA signaling, and
motor function in Shank3-deficient mice. Wild-type (WT) and
heterozygous (Het) mice were treated with saline or recombinant
human IGF-1 (rhIGF-1) for 2 weeks (beginning at PND 13 to 15) before
testing and analyzed immediately after the last injection. Methods for all
experiments were as described previously [5,7], with 4 to 9 mice per
group. (a) Hippocampal LTP was induced with high-frequency
stimulation. Inset: Representative excitatory postsynaptic potential traces
at 90 min after LTP induction from saline-injected (1) and rhIGF-1
-injected (2) heterozygous mice (scale bar: 0.5 mV, 10 ms). (b) Slices
were incubated in the presence of the N-Methyl-D-aspartate (NMDA)
antagonist R-2-amino-5-phosphonopentanoate (APV) to expose AMPA
receptor signaling. (c) Mice were tested for motor performance and
motor learning by measuring latencies to fall off a rotating rod over
three trials. Het: heterozygous; LTP: long-term potentiation; NMDA: N-
Methyl-D-aspartate; rhIGF-1: recombinant human IGF-1; WT: wild-type.
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heterozygous mice with 240 μg/kg/day for 2 weeks, we
observed enhanced motor performance following treat-
ment (Figure 2c) (F(2,20) = 3.98, P = 0.03).
Our results provide preclinical evidence for a benefi-

cial role for IGF-1 in SHANK3-haploinsufficiency. More-
over, as there is emerging evidence that the SHANK3
pathway and the postsynaptic density, which it helps
sculpt, play a role in many neurodevelopmental disor-
ders, as evidenced by large-scale genetic, proteomic, and
gene expression studies [3,4,14], therapies for SHANK3
deficiency and synaptic development represent import-
ant targets that could have a widespread positive impact
for neurodevelopmental disorders. The beneficial effects
of IGF-1 in models of Rett syndrome [11,15] are consist-
ent with this hypothesis.
There are some limitations to the current study. We,

and others working with similar Shank3-deficient mice,
see only limited behavioral abnormalities, with none ex-
cept for rotarod deficits at the ages where we carried out
the IGF-1 treatments and electrophysiological studies.
For this reason, the phenotypes we measure are some-
what limited. In addition, a mechanistic understanding
of the neuronal effects of IGF-1 has eluded the neurosci-
ence community and we cannot precisely explain how
IGF-1 reverses the deficits observed. We do hope, how-
ever, that our findings, together with those on IGF-1 in
Rett syndrome models, may help spur further research
on the action of IGF-1 in the CNS. We did not see any
effect produced by the (1–3)IGF-1 peptide on control
animals but we did not test the effects of full-length
IGF-1 on wild-type mice. There could be enhanced LTP
or rotarod performance in control animals following
treatment with full-length IGF-1. Many drugs have ef-
fects on both healthy and non-healthy individuals and
there is hence no a priori reason to assume that IGF-1
has no effect on control animals. In fact, given the posi-
tive effects of IGF-1 in Rett syndrome models it is likely
that IGF-1 has a general effect on CNS function, which
might also be observed in controls.
In summary, our results show that IGF-1, approved

for use in children, can lead to functional improvements
in a mouse model of ASD and developmental delay,
representing an important preclinical step towards
novel therapeutics. Clinical trials of IGF-1 in SHANK3-
deficient individuals and in ASD are now underway
(ClinicalTrials.gov Identifier NCT01525901).
Abbreviations
ARD: Ankyrin repeat domain; ASD: Autism spectrum disorder; AMPA:
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; CNS: Central nervous
system; EPSP: Excitatory postsynaptic potential; Het: Heterozygous;
ID: Intellectual disability; IGF-1: Insulin-like growth factor 1; I/O: Input/output;
LRP1: Lipoprotein-related receptor 1; LTP: Long-term potentiation; NMDA:
N-Methyl-D-aspartate; PND: Postnatal day; PSD: Postsynaptic density;
rhIGF-1: Recombinant human IGF-1; WT: Wild-type.



Bozdagi et al. Molecular Autism 2013, 4:9 Page 4 of 4
http://www.molecularautism.com/content/4/1/9
Competing interests
OB and JDB have submitted a patent on this work.

Authors’ contributions
OB and JDB designed the experiments, interpreted the results, and prepared
the manuscript. OB carried out all electrophysiological and behavioral
studies. TT analyzed the results and help in aspects of experimental design.
All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Seaver Foundation, the Simons Foundation,
the NIMH (grant R01MH093725 to JDB), and by a gift from William Gibson
and Paulina Rychenkova, PhD. We thank Catalina Betancur for helpful
comments. Aspects of this work were presented at annual meetings of The
Society for Neuroscience (2010, 2011) and the American Society of Human
Genetics (2010), and at Phelan-McDermid Syndrome symposia (2011, 2012).

Author details
1Seaver Autism Center for Research and Treatment, Icahn School of Medicine
at Mount Sinai, New York, NY, USA. 2Department of Psychiatry, Icahn School
of Medicine at Mount Sinai, New York, NY, USA. 3Department of
Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
4Department of Genetics and Genomics Sciences, Icahn School of Medicine
at Mount Sinai, New York, NY, USA. 5Friedman Brain Institute, Icahn School of
Medicine at Mount Sinai, New York, NY, USA. 6Mindich Child Health and
Development Institute, Icahn School of Medicine at Mount Sinai, New York,
NY, USA.

Received: 2 January 2013 Accepted: 16 April 2013
Published: 27 April 2013

References
1. Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED: ProSAP/Shank

proteins - a family of higher order organizing molecules of the
postsynaptic density with an emerging role in human neurological
disease. J Neurochem 2002, 81(5):903–910.

2. Abrahams BS, Geschwind DH: Advances in autism genetics: on the
threshold of a new neurobiology. Nat Rev Genet 2008, 9(5):341–355.

3. Sakai Y, Shaw CA, Dawson BC, Dugas DV, Al-Mohtaseb Z, Hill DE, et al:
Protein interactome reveals converging molecular pathways among
autism disorders. Sci Transl Med 2011, 3(86):86ra49.

4. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al:
FMRP stalls ribosomal translocation on mRNAs linked to synaptic
function and autism. Cell 2011, 146(2):247–261.

5. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N,
et al: Haploinsufficiency of the autism-associated Shank3 gene leads to
deficits in synaptic function, social interaction, and social
communication. Mol Aut 2010, 1(1):15.

6. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al: Synaptic
dysfunction and abnormal behaviors in mice lacking major isoforms of
Shank3. Hum Mol Genet 2011, 20(15):3093–3108.

7. Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, et al:
Reduced excitatory neurotransmission and mild autism-relevant
phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012,
32(19):6525–6541.

8. Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, et al:
Neuronal activity drives localized blood–brain-barrier transport of serum
insulin-like growth factor-I into the CNS. Neuron 2010, 67(5):834–846.

9. O’Kusky JR, Ye P, D’Ercole AJ: Insulin-like growth factor-I promotes
neurogenesis and synaptogenesis in the hippocampal dentate gyrus
during postnatal development. J Neurosci 2000, 20(22):8435–8442.

10. Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso-Bechtold JK: Differential
effects of aging and insulin-like growth factor-1 on synapses in CA1 of
rat hippocampus. Cereb Cortex 2005, 15(5):571–577.

11. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al: Partial
reversal of Rett syndrome-like symptoms in MeCP2 mutant mice.
Proc Natl Acad Sci USA 2009, 106(6):2029–2034.

12. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al:
Contribution of SHANK3 mutations to autism spectrum disorder.
Am J Hum Genet 2007, 81(6):1289–1297.
13. Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, et al: Excess
of de novo deleterious mutations in genes associated with glutamatergic
systems in nonsyndromic intellectual disability. Am J Hum Genet 2011,
88(3):306–316.

14. Laumonnier F, Cuthbert PC, Grant SG: The role of neuronal complexes in
human X-linked brain diseases. Am J Hum Genet 2007, 80(2):205–220.

15. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al: A model for
neural development and treatment of Rett syndrome using human
induced pluripotent stem cells. Cell 2010, 143(4):527–539.

doi:10.1186/2040-2392-4-9
Cite this article as: Bozdagi et al.: Insulin-like growth factor-1 rescues
synaptic and motor deficits in a mouse model of autism and
developmental delay. Molecular Autism 2013 4:9.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Findings
	Conclusions

	Findings
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

