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Abstract

Background: Candidate genes associated with idiopathic forms of autism overlap with other disorders including
fragile X syndrome. Our laboratory has previously shown reduction in fragile X mental retardation protein (FMRP)
and increase in metabotropic glutamate receptor 5 (mGluR5) in cerebellar vermis and superior frontal cortex (BA9)
of individuals with autism.

Methods: In the current study we have investigated expression of four targets of FMRP and mGluR5
signaling - homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1
(RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in the cerebellar vermis and superior frontal
cortex (BA9) via SDS-PAGE and western blotting. Data were analyzed based on stratification with respect to age
(children and adolescents vs. adults), anatomic region of the brain (BA9 vs. cerebellar vermis), and impact of
medications (children and adolescents on medications (n = 4) vs. total children and adolescents (n = 12); adults
on medications (n = 6) vs. total adults (n = 12)).
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Results: There were significant increases in RAC1, APP 120 kDa and APP 80 kDa proteins in BA9 of children with
autism vs. healthy controls. None of the same proteins were significantly affected in cerebellar vermis of children
with autism. In BA9 of adults with autism there were significant increases in RAC1 and STEP 46 kDa and a
significant decrease in homer 1 vs. controls. In the vermis of adult subjects with autism, RAC1 was significantly
increased while APP 120, STEP 66 kDa, STEP 27 kDa, and homer 1 were significantly decreased when compared
with healthy controls. No changes were observed in vermis of children with autism. There was a significant effect
of anticonvulsant use on STEP 46 kDa/β-actin and a potential effect on homer 1/NSE, in BA9 of adults with
autism. However, no other significant confound effects were observed in this study.

Conclusions: Our findings provide further evidence of abnormalities in FMRP and mGluR5 signaling partners in
brains of individuals with autism and open the door to potential targeted treatments which could help
ameliorate the symptoms of autism.

Keywords: Autism, RAC1, Homer 1, APP, STEP, BA9, Cerebellar vermis, Children, Adults
Background
Autism is a neurodevelopmental disorder that is charac-
terized by impairments in social reciprocal interaction,
communication, and repetitive and stereotyped patterns
of behavior, interests, and activities [1]. A number of
neuropathologic abnormalities have been character-
ized in brains from individuals with autism including
macrocephaly, volumetric and cellular abnormalities of the
frontal cortex, parietal cortex, the limbic structures, and
cerebellum, and cortical minicolumnar disorganization
[2-4]. Recently, the Centers for Disease Control and
Prevention (CDC) reported a prevalence for autism of
11.3 per 1,000 (one in 88) children aged eight years in
the United States in 2008 [5]. This represents a 78% in-
crease in incidence over the previously reported finding
of 6.4 per 1,000 in 2002 [5].
Beyond core symptoms, people with autism display a

number of comorbidities including seizure disorder, in-
tellectual disability, and other cognitive impairments [6].
The presence of seizure disorder has been estimated
from 5% to 40% [6]. Epileptiform activity has been shown
to cause brief episodes of impaired cognitive function
known as transitory cognitive impairment (TCI) [7,8] and
may contribute to cognitive deficits in individuals with aut-
ism. Due to the heterogeneous nature of autism spectrum
disorders, it is not surprising that multiple gene families
have been implicated in the pathology of autism [9-11]
with 50 gene or gene variants accounting for approxi-
mately 30% of autism spectrum cases [11]. Many of
these candidate genes overlap with those of other dis-
orders with autistic behavioral deficits including tuber-
ous sclerosis [12], fragile X syndrome (FXS) [13], Rett
syndrome [14], and Angelman syndrome [15].
There is a wide degree of overlap between behavioral

deficits of autism and FXS, the most common inherited
form of intellectual disability. Indeed, approximately 25%
to 47% of people with FXS display a comorbid diagnosis
of autism [16,17]. Similar to those diagnosed with autism,
people diagnosed with FXS display learning deficits, de-
layed language acquisition, impaired motor skills, and re-
petitive behavior [18]. FXS is caused by mutations in the
fragile X mental retardation 1 gene (FMR1) leading ultim-
ately to the loss of fragile X mental retardation protein
(FMRP) expression. FMRP binds approximately 4% of all
mRNAs expressed in brain [19,20] and acts primarily as a
translational repressor. FMRP is expressed in both glia and
neurons [21,22] and in neurons is highly localized to the
dendrites and spines [23-25].
FMRP acts as a negative regulator of group I metabo-

tropic glutamate signaling, particularly metabotropic
glutamate receptor 5 (mGluR5) and it is believed that
runaway glutamatergic signaling, particularly in the den-
drites, is ultimately responsible for the deficits associated
with FXS [26]. An anatomical abnormality of neurons
from brains of individuals with FXS, autism, and Fmr1
knockout (KO) mice are dendrites with an overabundance
of immature long, thin spines [27-29]. The profusion of
dendritic spines could lead to an abnormally large amount
of synapse formation and result in the cognitive impair-
ments associated with FXS as well autism. In individuals
with autism, greater spine density has been correlated with
lower cognitive function [29].
We have previously observed reductions in FMRP in the

cerebellar vermis and superior frontal cortex (Brodmann
Area 9 (BA9)) of adults with autism and increased expres-
sion of mGluR5 in the vermis and BA9 of children with
autism [30,31]. These represent the first findings of altered
FMRP and mGluR5 in individuals with autism who do not
have a comorbid diagnosis of FXS. In the current study, we
have expanded upon our initial studies to examine protein
expression of four known targets of FMRP and mGluR5
signaling that may play a role in regulating spine density,
protein synthesis, and synaptic transmission: homer 1,
amyloid beta A4 precursor protein (APP), ras-related C3
botulinum toxin substrate 1 (RAC1), and striatal-enriched
protein tyrosine phosphatase (STEP) in the same brain



Table 1 Demographic data for individuals with autism and controls

Case Dx Sex Age PMI (hrs) Ethnicity Medication history Cause of death Seizure ID Side of brain Brain region

UMB-4670 Control M 4 17 Caucasian None Commotio cordis No No Unknown BA9, Vermis

UMB-4898 Control M 7 12 Caucasian Methylphenidate; clonidine Drowning No No Unknown Vermis

UMB-1674 Control M 8 36 Caucasian None Drowning No No Unknown BA9, Vermis

UMB-4787 Control M 12 15 African American Montelukast; albuteral; prednisone, loratadine Asthma No No Unknown BA9, Vermis

UMB-1823 Control M 15 18 Caucasian None MVA No No Unknown BA9, Vermis

AN17425 Control M 16 26.16 Unknown None Heart attack No No Left BA9

AN15105 Control M 18 19.83 Unknown None Unknown No No Unknown BA9, Vermis

AN03217 Control M 19 18.58 Caucasian None Pneumonia No No Left BA9

UMB-1846 Control F 20 9 Caucasian None MVA No No Unknown BA9, Vermis

AN07176 Control M 21 29.91 Unknown None MVA No No Left BA9

AN14368 Control M 22 24.2 Unknown None Unknown No No Left BA9

AN19760 Control M 28 23.25 Unknown None Unknown No No Left BA9

AN15566 Control F 32 28.92 Unknown None Unknown No No Left BA9, Vermis

UMB-1169 Control M 33 27 African American Metoclopramide; loratadine Dilated cardiomyopathy
(morbid obesity)

No No Unknown BA9, Vermis

UMB-1376 Control M 37 12 African American None ASCVD No No Unknown BA9, Vermis

AN15151 Control M 41 30.4 Unknown None Heart attack No No Unknown BA9, Vermis

AN19440 Control F 50 20.25 Unknown None Heart attack No No Unknown BA9

AN12240 Control M 51 4.75 Caucasian None Heart attack No No Right BA9

AN13295 Control M 56 22.12 Unknown None Unknown No No Right BA9

AN08873 Autism M 5 25.5 Caucasian None Drowning No No Left BA9

AN13872 Autism F 5 32.73 Asian None Drowning No No Left BA9, Vermis

UMB-1349 Autism M 5 39 Caucasian None Drowning No No Unknown Vermis

UMB-1174 Autism F 7 14 Caucasian None Seizure disorder Yes No Unknown BA9

UMB-4231 Autism M 8 12 African American Olanzapine; galantamine Drowning No Yes Unknown BA9, Vermis

AN19511 Autism M 8 22.16 Caucasian None Cancer Yes No Left BA9, Vermis

UMB-4721 Autism M 8 16 African American None Drowning No No Unknown Vermis

AN16641 Autism M 9 27 Caucasian Carbamazepine; methylphenidate; clonidine Seizure disorder Yes Yes Left BA9

AN16115 Autism F 11 12.88 Caucasian Carbamazepine; lamotrigine; dextroamphetamine;
topiramate

Seizure/drowning Yes Yes Right Vermis

UMB-4899 Autism M 14 9 Caucasian None Drowning No No Unknown BA9, Vermis

AN17138 Autism M 16 24 Asian Fexofenadine; buspirone; topiramate Seizure disorder Yes No Left BA9, Vermis
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Table 1 Demographic data for individuals with autism and controls (Continued)

AN01570 Autism F 18 6.75 Caucasian None Seizure disorder Yes No Right BA9

AN00764 Autism M 20 23.66 Caucasian Erythromycin gel; minocycline MVA No Yes Left BA9

UMB-1638 Autism F 20 50 Caucasian None Seizure disorder Yes Yes Unknown BA9

AN09730 Autism M 22 25 Caucasian Aripiprazole; lamotrigine; zonisamide Aspiration Yes No Left BA9, Vermis

AN08166 Autism M 29 43.25 Caucasian Fexofenadine; ziprasidone HCl; carbamazepine Seizure (suspected) Yes No Left BA9, Vermis

AN12457 Autism F 29 17.83 Caucasian Fluvoxamine Seizure disorder Yes No Left BA9, Vermis

AN11989 Autism M 30 16.06 Caucasian None Heart failure (congestive) No No Left BA9

AN08792 Autism M 30 20.33 Caucasian Cisapride; clorazepate; sodium valproate; phenytoin;
folic acid; primidone; phenobarbital; omeprazole;

metoclopramide

Gastrointestinal bleeding Yes No Left BA9, Vermis

UMB-5027 Autism M 37 26 African American None Obstruction of bowel due to
adhesion

No No Unknown BA9, Vermis

AN06420 Autism M 39 13.95 Caucasian None Cardiac tamponade No No Left BA9, Vermis

AN14613 Autism M 39 22.75 Caucasian None Sudden unexpected death Yes No Unknown BA9

AN17777 Autism F 49 16.33 Caucasian Wafarin; venlafaxine; erythromycin; lansoprazole;
risperidone; metformin; gabapentin; propranolol;

levothyroxine

Pulmonary arrest No Yes Left BA9, Vermis

AN01093 Autism M 56 19.48 Caucasian Benztropine mesylate; haloperidol; lithium;
chlorpromazine; alprazolam

Anoxic encephalopathy Yes No Right BA9, Vermis

Children Control Autistic Change P-value d

Age ± SD (years) 11.4 ± 5.22 9.5 ± 4.38 ↓16.6% ns nd

PMI ± SD (years) 20.6 ± 8.1 20.1 ± 9.94 ↓2.4% ns nd

Gender 7M 8M:4F nd nd nd

Adults Control Autistic Change P-value d

Age ± SD (years) 34.2 ± 13 33.3 ± 11.2 ↓2.6% ns nd

PMI ± SD (years) 20.9 ± 8.41 24.6 ± 11.1 ↑17.7% ns nd

Gender 9M:3F 9M:3F nd nd nd

ASCVD, Arteriosclerotic cardiovascular disease; Dx, Diagnosis; Hrs, Hours; PMI, Postmortem interval; M, Male; F, Female; EtOH, Alcohol; ID, Intellectual disability; MVA, Motor vehicle accident; nd, Not determined; ns,
Not significant; d, Cohen’s test statistic.
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regions. We hypothesized that targets of FMRP would dis-
play altered expression, further implicating this signaling
pathway in the etiology of autism. Alterations in levels of
these targets of FMRP could potentially be corrected thera-
peutically to ameliorate symptoms of autism.

Methods
Tissue preparation
The Institutional Review Board of the University of
Minnesota, School of Medicine approved all experimental
procedures for this study. Frozen postmortem blocks of
the superior frontal cortex (BA9) and cerebellar vermis
were obtained from the NICHD Brain and Tissue Bank
for Developmental Disorders, University of Maryland,
Baltimore, MD; the Harvard Brain Tissue Resource Center;
the Brain Endowment Bank, Miami, Florida; and the
Autism Tissue Program. The tissue samples (Table 1) were
prepared as described previously [30,31] and each sample
included both grey and white matter. None of the controls
had a history of neuropsychiatric disorders, seizure dis-
order, or intellectual disability.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and western blot analysis
Tissue samples from the cerebellar vermis (vermal lobule
unknown) (in adults, n = 5 controls and 8 autistic adults;
in children, n = 6 controls and 8 autistic children) and BA9
(in adults, n = 12 controls and 12 autistic adults; in chil-
dren, n = 6 controls and 9 autistic children) were prepared.
Children were defined as those younger than 13 years of
age; adolescents were defined as those between the ages of
13 years to 18 years; and adults were defined as those 19
years of age or older. For this study, children and adoles-
cents were grouped together. Samples were mixed with de-
naturing SDS sample buffer and denatured by heating at
100°C for 5 minutes. SDS-PAGE gels were prepared using
standard Laemmli solutions. For experiments involving
RAC1 or STEP, 12% resolving gels were used; 10% resolv-
ing gels were used for experiments involving homer 1,
neuronal specific enolase (NSE), or β-actin, and for experi-
ments involving APP, 6% resolving gels were used. In all
Figure 1 Representative samples of RAC1, APP, Homer 1, STEP, NSE,
people with autism. C, controls; A, people with autism; RAC1, Ras-related
protein; STEP, striatal-enriched protein tyrosine phosphatase; NSE, neuronal
cases, 5% stacking gels were used. Thirty μg of protein per
lane was loaded onto the gel and electrophoresed for 15
minutes at 75 V followed by 55 minutes at 150 V at room
temperature (RT). We minimized interblot variability by
including samples from subjects of each group (control
and autism) on each gel. Samples were run in duplicate.
Proteins were electroblotted onto nitrocellulose mem-
branes for 2 hrs at 300 mAmp at 4°C as previously de-
scribed [30,31]. Blots were blocked with 0.2% I-Block
(Tropix, Bedford, MA, USA) in PBS with 0.3% Tween 20
for one hour at RT followed by an overnight incubation in
primary antibodies at 4°C. The primary antibodies used
were: anti-RAC1 (1:500; BD Transduction, San Jose, CA,
USA), anti-APP (1:250; Abcam Inc., Cambridge, MA,
USA), anti-homer 1 (1:500; Abnova, Taipei, Taiwan), anti-
STEP (1:200; Abgent, San Diego, CA, USA), anti-NSE
(1:2,000; Abcam Inc.), and anti-β-actin (1:5,000; Sigma
Aldrich, St. Louis, MO, USA). Blots were washed for 30 mi-
nutes and incubated in secondary antibodies for one hour
at RT as previously described [30,31]. Secondary antibodies
were goat anti-rabbit IgG (A9169, Sigma Aldrich, 1:80,000)
or goat anti-mouse IgG (A9044, Sigma Aldrich, 1:80,000).
Blots were washed twice in PBS supplemented with
Tween-20 (PBST) and bands were visualized using the
ECL plus detection system (GE Healthcare, Little Chalfont,
Buckinghamshire, UK) and exposed to CL-Xposure film
(Thermo Scientific, Rockford, IL, USA). The molecular
weights of approximately 120 kDa and 88 kDa (APP);
66 kDa, 61 kDa, 46 kDa, 33 kDa, and 27 kDa (STEP);
46 kDa (NSE); 45 kDa (homer 1); 42 kDa (β-actin); and
21 kDa (RAC1) immunoreactive bands were quantified
with background subtraction using a RioRad densitometer
and BioRad MultiAnalyst software (Bio-Rad, Hercules, CA,
USA). Results obtained were based on two to four inde-
pendent experiments.

Statistical analysis
Statistical analysis of protein data was performed as pre-
viously described [30,32-34]. The independent samples
t-test was used to compare people with autism to healthy
controls. Separate analyses were conducted for children
and β-actin from the cerebellar vermis and BA9 from controls and
C3 botulinum toxin substrate 1; APP, amyloid beta A4 precursor
specific enolase; BA9, Brodmann Area 9.



Figure 2 (See legend on next page.)
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Figure 2 Expression of RAC1, APP, and homer 1 in the cerebellar vermis of subjects with autism and controls. (A) Mean RAC1/β-actin,
APP 120 kDa/β-actin, APP 88/β-actin, and homer 1/β-actin ratios for controls (gray histogram bars) and people with autism (black histogram bars)
are shown for the cerebellar vermis. (B) Mean RAC1/NSE, APP 120 kDa/NSE, APP 88/NSE, and homer 1/NSE ratios for controls (gray histogram
bars) and people with autism (black histogram bars) are shown for the cerebellar vermis. Error bars express standard error of the mean. *P <0.05.
RAC1, Ras-related C3 botulinum toxin substrate 1; amyloid beta A4 precursor protein; NSE, neuronal specific enolase.
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and adults. Analysis of covariance was used to estimate the
effect of covariates on group comparisons. Effect sizes were
calculated using Cohen’s d statistic, with values >0.8 con-
sidered a large effect [35]. For analysis of confounders, sig-
nificance was set at P <0.06.

Results
All western blotting results were normalized against
β-actin and NSE and are expressed as ratios to β-actin and
NSE. In the cerebellar vermis of adults with autism we ob-
served significantly increased expression of the RAC1/β-
actin ratio (P <0.025, d = 1.62) and the RAC1/NSE ratio
(P <0.016, d = 1.73) (Figures 1 and 2, Table 2). We also
observed a significant reduction in expression of the APP
120 kDa/β-actin ratio (P <0.018, d = −2.04) and the APP
120 kDa/NSE ratio (P <0.012, d = −2.40) (Figures 1 and 2,
Table 2). Ratios for STEP 66 kDa/β-actin (P <0.023,
d = −1.51), STEP 66 kDa/NSE (P <0.018, d = −1.59), STEP
33 kDa/β-actin (P <0.024, d = −1.63) and STEP 33 kDa/
NSE (P <0.020, d = −1.68) were significantly reduced in the
cerebellar vermis of adults with autism (Figures 1 and 3,
Table 2). STEP 27 kDa/NSE was also significantly reduced
in the cerebellar vermis of subjects with autism (P <0.038,
d = −1.40) (Table 2). We did not observe alterations in
levels of homer 1 or APP 88 kDa in the cerebellar vermis
of adults with autism and there were no significant changes
for any of the proteins in the cerebellar vermis of children
with autism (Figures 1, 2, 3, Table 2).
In BA9 of adults with autism we observed significantly

increased ratios for RAC1/β-actin (P <0.031, d = 1.32),
RAC1/NSE (P <0.042, d = 1.24) and significantly reduced
ratios for homer 1/β-actin (P <0.027, d = −1.37), homer 1/
NSE (P <0.020, d = −1.43) (Figures 1 and 4, Table 3). STEP
46 kDa/β-actin ratio (P <0.012, d = 1.10) and STEP 46
kDa/NSE ratio (P <0.020, d = 1.02) were significantly in-
creased in BA9 of adults with autism (Figures 1 and 3,
Table 3). In BA9 of children with autism we observed
significant increases in ratios for RAC1/β-actin (P <0.008,
d = 2.74), RAC1/NSE (P <0.017, d = 2.09), APP 120 kDa/
β-actin (P <0.032, d = 2.03), APP 120 kDa/NSE (P <0.017,
d = 2.12), APP 88 kDa/β-actin (P <0.025, d = 2.54) and
APP 88 kDa/NSE (P <0.012, d = 3.24) (Figures 1 and 4,
Table 3). Finally, there was a significant reduction in STEP
61 kDa/β-actin ratio (P <0.036, d = −1.23) in BA9 of chil-
dren with autism (Figures 1 and 3, Table 3).
In adults, we examined ethnicity, postmortem inter-

val (PMI), intellectual disability, history of seizures,
antidepressant, antipsychotic drug (APD), and anticon-
vulsant use in relation to the outcome measures. PMI,
gender and intellectual disability were not significantly
related to any of the values expressed as ratios of β-actin
or NSE. Adults using anticonvulsants displayed signifi-
cantly higher STEP 46 kDa/β-actin than all adults who
did not use anticonvulsants (including autistic as well as
nonautistic) (t(22) = 5.23, P <0.001). Adults with autism
who were taking anticonvulsants displayed significantly
increased expression of STEP 46 kDa/β-actin versus
adults with autism who were not taking anticonvulsants
(t(10) = 2.85, P <0.017). Moreover, adults with autism
who were taking anticonvulsants displayed significantly
increased expression of STEP 46 kDa/β-actin than adult
controls (t(15) = 5.28, P <0.001). Finally, there was no sig-
nificant difference in STEP 46 kDa/β-actin when adult
controls were compared against adults with autism who
were not taking anticonvulsants (t(17) = 1.44, P <0.17).
Increased STEP 46 kDa expression was only seen in ra-
tios compared to β-actin but not NSE, indicating that the
difference was not specific to neuronal cells. By the same
token, STEP 46 kDa/β-actin value in BA9 was also sig-
nificantly different in those with seizure history versus
those without (t(22) = 3.00, P <0.007). However, no sig-
nificant difference existed between values in adults with
autism with seizure disorder versus adults with autism
who did not have seizure disorder, nullifying this associ-
ation (mean 0.043 ± 0.034 versus 0.023 ± 0.027, P <0.29).
Adults with autism who were taking anticonvulsants
displayed significantly lower homer 1/NSE in BA9 than
controls and adults with autism who were not taking an-
ticonvulsants (t(15) = 2.69, P <0.017). While a compari-
son of homer 1/NSE values between adults with autism
who took anticonvulsants (mean of 0.13 ± 0.086) versus
those who did not (mean of 0.23 ± 0.085) did not show a
significant difference (P <0.063), it is possible that the re-
duction of homer 1/NSE is at least partly due to anticon-
vulsant use.
For those using APDs, there were significantly reduced

expression of APP 120 kDa/NSE in BA9 (t(15) = 2.20,
P <0.044), APP 88 kDa/NSE in BA9 (t(14) = 2.63, P <0.02),
and STEP 33 kDa/β-actin (t(22) = 2.18, P <0.040). How-
ever, none of these values showed any significant changes
in adults with autism when compared with controls
(P <0.8, P <0.55, and P <0.55, respectively). STEP 46 kDa/
β-actin was significantly higher (t(22) = 2.79, P <0.011) in
BA9 in subjects who took APD medication than in those



Table 2 Western blotting results for RAC1, homer 1, APP, STEP, NSE, and β-actin and their ratios in the
cerebellar vermisa

Control Autistic Change P-value Cohen’s d

Adults

RAC1/β-actin 0.315 ± 0.206 1.3 ± 0.714 313%↑ 0.025b 1.62b

Homer 1/β-actin 0.237 ± 0.303 0.147 ± 0.147 38%↓ ns 0.42

APP 120 kDa/β-actin 0.091 ± 0.029 0.050 ± 0.016 45%↓ 0.018b −2.04b

APP 88 kDa/β-actin 0.08 ± 0.06 0.03 ± 0.02 63%↓ ns 1.26

STEP 66 kDa/β-actin 0.136 ± 0.116 0.025 ± 0.029 82%↓ 0.023b −1.51b

STEP 61 kDa/β-actin 0.015 ± 0.028 0.003 ± 0.004 80%↓ ns −0.67

STEP 46 kDa/β-actin 0.03 ± 0.034 0.034 ± 0.041 13%↑ ns 0.11

STEP 33 kDa/β-actin 0.55 ± 0.38 0.17 ± 0.13 69%↓ 0.024b −1.63b

STEP 27 kDa/β-actin 0.70 ± 0.67 0.53 ± 0.39 24%↓ ns −0.32

β-actin 10.2 ± 1.67 9.06 ± 3.1 11%↓ ns nd

Children

RAC1/β-actin 1.09 ± 0.545 1.1 ± 0.471 0.9%↑ ns 0.01

Homer 1/β-actin 0.188 ± 0.13 0.218 ± 0.109 16%↑ ns 0.26

APP 120 kDa/β-actin 0.071 ± 0.029 0.077 ± 0.033 8.4%↑ ns 0.19

APP 88 kDa/β-actin 0.084 ± 0.055 0.100 ± 0.071 19%↑ ns 0.25

STEP 66 kDa/β-actin 0.01 ± 0.008 0.059 ± 0.091 490%↑ ns 0.64

STEP 61 kDa/β-actin 0.002 ± 0.002 0.023 ± 0.031 1050%↑ ns 1.15

STEP 46 kDa/β-actin 0.0022 ± 0.0011 0.024 ± 0.024 991%↑ ns 1.16

STEP 33 kDa/β-actin 0.057 ± 0.085 0.13 ± 0.17 128%↑ ns 0.51

STEP 27 kDa/β-actin 0.70 ± 0.68 0.53 ± 0.38 24%↓ ns −0.72

β-actin 9.48 ± 1.11 9.52 ± 3.71 0.4%↑ ns nd

Adults

RAC1/NSE 0.23 ± 0.16 0.93 ± 0.49 304%↑ 0.016b 1.73b

Homer 1/NSE 0.18 ± 0.24 0.099 ± 0.11 45%↓ ns −0.46

APP 120 kDa/NSE 0.062 ± 0.021 0.031 ± 0.008 50%↓ 0.012b −2.40b

APP 88 kDa/NSE 0.06 ± 0.05 0.02 ± 0.01 67%↓ ns −1.22

STEP 66 kDa/NSE 0.18 ± 0.14 0.032 ± 0.04 82%↓ 0.018b −1.59b

STEP 61 kDa/NSE 0.018 ± 0.035 0.004 ± 0.005 78%↓ ns −0.21

STEP 46 kDa/NSE 0.039 ± 0.041 0.037 ± 0.042 5.1%↓ ns −0.59

STEP 33 kDa/NSE 0.72 ± 0.49 0.21 ± 0.17 71%↓ 0.020b −1.68b

STEP 27 kDa/NSE 1.27 ± 0.82 0.44 ± 0.38 65%↓ 0.038b −1.40b

NSE 7.42 ± 1.26 7.69 ± 1.3 3.6%↑ ns nd

Children

RAC1/NSE 0.84 ± 0.51 0.69 ± 0.23 18%↓ ns −0.38

Homer 1/NSE 0.13 ± 0.09 0.16 ± 0.07 23%↑ ns 0.33

APP 120 kDa/NSE 0.040 ± 0.025 0.056 ± 0.021 40%↑ ns 0.70

APP 88 kDa/NSE 0.054 ± 0.025 0.072 ± 0.053 33%↑ ns 0.42

STEP 66 kDa/NSE 0.014 ± 0.011 0.102 ± 0.165 628%↑ ns 0.61

STEP 61 kDa/NSE 0.0024 ± 0.001 0.037 ± 0.054 1441%↑ ns 0.96

STEP 46 kDa/NSE 0.003 ± 0.002 0.03 ± 0.047 900%↑ ns 1.02

Fatemi et al. Molecular Autism 2013, 4:21 Page 8 of 19
http://www.molecularautism.com/content/4/1/21



Table 2 Western blotting results for RAC1, homer 1, APP, STEP, NSE, and β-actin and their ratios in the
cerebellar vermisa (Continued)

STEP 33 kDa/NSE 0.078 ± 0.12 0.23 ± 0.33 194%↑ ns 0.55

STEP 27 kDa/NSE 0.36 ± 0.24 0.99 ± 0.93 175%↑ ns 0.77

NSE 6.97 ± 0.84 6.23 ± 1.53 10.6%↓ ns nd

Values for control and autistic groups are presented as mean ± SD aRAC1, ras-related C3 botulinum toxin substrate 1; APP, amyloid beta A4 precursor protein;
STEP, striatal-enriched protein tyrosine phosphatase; NSE, neuronal specific enolase; nd, not determined; ns, not significant. bStatistically significant.
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who did not. However, comparison of values for STEP 46
kDa/β-actin in BA9 between subjects with autism taking
APDs versus subjects with autism who did not take APDs
was not statistically significant (mean 0.051 ± 0.031 versus
0.027 ± 0.03, respectively, P <0.22). For antidepressant use,
the single individual taking antidepressants displayed sig-
nificantly higher expression of APP 88 kDa/NSE in BA9
than the others (t(14) = 2.51, P <0.025) but this difference
only reflects change in one subject and is not extendable to
the whole group and thus, not amenable to statistical test-
ing. There was a confounding effect of gender on homer 1/
NSE in BA9 of adults (t(14) = 2.04, P <0.060). There was a
significant reduction in homer 1/NSE in BA9 of adults
with autism versus controls (P <0.020) (see Table 3). The
mean for male subjects with autism was 0.262 ± 0.081 and
the mean for female subjects with autism was 0.417 ± 0.15
(P <0.061), which was not significantly different. Due to
having only two subjects for comparison, we were unable
to compare female controls with female autistic subjects.
Comparing male controls to male autistic subjects resulted
in a significant reduction, similar to that reported in
Table 3. It is therefore unlikely that gender has a meaning-
ful effect on homer 1/NSE values. There was also a signifi-
cantly higher expression of RAC1/NSE in Caucasian than
African American subjects in BA9 (t(11) = 2.86, P <0.016).
However, this comparison is not relevant as the African
American sample size numbered only two subjects. Finally,
there was an impact of anticonvulsant use on APP 88 kDa/
NSE in BA9 of adults (t(14) = 2.12, P <0.052). However,
there was no significant difference between adults with aut-
ism versus controls for APP 88 kDa/NSE in BA9 of adults,
so this is not meaningful.
For children, ethnicity (Caucasian versus African

American), history of seizures, antidepressant, APD, and
anticonvulsant use were not significantly related to any of
the β-actin or NSE measures. There was significant positive
correlation between PMI and APP 88 kDa/NSE in BA9 of
children (R = 0.734, P <0.060). However, PMI was not sig-
nificantly different between control or autistic children in
BA9, so this finding is not meaningful. For gender, one fe-
male subject displayed significantly higher APP 120 kDa/
NSE in BA9 than male subjects (t(6) = 3.16, P <0.02). How-
ever, this significance could not be linked to a group of
subjects, and thus, was not amenable to further statistical
testing. Those with intellectual disability had significantly
higher ratios on STEP 46 kDa/β-actin BA9 (t(13) = 2.81,
P <0.015]. However, STEP 46 kDa/β-actin in BA9 was
not significantly different between controls and those
with autism.
To further investigate the effect of medications on our

results we performed a second analysis comparing con-
trols to people with autism who were not taking medica-
tion (Additional files 1: Table S1 and Additional file 2:
Table S2). In the cerebellar vermis of adults, RAC1/NSE
and RAC1/β-actin remained significant (Additional file 1:
Table S1). In BA9 of adults, RAC1/NSE and RAC1/β-actin
remained significant as did RAC1/β-actin in children
along with APP 120 kDa/NSE, APP 120 kDa/β-actin,
APP 88 kDa/NSE and APP 88 kDa/β-actin (Additional
file 2: Table S2). Omitting people with autism who were on
medication reduced the total number available for analysis
so that seven comparisons could no longer be made, and
in fifteen comparisons with a sample of three subjects for
people with autism, power was reduced thus, affecting stat-
istical significance.
Finally, we tested to see if there were statistical corre-

lations between levels of FMRP or mGluR5 that we had
previously reported [30,31] and levels of RAC1, STEP 66
kDa, STEP 61 kDa, STEP 46 kDa, STEP 33 kDa, STEP
27 kDa, APP120 kDa, APP 88 kDa, or homer 1. We did
not find any significant statistical correlation for either
FMRP or mGluR5 with any of the targets investigated in
the current study (data not shown).

Discussion
The current studies demonstrated abnormal expression
of several downstream biochemical targets of FMRP and
mGluR5-mediated signaling in the brains of children
and adults with autism. The most salient results in-
cluded: 1) upregulation of RAC1 in BA9 and the vermis
of adults with autism, and in BA9 only among children
with autism; 2) upregulation of APP120 and 88 kDa spe-
cies in BA9 of children with autism and downregulation
of APP 120 kDa in the vermis of adults with autism;
3) upregulation of STEP 46 kDa in BA9 and down-
regulation of STEP 66 kDa, 33 kDa, and 27 kDa in the ver-
mis of adults with autism; 4) downregulation of STEP 61
kDa in BA9 of children with autism; and 5) downregulation
of homer 1 in BA9 of adults with autism. We observed
more significant effects in BA9 than in the cerebellar



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Expression of STEP in the cerebellar vermis and BA9 of subjects with autism and controls. Control group data are presented as
gray histogram bars; autistic group data are presented as black histogram bars. (A) and (F) STEP 66 kDa. (B) and (G) STEP 61 kDa. (C) and (H)
STEP 46 kDa. (D) and (I). STEP 33 kDa. (F) and (J) STEP 27 kDa. Error bars express standard error of the mean. *P <0.05. STEP, striatal-enriched
protein tyrosine phosphatase; NSE, neuronal specific enolase; BA9, Brodmann Area 9.
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vermis, consistent with previous findings in autism [36].
The results summarized above will be discussed further
and the significant involvement of these proteins in autism
will be analyzed in the following paragraphs.
RAC1 is a member of the Rho family of GTPases, a

subfamily of the RAS superfamily of small guanine tri-
phosphate (GTP)-binding proteins. Molecules in this
superfamily regulate a number of cellular processes in-
cluding kinase activation, cytoskeletal rearrangement,
cell growth, differentiation, and survival [37]. Members
of the Rho family have been implicated in cell prolifera-
tion, apoptosis, and regulation of gene expression [37].
RAC1 is involved in remodeling of the actin cytoskel-
eton [38] and plays an important role in the formation
and maturation of dendritic spines as well as regulation
of spine density and morphology [39-43]. Mutations in
the Rho GTPase pathway and their regulators have been
involved in intellectual disability-related disorders [43].
For example, RAC1 partners with oligophrenin-1 and
synaptojanin which have been linked to X-linked intellec-
tual disability and Down’s syndrome, respectively [43-45].
Overexpression of RAC1 in cultured hippocampal neurons
younger than 11 days in vitro resulted in the formation of
dendritic spines, clustering of 2-amino-3-(5-methyl-3-oxo-
1,2- oxazol-4-yl)propanoic acid (AMPA) receptors and in-
creased the amplitude of miniature excitatory postsynaptic
currents, suggesting that RAC1 also enhances excitatory
synaptic transmission [42].
RAC1 has been shown to interact with FMRP via cyto-

plasmic FMRP interacting proteins (CYFIP1/2) [46,47].
RAC1-induced actin remodeling is altered in mouse fi-
broblasts that lack FMRP, suggesting a role for FMRP in
modulating actin dynamics [48]. More recently, RAC1
expression has been demonstrated to be increased in the
hippocampus, cortex, brainstem, and cerebella of Fmr1
KO mice suggesting that FMRP acts as a negative regu-
lator of RAC1 [49]. Our results of increased expression
of RAC1 in the cerebellar vermis and BA9 of adults with
autism, and in BA9 of children with autism, are novel
and have never previously been reported in human post-
mortem brains of subjects with autism; they may be the
result of reduced expression of FMRP in the same re-
gions [30,31], and they mirror the same findings in Fmr1
KO mice. The overexpression of RAC1, particularly in
BA9, may suggest increased excitatory signaling, which
could impact synaptic transmission and ultimately cog-
nitive function. This is especially true as studies using
transgenic mice with a constitutively active form of RAC1
show overproduction of small abnormal supernumerary
spines [43,50,51], indicating that overproduction of RAC1
in BA9 of both children and adults with autism is evi-
dence of overabundance of active and abnormal neuronal
spines in the brains of people with autism examined in
this study. There is evidence in the literature that RAC1
may stimulate stellation of primary astrocytes [52] and
increase migration of astrocytes [53]. Additionally, some
residual RAC1 mRNA and protein activity has been
detected in glial cells [49]. It is tempting to speculate that
RAC1 overexpression in autism may also be responsible
for increased glial fibrillary acidic protein (GFAP) immu-
noreactivity detected in the brains of subjects with autism
[54]. Higher levels of RAC1 in Caucasian adults with aut-
ism compared to African American adults with autism is
a novel finding that requires further investigation, and it
may be due to genetic or epigenetic factors.
Studies have demonstrated significantly elevated levels

of secreted APP and its cleavage products, including beta
amyloid (Aβ), in individuals with autism [55-57]. Our
current results, particularly the increased expression of
APP 120 kDa and 88 kDa in BA9 of children with autism,
verify these earlier findings. Children with severe autism
and aggression have been shown to express at least twice
as much APP when compared with control children and
four times as much APP when compared to children with
mild autism [55]. APP translation is normally repressed
by FMRP, and mGluR5 activation releases this repression,
which may explain why APP increases are seen only in
children and not adults [58,59]. In support of this, levels
of mGluR5 were also elevated in the same specimens as
previously reported [30,31], further buttressing the no-
tion that activation of mGluR5 in children may be the
cause of our observed increases in APP 88 and 120 kDa.
Antipsychotic and antidepressant drugs can affect levels
of APP [60,61]. However, this scenario is unlikely, as
evaluation of the impact of these medications on APP
values proved not to be meaningful. APP is present
presynaptically in the active zone where it has mul-
tiple potential interaction partners, including synaptic
vesicle proteins, transporters and channels, and cell
adhesion molecules [62]. APP is also present postsyn-
aptically where it has been shown to coprecipitate with
N-methyl-D-aspartate receptor (NMDAR) subunits [63],
and may be involved in surface trafficking of NMDARs
[64,65]. Thus, altered expression of APP may result in
altered NMDA signaling, which is crucial for learning and
memory. In Fmr1 KO mice, there are excess levels of



Figure 4 (See legend on next page.)
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Figure 4 Expression of RAC1, APP, and homer 1 in BA9 of subjects with autism and controls. (A) Mean RAC1/β-actin, APP 120 kDa/β-actin,
APP 88/β-actin, and homer 1/β-actin ratios for controls (gray histogram bars) and people with autism (black histogram bars) are shown for BA9.
(B) Mean RAC1/NSE, APP 120 kDa/NSE, APP 88/NSE, and homer 1/NSE ratios for controls (gray histogram bars) and people with autism (black
histogram bars) are shown for BA9. Error bars express standard error of the mean. *P <0.05. RAC1, Ras-related C3 botulinum toxin substrate 1;
amyloid beta A4 precursor protein; NSE, neuronal specific enolase; BA9, Brodmann Area 9.
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secreted APP [59]. This excess of APP may result in de-
creased neural pruning and increased neural proliferation,
helping to account for the presence of long, immature den-
drites of neurons from patients with autism and FXS [59].
In Fmr1 KO mice that have been engineered to remove
one App allele, there is a significant reduction in expression
of Aβ and multiple phenotypes of FXS, including the pres-
ence of audiogenic seizures, the ratio of immature den-
dritic spines to mature spines, and long-term depression,
were partially or fully corrected after removal of the App
allele [66]. While the presence of APP in this report prob-
ably reflects neuronal activity, increases in brain APP have
also been correlated with increased GFAP in both
Alzheimer’s disease [67] and autism [54] and these could
also reflect glial activity.
STEP is a phosphatase that is implicated in multiple

cellular processes. Kim et al. [68] have found increased
tyrosine phosphatase activity in response to mGluR5
stimulation in Fmr1 KO mice, leading to reduced phos-
phorylated extracellular signal-regulated kinases 1 and 2
(ERK1/2), molecules implicated in induction and main-
tenance of synaptic plasticity [69]. This tyrosine phos-
phatase is thought to be STEP, as STEP translation is
initiated in response to mGluR stimulation [70]. Al-
ternative splicing of the protein tyrosine phosphatase,
nonreceptor type 5 (PTPN5) gene, which encodes STEP,
produces four isoforms, however, only two - STEP 61 kDa
and STEP 46 kDa - have phosphatase activity [71,72].
STEP 61 kDa is primarily membrane-bound and expressed
in the postsynaptic density extrasynaptic sites, and the
endoplasmic reticulum [73]. STEP 46 kDa is primarily
cytosolic [73]. Other isoforms of STEP include STEP 66
kDa, STEP 27 kDa, and STEP 33 kDa. STEP 33 kDa is a
cleavage product of STEP 61 kDa [74]. Recent investiga-
tions have implicated STEP in the etiology of neuropsychi-
atric disorders [74]. Carty et al. [75] reported significant
increases in STEP 61 kDa in the anterior cingulate and
dorsolateral prefrontal cortices of subjects with schizo-
phrenia. STEP has roles in mediating NMDA and AMPA
receptor endocytosis [70,76], suggesting that it has a role
in mGluR5-mediated long-term depression (LTD), a
phenomenon that is enhanced in Fmr1 KO mice [77].
Basal levels of STEP are elevated in Fmr1 KO mice

[73]. Recent studies have shown that genetic reduction
of STEP improves cognition, synaptic plasticity, and
NMDA receptor subunit expression in mouse models of
Alzheimer’s disease [78] and reduced seizures, anti-social,
and anxiety-related behaviors in Fmr1 KO mice [73]. We
observed reduced expression patterns for STEP 66 kDa, 61
kDa, 33 kDa, and 27 kDa with only STEP 46 kDa showing
a significant increase in BA9 of adults with autism. As
there was an increase in one of the active forms of STEP
and a decrease in the other active form, further experi-
ments are needed to determine what role STEP might play
in the pathology of autism. However, nonsignificant trends
for increase in several isoforms of STEP were observed in
the vermis of both children and adults with autism, with
large effect sizes. Thus, it is possible that these increases
are due to compensatory processes in response to reduc-
tions observed in FMRP. Evaluation of the impact of vari-
ous confounders such as APDs, anticonvulsant drugs, and
seizure disorder on STEP values did not prove to be mean-
ingful, with the exception of an anticonvulsant effect on
STEP46 kDa/β-actin in BA9. Data from Hasegawa et al.
[79] show there is also minimal presence of STEP 46 kDa
in reactive astrocytes of gerbil hippocampi and STEP 46
kDa/NSE data reflect STEP 46 kDa species in neuronal
cells, which do not show any association with anticonvul-
sant use. However, evidence for seizure increasing STEP
expression remains controversial [73,80], Thus, one cannot
rule out the possibility of multiple factors modulating the
levels of STEP molecules [75].
Homer 1 is a postsynaptic density (PSD) scaffolding

protein that interacts with mGluR5 to anchor it in the
postsynaptic membrane by linking mGluRs with inositol
triphosphate, Shank, and PSD-95/Guanylate kinase asso-
ciated protein (GKAP) [81,82]. Giuffrida et al. [83] found
that in the postsynaptic membrane of neurons from
Fmr1 KO mice there was a reduction of mGluR5 in the
insoluble fraction of the membrane as well as a reduction
in phosphorylated homer 1. The interaction between
homer 1 and mGluR5 regulates the cell surface expres-
sion, lateral mobility, and signaling of mGluRs [84-87].
Moreover, disruption of homer 1-mGluR5 interactions
blocks mGluR5-induced long-term depression and pro-
tein synthesis in wild-type animals but not in Fmr1 KO
mice [87]. The authors suggest that in Fmr1 KO mice, in-
teractions between homer 1 and mGluR5 are sufficiently
reduced for homer 1 to no longer have a role in the regu-
lation of synaptic plasticity [87]. The observed reduction
in homer 1 expression in BA9 of adults with autism
may have functional consequences resulting in altered
glutamatergic expression and cognitive deficits associated
with both FXS and autism. A recent report [88] showed



Table 3 Western blotting results for RAC1, homer 1, APP, STEP, NSE, and β-actin and their ratios in BA9a

Control Autistic Change P-value Cohen’s d

Adults

RAC1/β-actin 0.834 ± 0.554 1.66 ± 0.65 99%↑ 0.031b 1.32b

Homer 1/β-actin 0.512 ± 0.152 0.324± 0.132 37%↓ 0.027b −1.37b

APP 120 kDa/β-actin 0.41 ± 0.23 0.45 ± 0.24 9.8%↑ ns 0.17

APP 88 kDa/β-actin 0.46 ± 0.19 0.53 ± 0.24 15%↑ ns 0.29

STEP 66 kDa/β-actin 0.10 ± 0.07 0.09 ± 0.08 10%↓ ns −0.11

STEP 61 kDa/β-actin 0.73 ± 0.17 0.74 ± 0.18 1.3%↑ ns 0.08

STEP 46 kDa/β-actin 0.0097 ± 0.006 0.035 ± 0.031 261%↑ 0.012b 1.10

STEP 33 kDa/β-actin 0.20 ± 0.13 0.18 ± 0.09 10%↓ ns −0.25

STEP 27 kDa/β-actin 0.20 ± 0.12 0.16 ± 0.12 20%↓ ns −0.29

β-actin 13.2 ± 2.41 13.1 ± 2.31 0.75%↓ ns nd

Children

RAC1/β-actin 1 ± 0.616 2.8 ± 0.7 180%↑ 0.008b 2.74b

Homer 1/β-actin 0.46 ± 0.17 0.77 ± 0.31 67%↑ ns 1.21

APP 120 kDa/β-actin 0.20 ± 0.07 0.63 ± 0.25 215%↑ 0.032b 2.03b

APP 88 kDa/β-actin 0.22 ± 0.03 0.75 ± 0.26 241%↑ 0.025b 2.54b

STEP 66 kDa/β-actin 0.027 ± 0.026 0.043 ± 0.031 59%↑ ns 0.54

STEP 61 kDa/β-actin 0.59 ± 0.22 0.29 ± 0.24 51%↓ 0.036b −1.23b

STEP 46 kDa/β-actin 0.008 ± 0.006 0.013 ± 0.014 62%↑ ns 0.45

STEP 33 kDa/β-actin 0.017 ± 0.026 0.033 ± 0.023 94%↑ ns 0.64

STEP 27 kDa/β-actin 0.17 ± 0.17 0.23 ± 0.10 35%↑ ns 0.45

β-actin 11.5 ± 1.31 11.7 ± 2.05 1.7%↑ ns nd

Adults

RAC1/NSE 0.50 ± 0.33 0.95 ± 0.37 90%↑ 0.042b 1.24

Homer 1/NSE 0.34 ± 0.12 0.19 ± 0.10 44%↓ 0.020b −1.43

APP 120 kDa/NSE 0.25 ± 0.12 0.27 ± 0.16 8%↑ ns 0.16

APP 88 kDa/NSE 0.28 ± 0.07 0.32 ± 0.14 14%↑ ns 0.27

STEP 66 kDa/NSE 0.17 ± 0.13 0.14 ± 0.12 18%↓ ns −0.35

STEP 61 kDa/NSE 1.3 ± 0.34 1.18 ± 0.33 9.2%↓ ns −0.25

STEP 46 kDa/NSE 0.017 ± 0.011 0.048 ± 0.041 182%↑ 0.020b 1.02b

STEP 33 kDa/NSE 0.35 ± 0.20 0.28 ± 0.14 20%↓ ns −0.46

STEP 27 kDa/NSE 0.35 ± 0.21 0.25 ± 0.17 29%↓ ns −0.53

NSE 9.14 ± 3.73 8.59 ± 1.41 6%↓ ns nd

Children

RAC1/NSE 0.61 ± 0.42 1.33 ± 0.21 118%↑ 0.017b 2.09b

Homer 1/NSE 0.28 ± 0.11 0.40 ± 0.15 43%↑ ns 0.94

APP 120 kDa/NSE 0.12 ± 0.04 0.33 ± 0.12 175%↑ 0.017b 2.12b

APP 88 kDa/NSE 0.13 ± 0.004 0.39 ± 0.11 200%↑ 0.012b 3.24b

STEP 66 kDa/NSE 0.072 ± 0.081 0.097 ± 0.072 34%↑ ns 0.33

STEP 61 kDa/NSE 1.03 ± 0.25 0.69 ± 0.60 33%↓ ns −0.68

STEP 46 kDa/NSE 0.021 ± 0.021 0.030 ± 0.033 43%↑ ns 0.37

Fatemi et al. Molecular Autism 2013, 4:21 Page 14 of 19
http://www.molecularautism.com/content/4/1/21



Table 3 Western blotting results for RAC1, homer 1, APP, STEP, NSE, and β-actin and their ratios in BA9a (Continued)

STEP 33 kDa/NSE 0.050 ± 0.083 0.075 ± 0.054 50%↑ ns 0.37

STEP 27 kDa/NSE 0.49 ± 0.57 0.50 ± 0.26 2%↑ ns 0.031

NSE 6.58 ± 2.48 5.63 ± 1.3 14%↓ ns nd

Values for control and autistic groups are presented as mean ± SD.aRAC1, ras-related C3 botulinum toxin substrate 1; APP, amyloid beta A4 precursor protein;
STEP, striatal-enriched protein tyrosine phosphatase; NSE, neuronal specific enolase; BA9, Brodmann’s area 9; nd, not determined; ns, not significant.
bStatistically significant.

Figure 5 Reduction of FMRP expression has multiple
consequences. In the absence or with reductions of FMRP,
mGluR5-mediated signaling and protein synthesis is accelerated,
resulting in increased expression of RAC1, APP, and STEP. Increased
RAC1 and APP results in altered dendritic morphology, including
presence of increased dendritic spines with a long, immature
appearance. Increased STEP activity dephosphorylates multiple
targets, including AMPA receptors and NMDA receptors, resulting in
receptor internalization and altered synaptic transmission.
Reduced homer 1 expression, reduces homer 1-mGluR5 interactions,
facilitating long term depression. Reduced FMRP also results in reduced
expression of GABAA and GABAB receptor subunits, resulting in impaired
GABAergic signaling. Reduced FMRP expression may also impact Reelin
expression causing further effects on synaptic transmission. The overall
effect of these changes is impaired synaptic transmission and ultimately
the cognitive and behavioral deficits associated with autism. FMRP,
fragile X mental retardation protein; mGluR5, metabotropic glutamate
receptor 5; RAC1, Ras-related C3 botulinum toxin substrate 1; amyloid
beta A4 precursor protein; STEP, striatal-enriched protein tyrosine
phosphatase; AMPA, 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)
propanoic acid; NDMA, N-methyl-D-aspartate; GABA, gamma
aminobutyric acid.

Fatemi et al. Molecular Autism 2013, 4:21 Page 15 of 19
http://www.molecularautism.com/content/4/1/21
that homer 1 is a risk gene in autism, thus validating our
novel finding. Recent evidence indicates that treatment
with lithium or valproic acid causes reductions in expres-
sion of homer 1b/1c [89]. Thus, we cannot rule out a po-
tential confounding effect of anticonvulsant drug use on
homer 1/NSE in BA9 of adults, consistent with this pre-
vious finding.
Reduced FMRP expression has also been shown to

cause reduction in expression of gamma aminobutyric
acid (GABA) receptor subunits (α1, α3, α4, β1, β2, β3,
γ1, γ2, δ) in Fmr1 KO mice [90-93]. Moreover, in the
Drosophila melanogaster fragile X model (dFMR1−/−),
there are significant reductions in three receptors that
have a high homology with ionotropic GABA receptors:
resistant to dieldrin (Rdl), GABA and glycine-like receptor
of Drosophila (Grd), and ligand-gated chloride channel
homolog 3 (Lcch3) [91]. Our laboratory has found signifi-
cantly reduced protein expression of various GABA(A)
and GABA(B) receptor subunits in three brain regions
(namely, the cerebellum, parietal cortex and BA9) of sub-
jects with autism [32-34]. In BA9 we observed signifi-
cantly reduced expression of GABAA receptor subunit
α1 (GABRα1), GABAA receptor subunit α4 (GABRα4),
GABAA receptor subunit α5 (GABRα5), GABAA receptor
subunit β1 (GABRβ1), and GABAB receptor subunit 1
(GABBR1) [32-34]. In the parietal cortex we observed
significantly reduced expression of GABRα1, GABAA re-
ceptor subunit α2 (GABRα2), GABAA receptor subunit
α3 (GABRα3), GABAA receptor subunit β3 (GABRβ3)
and GABBR1 [32-34]. In the cerebellum we observed sig-
nificant reduction in expression of GABRα1, GABRβ3,
GABBR1 and GABAB receptor subunit 2 (GABBR2)
[32-34]. More recently, using a different set of tissue sam-
ples, we observed reduced expression of GABRβ3 in the
cerebellar vermis of adults with autism [31]. Our consistent
findings of reduced GABA receptor protein expression in
multiple brain regions of people with autism can be
explained by the reduced expression of FMRP.
A further connection to this pathway includes the re-

duction in Reelin protein in sera and blood from individ-
uals with autism [94,95]. Recently, mRNA for Reelin, a
glycoprotein with multiple roles during development
(namely, neuronal cell migration and brain lamination) and
in adults (namely, modulating synaptic function), has been
identified as a target of FMRP [20]. Reelin has long been
considered a potential biomarker for autism due to its roles
during development. Our laboratory has demonstrated re-
duced Reelin protein expression in sera, BA9, and the cere-
bella of adults with autism [94-96], supporting the idea
that Reelin deficits contribute to the pathology of autism.
This reduction in Reelin expression may be due to
dysregulation of FMRP expression in people with autism.
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Building upon the mGluR5 theory of FXS [26] and our
own findings using postmortem brain tissue from people
with autism, we hypothesize that activation of mGluR5
in the brains of children with autism [30,31,97] leads to
subsequent translocation of protein for FMRP from
neuronal cell bodies to dendrites, and eventual decrease
in FMRP at synapses [25]. Alternatively, an unknown
mechanism of reduced expression of FMRP leads to in-
creased mGluR5 signaling. These events may also lead
to impaired GABAergic and Reelin signaling, ultimately
leading to the morphological, cognitive, and behavioral
deficits associated with autism (Figure 5). Deficits in the
inhibitory GABAergic system could cause a perturbation
in the excitatory/inhibitory balance in brain circuitry,
potentially leading to the presence of seizures as well as
impaired cognitive function. Deficits in Reelin function
would also lead to abnormal brain development and ab-
normal synaptic transmission. Further evidence for im-
paired synaptic plasticity comes from altered expression
of other targets of FMRP and mGluR5 signaling (namely
APP, RAC1, and STEP), resulting in altered dendritic
spine morphology and function as well as altered AMPA
and NMDA receptor subunit composition (Figure 5).
Taken together, abnormal FMRP and mGluR5 signaling
in people with autism who do not have a diagnosis of
FXS could explain the multiple pathologies of autism.
We performed statistical correlations between levels of
FMRP and mGluR5 previously reported [30,31] against
RAC1, APP, STEP, and homer 1, which did not result in
any significant values (data not shown). However, as re-
lationships between these proteins are neither simple,
biochemically well understood, nor stoichiometrically in
a 1:1 ratio, this absence of correlation does not minimize
the significance of findings in this report. Moreover, as
recently shown by Darnell and Klann [98], FMRP target
levels may appear unchanged or even decreased due to
factors such as age, brain site, increased protein turnover
and protein activation state, potentially offsetting target
protein increases.
Our results also may open new ways of treating

people with autism. Drugs that target metabotropic
glutamate receptors have been shown to reverse mor-
phological and behavioral deficits in Fmr1 KO mice.
AFQ056, 2-methyl-6-(phenylethynyl)-pyridine (MPEP),
and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)
phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), antag-
onists of mGluR5, have been shown to reduce the number
of dendritic protrusions of cultured hippocampal neurons
and primary visual cortex neurons from Fmr1 KO mice
[99-101]. In Fmr1 KO mice, treatment with MPEP or
AFQ056 rescues deficits in prepulse inhibition (PPI)
[99,100], a sensorimotor gating behavior that is disrupted
in subjects with autism, schizophrenia, and other psychi-
atric disorders. CTEP, a newer anti-mGluR5 inhibitor that
is more potent and long lasting than MPEP, has been
shown to correct for audiogenic seizures, hippocampal
long-term depression, and cognitive deficits in Fmr1 KO
mice [101]. The application of Rac1 inhibitor NSC23766 to
hippocampal slices from Fmr1 KO mice reduced long-
term depression, suggesting that modulation of RAC1
could ameliorate synaptic transmission deficits associated
with FXS [49]. Minocycline, a tetracycline derivative,
inhibits Aβ-induced neuronal cell death, Aβ fibril forma-
tion, and microglial activation [102,103]. Minocycline
can also reverse FXS phenotypes, including dendritic
spine immaturity [104]. The latter therapies represent
more targeted approaches, and as there are currently no
approved glutamatergic inhibitors for use in humans,
treatments that focus on mGluR5, RAC1 or APP may
provide safe, effective means of ameliorating the behav-
ioral deficits of autism.

Conclusions
Taken together, the results of current postmortem studies
provide novel evidence that targets of FMRP and mGluR5
signaling (RAC1, homer 1, APP, and STEP) display altered
expression in the cerebellar vermis and BA9 of people with
autism. There was a significant confounding effect of
anticonvulant drugs on STEP 46 kDa/β-actin and a poten-
tial effect on homer 1/NSE in BA9 of adults with autism.
These results are consistent with results from FXS animal
models, despite the fact that none of the individuals in-
cluded in the current study were diagnosed with FXS. The
altered expression of proteins that may contribute to altered
dendritic protein translation (homer 1), altered dendritic
morphology (APP and RAC1), and receptor subunit expres-
sion (STEP), potentially contribute to the cognitive and be-
havioral impairments associated with autism and FXS. Our
data tie in with our previous experiments, in which we have
found reductions in protein expression for Reelin and
GABA receptor subunit expression in multiple brain re-
gions of people with autism. We hypothesize that reduction
in FMRP and increase in mGluR5 may contribute to the
dysregulation of these proteins in subjects with autism,
resulting in multiple brain structural and behavioral deficits.

Additional files

Additional file 1: Table S1. Western blotting results for RAC1, homer 1,
APP, STEP, NSE, and β-actin and their ratios in the cerebellar vermis: controls
versus people with autism not on medicationsa (anticonvulsant, antidepressant,
and antipsychotic drugs). RAC1, Ras-related C3 botulinum toxin substrate 1;
APP, amyloid beta A4 precursor protein; STEP, striatal-enriched protein tyrosine
phosphatase; NSE, neuronal specific enolase.

Additional file 2: Table S2. Western blotting results for RAC1, homer 1,
APP, STEP, NSE, and β-actin and their ratios in BA9: controls versus people with
autism not on medicationsa (anticonvulsant, antidepressant, and antidepressant
drugs). RAC1, Ras-related C3 botulinum toxin substrate 1; APP, amyloid beta A4
precursor protein; STEP, striatal-enriched protein tyrosine phosphatase; NSE,
neuronal specific enolase; BA9, Brodmann Area 9.
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