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pathway activity.

Microdeletion and microduplication copy number variations are found in patients with autism spectrum disorder
and in a number of cases they include genes that are involved in the canonical Wnt signaling pathway (for
example, FZD9, BCLY or CDH8). Association studies investigating WNT2, DISC1, MET, DOCK4 or AHI1T also provide
evidence that the canonical Wnt pathway might be affected in autism. Prenatal medication with sodium-valproate
or antidepressant drugs increases autism risk. In animal studies, it has been found that these medications promote
Whnt signaling, including among others an increase in Wnt2 gene expression. Notably, the available genetic
information indicates that not only canonical Wnt pathway activation, but also inhibition seems to increase autism
risk. The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the
dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may
generate a similar set of behavioral and cognitive symptoms. However, without a validated biomarker to stratify for
deviant canonical Wnt pathway activity, it is probably too dangerous to treat patients with compounds that modify
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Introduction

Autism is a developmental disorder that appears in the
first three years of life. Diagnostic behavioral symptoms
of autism are abnormal socialization, limited communi-
cation, unusually narrow interests and repetitive beha-
viors [1,2]. Clinical presentation and intellectual abilities
are, however, extremely heterogeneous and autism may
be better described as autism spectrum disorders. There
is a large difference in concordance rates between
monozygotic and dizygotic twins, which indicates that
autism spectrum disorders have a strong genetic basis
[3-5]. Investigations of genome-wide single nucleotide
polymorphisms and copy number variations have gener-
ated a long list of candidate genes [6-8]. These candidate
genes have very diverse functions and interactions [9-12]
and the process by which these modified genes con-
tribute or cause autism remains poorly understood. One
approach to shed some light on pathological processes is
to arrange the identified candidate genes according to
place and function within known intracellular signal
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transduction cascades. When the functional conse-
quence of a given mutation is known, one can infer
whether the signaling pathway is activated or sup-
pressed, and ultimately one can try to estimate the func-
tional consequences in terms of neuronal function, brain
circuits and behavioral output. In the present report,
mutations in the canonical Wnt (wingless-type MMTV
integration site) pathway that are found in cases with
autism are reviewed. Before going into detail, it is im-
portant to sketch this Wnt signal transduction cascade.

Description of the canonical Wnt pathway

For a rapid overview of the canonical Wnt pathway,
the reader may consult the cartoon in Figure 1. “Wnts’
are lipid-modified signaling proteins that act as short
range ligands to activate receptor-mediated signaling
cascades. In mammals, some 19 Wnt members exist
[13]. The proteins which act as cell surface receptors
for Wnts are called ‘frizzled’ and, of these, 10 members
have been described. Activated frizzled receptors con-
nect to several downstream pathways [14-16]. In the
so-called canonical Wnt pathway, signal transduction
involves a low-density lipoprotein co-receptor (either
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Figure 1 Schematic representation of the canonical Wnt2 pathway, including all genes discussed in the current review. Wnt2 activates
the 7-transmembrane-spanning Fzd9 receptor, which together with the co-receptor LRP5/6 activates dishevelled (DVL). Activated DVL inhibits the
activity of the B-catenin “destruction complex” (indicated as a light blue ellipse). 3-catenin is released from its complex with cadherin by the
activity of the HGF receptor MET. When {3-catenin is protected against destruction, it can enter the nucleus, bind the transcription factor LEF1 and
co-factors to promote transcription of target genes like, for example, engrailed 2 (EN2). The functional consequence is an increase in cell growth

and motility.

LRP5 or LRP6) and polymerization of a protein called
‘dishevelled’ (abbreviated DVL; three isoforms) [14,17-19].
Activation of the canonical Wnt pathway leads to dis-
sociation of cadherin/p-catenin complexes in the cell
membrane with release of -catenin, a process involving
the phosphorylation of the Tyr-142 residue of p-catenin
by the hepatocyte growth factor receptor Met [20,21].

Once released from the membrane, the fate of
[B-catenin in the cytoplasm is determined by a multi-
protein complex (frequently referred to as the ‘destruction
complex’), consisting of two serine-threonine kinases
(CKla and GSK3), two scaffolding proteins (axin and
APC) and the phosphatases PP1 and PP2A [15,16].
Depending on the strength of the Wnt signal, this
complex either promotes the catabolism of axin or
that of pB-catenin [17].

The factors which determine the shuttling of -catenin
between cytoplasm and nucleus are not entirely clear
and its distribution seems to be determined by both
cytosolic-retention factors (for example, axin, APC, cad-
herin) and nuclear retention factors (for example, BCL9)
[20,22,23]. Within the nucleus, B-catenin again parti-
cipates in several complexes, in this case consisting
of high-mobility group (HMG) transcription factors

(TCE7L 1-3; the latter is also called lymphoid enhan-
cer factor-1; LEF1) and co-activators like for instance
CREB binding protein (CREBBP) [24], PYGO [25] and
BCL9 [25].

In mammalian species two isoforms of GSK3 exist
(o, B). Of these, the P-isoform has a higher expression
level and has been studied preferentially. Activity and
cellular localization of GSK3 are regulated by phosphor-
ylation steps. Autophosphorylation at Tyr-216 of GSK3[
is required for full enzymatic activity [26]. Importantly,
the protein encoded by the gene “disrupted in
schizophrenia-1” (DISCI) directly interacts with GSK3p
and suppresses Tyr-216-autophosphorylation [27] and
contributes to effective canonical Wnt signaling.

Several negative regulators of the Wnt pathway are
known as well. These negative regulators act by inter-
cepting the extracellular Wnt, by blocking the frizzled
receptor or by blocking the LRP co-receptor [28]. Intra-
cellularly, pathway activity can be reduced by phospha-
tases like RPTP (/¢ [29], PP1 or PP2A [15]. The full
complexity of the Wnt pathway is still evolving [19].

The canonical Wnt pathway plays an important role in
brain development [30-35] and synaptic function [36-38].
It is, therefore, evident that mutations in Wnt pathway
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genes were suspected to contribute to autism spectrum
disorders and to psychiatric disorders in general [39,40].

Overview of mutations in Wnt pathway in
patients with ASD (part 1)

Multiple genome-wide screens have found evidence for
linkage to autism on several chromosomes [7,41,42].
These loci are frequently quite large, and contain nu-
merous potential candidate genes. A typical example is
the broad linkage peak on 7q31 area that maps over 200
genes [7,41,43]. Among the >200 genes there are several
that play a role in Wnt signal transduction, for example,
the gene encoding Wnt2, the hepatocyte growth factor
receptor Met (which can contribute to Wnt signaling
by phosphorylating B-catenin at position Tyr-142), the
phosphatase PTPRZ1 (RPTP B/ which reverses Tyr-
142 phosphorylation), the Wnt-target gene, engrailed2
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(EN2) and a gene called DOCK4 (a member of the
extended (3-catenin destruction complex). In the sections
immediately below, the canonical Wnt2 cascade will be
reviewed in detail, whereas additional genes involved in
Wnt signaling will be discussed in Part 2 further down.
The reader will note that the strength of the evidence
for the individual genes varies considerably (actually, the
evidence for individual genes is in no single case ‘com-
pelling’; see Table 1). The main purpose of the present
review is, however, not to assess the validity of the indi-
vidual finding, but more globally, to overview the overall
pathway activity and to evaluate and estimate whether
signaling is decreased or enhanced.

WNT2 (7g31.2)
Given the localization within the autism ‘hotspot’ 7q31,
the WNT?2 gene has been screened for non-synonymous

Table 1 Canonical Wnt pathway genes mutated in autism - summary of the evidence

Gene Gene location Discovery strategy Replications Preclinical support
APC 5021-g22 association study 75 unrelated patients single case of APC deletion APC's functional role
DISC1 1942 association study in 144 families no DISC1 function
EN2 7936 association study in 3 datasets of 518 families yes, but opposite haplotype Wnt target gene
MET 7931 association studies in 4 cohorts; microdeletion yes post mortem expression;
in 2 pts (involving >25 genes) animal data
WIF1 12914.3 GWAS in 26 extended families; linkage peak of no
219 genes
MARK1 14941 GWAS in 116 families; SNPs in MARK1 no transcription of MARK1
altered by SNPs
CDH10 5p14.1 GWAS in 780 families; SNPs between CDH9 replication cohort by the
and CDH10 highly significant same authors
WNT2 7931.2 GWAS study in 75 families; 2 families with one positive, also two role of Wnt2 in midbrain
missense mutation in Wnt2 negative studies development
PTPRZ1 79313 single case with deletion CNV of 20 genes no
CDH15 16024.3 genome scanning; deletion CNV of 3 genes no
CDH13 16g23.3 GWAS; deletion CNV of single gene no
CDH8 16021 GWAS; detection of rare deletion CNV no data from KO mice
DOCK4 7931.1 GWAS; microdeletion CNV no, but dyslexia cases biochemical data
BCL9 1921 deletion and duplication CNVs (14 genes) multiple
FZD9 7911.23 recognized syndrome; deletion and duplication yes, multiple Wnt2 receptor
CNVs (>20 genes)
AHI1 6023.3 recognized syndrome: mutation screening yes, multiple
identified multiple disruptive mutations
CREBBP 16p13.3 recognized syndrome; microdeletion CNVs and multiple, also cases with data from KO mice
disruptive mutations microduplications
T5C1/2 9934 / 16p13.3 recognized syndrome: mutation screening yes, multiple data from KO mice

identified numerous missense mutations

The genes have been ranked according to their discovery process. Association studies of candidate gene studies have frequently yielded false positive results and
are considered relatively weak evidence. Genome wide association studies followed by specific investigation of genes in the ‘hot spot’ may be more reliable, but
replications are crucial. Copy number variations may provide good evidence but the duplicated or deleted regions are generally large and usually contain several
candidate genes. Copy number variations that involve only a few or even a single gene give a strong indication for a pathological role of those genes, but thus
far such CNVs have been detected only very rarely and lack replication. The best evidence comes from CNVs that give rise to recognizable syndromes.
Unfortunately, in this case the involved genes are not specific for the canonical Wnt pathway and modify other pathways as well. In some cases, there is
circumstantial support for a given gene from biochemical- or whole animal studies. Abbreviations: CNV, copy number variation; GWAS, genome wide association
study; SNP, single nucleotide polymorphism. For details, please refer to the individual section in the text.
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mutations in autistic probands ascertained through the
Collaborative Linkage Study of Autism by Wassink
et al. [44]. The authors identified several variants that
segregated with autism and severe language abnormal-
ity. Two subsequent linkage studies were not able to
confirm the original findings [45,46]; however, a more
recent extended study again found an association [47].
This study involved a case—control study of 9 single-
nucleotide polymorphisms (SNPs) within the WNT2
gene in 170 autism patients and 214 controls from
Japan, and a follow-up of the positive results in a
transmission disequilibrium test (TDT) in 98 Japanese
autistic family trios. The significant associations from
the initial part were replicated in the TDT part and
the authors concluded that “WNT2 is a strong candi-
date gene for autism” [47]. The function of Wnt2 has
also been investigated in laboratory experiments. In
ventral midbrain cultures, administration of Wnt2 pro-
tein increased proliferation of progenitors and the num-
ber of dopamine neurons, whereas the opposite was
found in WNT2 knock-out mice [48]. Thus, a too-
strong Wnt2 signaling could lead to enhanced midbrain
dopamine function, which eventually might relate to
the repetitive behaviors seen in autism patients.

FZD9 (7q11.23)

Immuno-precipitation experiments demonstrated that
Wnt2 interacts with frizzled 3 (Fzd3) and Fzd9, while an
antibody for Fzd9, but not an Fzd3-antibody precipitated
Wnt2 [49]. This result indicates that Fzd9 is the pre-
ferred receptor for Wnt2. Evidence that Wnt2 not only
binds, but also activates Fzd9 was provided by Karasawa
et al. [50], who demonstrated that Wnt2 application to
Fzd9 expressing HEK293 cells led to phosphorylation
of dishevelled-1 (DVL1) and p-catenin-mediated gene
transcription.

The 7ql11.23 area is known to be relevant for the
Williams-Beuren syndrome (WBS) [51,52]. Copy num-
ber variants of the WBS-region are responsible for a
complex neurological, cognitive and behavioral syn-
drome with frequent involvement of multiple additional
other organ systems [53]. There are interesting similar-
ities and differences in clinical features of patients with a
7q11.23 deletion compared to those with duplications
(reviewed by [51]). Developmental delay, mental retard-
ation and Attention Deficit Hyperactivity Disorder
(ADHD) are found in both groups, but whereas patients
with a deletion are excessively social and verbally skilled,
patients carrying a duplication display severe delays in
language development and deficits in social interaction
[51,54,55]. Male duplication patients, furthermore, show
hyperactivity, self-injury and aggression [54]. The critical
region is approximately 1.4 to 1.5 Mb [52,53] and con-
tains some 20 genes, including FZD9. The consequence
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of a loss of the Fzd9 receptor has been investigated in
mice. Homozygous deletion of FZD9 resulted in severe
deficits in visuospatial learning and memory, in apop-
tosis in the dentate gyrus and in a lowered seizure
threshold [56]. To a lesser extent, these effects were
also observed in heterozygous FZD9-KO mice (that is,
the situation analogous to WBS ‘deletion’ patients) [56].
There is evidence that Fzd9 is the main Fzd-subtype
expressed on neuronal progenitor cells [57]. Given this
information, it is conceivable that alterations in FZD9
gene-dose contribute the behavioral phenotype of
patients with 7q11.23 copy number variations.

BCL9 (1921)

BCL9 contributes to transduction of the Wnt signal by
promoting transcriptional activity and nuclear retention
of p-catenin [23,25,58]. BCL9 is located on 1q21.1, an
area for which, as for FZD9, both microduplications and
microdeletions are described [59,60]. Mefford and col-
leagues [59] detected a duplication of 1q21.1 in 9 out of
5,218 patients with unexplained mental retardation, aut-
ism or congenital abnormalities. From these, 50% had
autism or autistic behaviors; 62% had macrocephaly and
mild dysmorphic features and in seven out of eight cases
there was a delay in learning or development. Also,
Brunetti-Pierri et al. [60] described cases with both
duplications and deletions and confirm the presence of
autism, dysmorphic features and seizures in each patient
group. Aggression and ADHD were seen in both
groups, while patients with a 1q21.1 microdeletion had
notable short statures and microcephaly. The critical
minimal area was determined to be about 1.35 Mb and
contains 14 genes [60]. It is of note that both research
groups consider hydrocephalus-inducing homologue 2
(HYDIN?2) as the most likely candidate gene and do not
discuss BCL9.

Discussion (Part 1)

The data reviewed above in principle describe the ca-
nonical Wnt cascade for Wnt2: Wnt2 activates its pre-
ferred receptor (Fzd9) and the intracellular signaling
ultimately leads to BCL9-assisted [-catenin-mediated
gene-transcription (see Figure 1). Several aspects are
noteworthy. Under the assumption that duplication-
CNVs increase and deletions decrease Wnt pathway ac-
tivity, it seems that both activation and inhibition is
associated with autism. This observation is suggestive
for a bell-shaped dose-response relationship between
Wnt2 pathway activity and cognitive/linguistic develop-
ment. But there are also differences between the groups.
Patients with deletions of the Fzd9 genomic area are
described to be highly socially active and empathic. This
is in evident contrast with the aggression and social in-
hibition encountered in patients in whom the Wnt2
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pathway (presumably) is overactive (Fzd9 duplication,
BCL9 duplication). The canonical Wnt pathway has an
important influence on organ sizes, including the brain
[35]. In agreement with this, microcephaly was noted
in BCL9 deletion patients, while macrocephaly was
reported BCL9 duplication patients. These results indi-
cate a linear dose-dependency between Wnt pathway
activity and skull size. In the following sections, further
genes that influence canonical Wnt signaling will be
reviewed.

Overview of mutations in Wnt pathway in
patients with ASD (Part 2)

WIF1 (12q14.3)

A genome-wide linkage analysis found autism to be
linked to the 12ql4 region [61]. The most significant
linkage peak reason encompasses approximately 19
genes, including the Wnt inhibitory factor (WIFI). WIF1
is mainly known for its function as tumor suppressor
and disruptive mutations and/or epigenetic silencing
enhanced cancer risk by activating Wnt signaling. It is,
however, unknown if mutations in WIFI are responsible
for the linkage to 12q14.

MARK1 (14q41)
MARKI (microtubule affinity regulating kinase-1, also:
PARI) is one of the kinases which phosphorylates and,
thereby, activates dishevelled [62,63]. Several SNPs in
the MARKI gene were associated with ASD and one of
these SNPs was reported to affect transcription rate [64].
Consistent with this, increased mRNA levels of MARKI
have been found in post mortem frontal cortex samples
from autism subjects [64]. These data suggest that the
autism-related mutations in MARKI activate the Wnt
pathway. Interestingly, both overexpression and silencing
of MARK1 was found to result in shortened dendrites in
mouse neocortical neurons, indicating a bell-shaped
dose-response curve [64].

PTPRZ1 (7931.3)

As described above, there are some 200 genes under-
neath the broad linkage peak on the long arm of
chromosome 7, but fortunately specific copy number
variations may allow some locus refinement. Quite re-
cently a submicroscopic deletion of 54 Mb size was
detected in a three-year-old boy with autism spectrum
disorder that encompassed just 20 genes [65]. These 20
genes included the autism-candidate genes, CADPS2
and TSPANI2, but also the receptor tyrosine phosphat-
ase, RPTP B/{ (PTPRZI). Since PTPRZI1 is a negative
regulator of the Wnt pathway, the expected functional
consequence of a haplo-insufficiency would be an
increase in Wnt pathway activity. The clinical case de-
scription does, however, not fully support Wnt pathway
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hyperactivity since the patient’s head circumference was
2.4 SD below control and not, as expected for Wnt-
pathway activation, above average.

MET (7931)

MET is the receptor for hepatocyte growth factor (HGF).
Activated by HGF, MET phosphorylates membrane-
bound B-catenin at Tyr-142, which promotes dissoci-
ation of the [B-catenin/cadherin complex [21,66]. This
releases P-catenin for nuclear signaling and, further-
more, by limiting cell-cell adhesion, it promotes cellular
motility [21,67,68]. Cellular motility is crucial for inter-
neuron migration, dendrite extension and synapse for-
mation, and consequently, these processes are reduced
by genetic disruption of MET [69,70]. HGF-MET signal-
ing, therefore, contributes to neuronal differentiation, to
development of cerebral cortex and cerebellum and to
axon growth [66,69-71]. MET was shown to be asso-
ciated with autism spectrum disorder in four independ-
ent family cohorts (reviewed by [72]), while one of risk
alleles negatively regulated gene transcription [73]. A
two-fold reduction of MET expression was found in
post mortem temporal cortex of patients with autism
[73]. In addition, two autism patients with a deletion
CNV that encompassed MET were reported by Marshall
et al. [74]. Finally, MET transcription is regulated by
FOXP2, a further autism risk-gene [72]. These data indi-
cate that reduction in MET function, perhaps paralleled
by a reduction in Wnt signaling, contributes to autism
susceptibility.

Classical cadherins: CDH8 (16921), CDH10 (5p14.1),
CDH13 (16g23.3) and CDH15 (16q24.3)

The cadherin family is composed of more than 80
members of which about one quarter are so-called
“classical” cadherins [75]. Classical cadherins form a
complex with B-catenin and play a role in cell-cell adhe-
sion [76]. Loss of function mutations in classical cadher-
ins lead to decreased cell adhesion, an increase in cell
motility, B-catenin release and an increase in canonical
Wnt signaling [13]. Pagnamenta et al. [77] described
two families with a rare 1.6 Mb microdeletion of the
classical cadherin, CDHS8, in which affected family
members suffered from autism and learning disability.
Also, the classical cadherin, CDH13, was found dis-
rupted by a microdeletion, albeit thus far in a single
patient only [52]. Furthermore, a genome-wide associ-
ation study in 780 families with autism spectrum dis-
order produced a strong association signal for SNPs
located between CDH9 and CDHI10 on chromosome
5p14.1 [78]. Both cadherins are expressed in the brain,
but the functional consequence of the SNPs was not
investigated [78]. A further classical cadherin that may
be implicated in autism is CDH15 [79]. The authors
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described patients with a microdeletion of 16q24.3, an
area just distal to CDH15. The predicted functional
consequence of haplotype-insufficiencies of these cad-
herins would be enhanced B-catenin release and activa-
tion of the Wnt pathway.

TSC1 (9934) and TSC2 (16p13.3)

Although mainly known for their role in the tuberous
sclerosis syndrome, the tumor suppressors, tuberin
(TSC2) and hamartin (TSC1), also participate in
Wnt signaling. Both TSC1 and TSC2 were found to
co-immunoprecipitate with axin and [-catenin [80].
Overexpression of TSC1 or TSC2 led to reduction of
Wnt-induced B-catenin signaling, whereas mutations in
TSC1 or TSC2, as found in tuberous sclerosis patients,
led to increased canonical Wnt signaling [80]. In the
brain, TSC1 and TSC2 have been implicated in cell body
size, dendritic arborization, axonal outgrowth, neuronal
migration, cortical lamination and spine formation [81].
The co-occurrence of autism and tuberous sclerosis has
been recognized for decades and features of autism are
present in up to half of the patients with tuberous scler-
osis [81,82]. These findings support the contention that
increased Wnt signaling may contribute to autism.

DISC1 (1q42)

The ‘disrupted in schizophrenia 1’ (DISCI) gene is dis-
rupted by a balanced chromosomal translocation (1; 11)
(q42; q14.3) in a Scottish family with a high incidence of
bipolar disorder, major depression and schizophrenia
[83]. DISCI can be considered an endogenous GSK3[
inhibitor and in line with that activity, it promotes ca-
nonical Wnt to B-catenin signaling [27]. Expression in
mice of the truncated DISCI-form identified in the
Scottish family led to an attenuated neurite outgrowth
of primary cortical neurons and behavioral hyperactivity
[84]. To date, several linkage and association studies
have confirmed the role of DISCI in neuropsychiatric
disorders [85,86], including one study on autism and
Asperger syndrome [87]. This study found an associ-
ation between autism and a DISCI intragenic microsat-
ellite marker and, furthermore, an intragenic three-SNP
haplotype and Asperger syndrome [87]. About 3% of
patients tested by Kilpinen and colleagues [87] had a
double diagnosis of autism plus either schizophrenia or
bipolar disorder. In fact, the same haplotype was found
to be associated with schizophrenia and bipolar dis-
order [88]. Analysis of the promoter region of DISCI
showed that FOXP2 suppresses DISCI gene expression
and protein levels [89]. Interestingly, autism-related
mutations in FOXP2 diminished the suppressive effect
on DISCI transcription [89]. So it could be that both
diminished and enhanced DISCI function could con-
tribute to autism spectrum disorder.
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APC (5¢921-922)

Adenomatous polyposis coli (APC) is a negative regula-
tor of the canonical Wnt pathway and functionally
disruptive mutations are known to predispose for
colorectal cancer. Barber et al. [90] describe a patient
who originally was referred for autism and who was
subsequently found to carry an APC deletion and had
developed rectal cancer. Zhou and colleagues [91]
reported a two part study. In a retrospective study in 75
autism spectrum disorder patients and 476 controls an
association was found between a SNP in the 3’ untrans-
lated region of the APC gene and autism. In the second
part, the authors performed a prospective study in a new
set of 75 ASD patients and 280 new controls on 4 SNPs
spanning the entire 100 kB gene. While the individual
SNPs were not significantly associated, one of the pos-
sible haplotypes (TGAG) was [91]. Unfortunately, the
functional consequence of the TGAG haplotype regard-
ing Wnt pathway activity remains unknown.

DOCK4 (7q31.1)

Also, the DOCK4 gene is located under the broad link-
age peak on 7q31. Single nucleotide polymorphisms
within DOCK4 were associated with autism risk in dif-
ferent populations [41]. Further evidence for a role of
DOCK4 in autism was provided by the finding of a
microdeletion CNV in an autistic sib-pair [41] and
a deletion in a family with dyslexia [92]. DOCK4 is a
component of the [B-catenin destruction complex and
decreasing its expression by siRNA reduced Wnt-
induced TCF transcriptional activity [93]. DOCK4 is
also involved in Wnt-induced activation of the GTPase,
Rac, which is required for cell migration and synaptic
function [93]. A study in rats showed that DOCK% is
highly expressed in the hippocampus and DOCK4 ex-
pression levels increase during periods of dendrite
growth [94]. The data thus suggest that diminished
DOCK#4 level (and presumably, function), as found in
autism, suppresses Wnt signaling and dendrite growth.

AHI1 (6923.3)

Joubert syndrome is characterized by ataxia, abnormal
breathing patterns, sleep apnea, abnormal eye and
tongue movements and hypotonia, as well as distinct
malformations of cerebellum and brain stem. A high
percentage of patients with Joubert syndrome have been
diagnosed with autism spectrum disorder [95]. One of
the first genes identified to be involved in the pathogen-
esis of this syndrome was ‘Abelson’s Helper Integration
1’ (AHII) [96]. The AHII gene was found to bear several
mutations that give rise to non-functional variants of the
encoded protein, Jouberin [96]. Dysfunction of Jouberin
may thus lead to autism. In mice, AHII was distributed
throughout cytoplasm, dendrites and axons of neurons
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and was expressed from embryonal Day 10.5 onwards
[97]. In particular, AHII mRNA was expressed in cell
bodies of midline-crossing neurons, providing an explan-
ation for axonal abnormalities found in Joubert-
syndrome [98]. Jouberin participates in the Wnt pathway
by facilitating the nuclear accumulation of [-catenin
[99], but it is currently not known if this is causally
involved in the autism symptoms of Joubert syndrome
patients.

EN2 (7q36)

EN2 (engrailed-2) is involved in regionalization, pattern-
ing and neuronal differentiation of the mid- and hind-
brain and is strongly expressed in these areas during
embryonic development. A low level of expression is
maintained in adulthood; for instance, in the hippocam-
pus and cerebral cortex [100]. The transcription of EN2
is enhanced by stimulation of the canonical Wnt path-
way [101]. Several studies have shown an association
between autism and SNPs in EN2 (for review, see [102]).
Two intronic SNPs were over-transmitted to affected
individuals both singly and as haplotype in separate data
sets from North American origin [102]. The risk haplo-
type (A-C) led to higher transcription of EN2 than the
opposite haplotype [102]. Remarkably, a study in Han
Chinese autism cases confirmed EN2 as a susceptibility
gene, but found the A-C haplotype to be protective
[103]. It is conceivable that both deficits and overexpres-
sion of EN2 are disruptive for normal brain develop-
ment. Knock-out mice, which lack both copies of EN2,
display subtle cerebellar neuropathology and a behavior
that could be interpreted as autism-like, for example,
decreased play, reduced social sniffing and grooming,
and reduced aggression [104]. For a better interpret-
ation, one should also study EN2-overexpressing mice,
but this has, to my knowledge, not been done. ENI
and, to a lesser degree, EN2 are expressed in dopamine
neurons in the substantia nigra and ventral tegmental
area [105].

CREBBP (16p13.3)

CREB binding protein (CREBBP; 16p13.3) and its close
analogue EP300 (22q13.2) are transcriptional co-
activators of B-catenin [24]. Mutations and deletions of
the EP300 or CREBBP genes give rise to the Rubinstein-
Taybi syndrome (characterized by broad thumbs and
toes, short stature, distinctive facial features, impair-
ments in cognitive and motor skills and micro- or
macrocephaly; for review see [106]). Patients with dele-
tions of CREBBP show cognitive impairment, autistic
features and seizures [107]. Patients with a duplication
of the 16pl3.3 region, invariably encompassing the
CREBBP gene, have also been described [108,109]. The
behavioral phenotype of these patients is relatively mild,
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but can include autism spectrum disorder [109], speech
deficits and moderate mental retardation [108]. Experi-
ments in rats have shown that CREB activation is
required for hepatocyte growth factor-induced dendritic
arborization during brain development [71].

Discussion (Part 2)

The literature reviewed above supports the contention
that modification of genes affecting the activity of the
canonical Wnt pathway can contribute to individual
forms of autism spectrum disorder. Functionally active
polymorphisms (SNPs) and copy number variations
(CNVs) suggest both increases in Wnt signaling (SNPs
in MARKI and EN2 that increase gene transcription,
PTPRZI1 deletion, cadherin deletion-CNVs, CREB dupli-
cation-CNV), as well as decreases in Wnt signaling
(SNPs and CNVs in MET that reduce transcription,
deletion-CNVs in DOCK4 and CREB, as well as disrup-
tive SNPs in DISC1 and AHII). While reviewing the
functions of the Wnt-pathway genes, the reader may
notice a recurrent theme: their effect on cellular motility
(neurite growth, spine and synapse formation). Thus,
hepatocyte growth factor activation of MET, disruption
of cadherin /B-catenin complexes and downstream acti-
vation of CREB are involved in neurite extension and
development of the dendritic arbor. TSCI and TSC2
play a role in these processes, too. DOCK4 is expressed
during periods of dendrite growth, while AHII is im-
portant for midline-crossing axons. A crucial observa-
tion is that both overexpression and genetic silencing of
MARKI resulted in too short dendrites. This indicates
that both too much and too little Wnt pathway activity
is deleterious for dendrite growth. Consequently, both
hyperactivation and hypoactivity of the Wnt pathway
will negatively affect cognitive function and, since lan-
guage development is a cognitive skill, it is conceivable
that linguistic capabilities are reduced too.

Medications that influence the canonical Wnt
pathway

A study by Rasalam et al. [110] noted that 1 out
of 10 children born from mothers taking antiepileptic
medication had social, behavioral and language difficul-
ties. Valproate was the drug that was most commonly
associated with autistic disorder [110,111]. This is sup-
ported by data from animal studies. When rats were
prenatally (Day 12.5) exposed to a single dose of
sodium-valproate, after birth they exhibited a lower sen-
sitivity to pain, but a higher sensitivity to non-painful
stimuli [112]. Furthermore, the animals displayed hyper-
locomotion and stereotypy and lower exploratory activ-
ity, a decreased number of social behaviors and longer
latency to social behavior. All behaviors appeared prior
to puberty. Prenatal valproate use in rats is considered
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an animal model of autism [112]. Interestingly, prenatal
exposure to valproate led to increases in mRNA and
protein levels of WNT1 and WNT2 in the prefrontal
cortex and hippocampus, and genes under transcrip-
tional control of the Wnt pathway (for example, ENI,
¢yclin DI) were up-regulated [113]. Other medications
which are suspected of contributing to autism prevalence
are antidepressants, in particular the serotonin re-uptake
inhibitors (SSRIs) [114]. A prospective population-based
study by Croen et al. [115], in which prenatal SSRI
exposure of autistic children was compared to SSRI
exposure in control children, found a doubling of the
risk of autism when the mother took an SSRI during the
year before delivery, while the most pronounced risk was
seen when exposure occurred during the first trimester.
The authors concluded that exposure to SSRIs during
the first trimester of pregnancy modestly increases the
risk for autism spectrum disorder. Rats that were
exposed to the SSRI, citalopram, during postnatal Days 8
to 21 displayed altered branching characteristic in hippo-
campal and neocortical neurons, had reduced myelin-
ation of callosal axons and, furthermore, showed
impaired social behavior and response to novelty [116].
This result shows that alterations in central serotonin
levels may interfere with normal brain development.
Subchronic treatment of rats with the antidepressants
citalopram, fluoxetine, venlafaxine and atamoxetine
increased the expression of several Wnt-pathway genes;
the effect shared by all antidepressants was an increase
in WNT2- expression, involving both mRNA and protein
levels [117]. It is evident that antidepressant-induced
Wnt signaling has the propensity to influence brain de-
velopment, and reviewed data provide further support
for the contention that altered Wnt pathway activity is a
risk factor for autism spectrum disorder.

Discussion (Part 3)

When particular medications like anticonvulsants or
antidepressants can increase risk for autism, it is con-
ceivable that appropriate medications can reduce autism
risk. The information reviewed above suggests that
alterations in the activity of the canonical Wnt pathway
could contribute to autism risk and, consequently, phar-
macotherapeutic correction of the aberrant pathway ac-
tivity might help to improve symptoms. It seems that
both hyperactivity and hypoactivity can generate symp-
toms, implying that patients have to be stratified accord-
ing to their Wnt pathway activity status before
pharmacotherapy can be initiated. How should this
stratification be done? One possibility would be to strat-
ify according to skull size. Unfortunately, the neuro-
developmental mechanisms that regulate brain and skull
growth are multiple, and involve not only the canonical
Wnt pathway, but also growth-factor pathways like the
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ERK-mitogen-activated protein-kinase pathway, the
PI3K-PKB-mTOR pathway, the Sonic hedgehog pathway
(and so on) and, also, include nuclear receptor activators
like retinoic acid, thyroid hormone, corticosteroids and
gonadal steroids (for review see [118]). A more direct
way to determine canonical Wnt-pathway activity would
be to screen for proteins regulated by Wnt (for example,
¢c-Myg, cyclin-D1 or ADAM10) [119-123]. Blood plasma
levels of such proteins might become a biomarker for
pathway activity.

Consequences for the treatment of autism
spectrum disorders

Given the importance of the canonical Wnt pathway for
the development of the brain and other organs, modify-
ing its activity, in particular in young children, is a quite
hazardous enterprise. Furthermore, since autism is a
neurodevelopmental disorder, it cannot be excluded that
drug treatment will be only effective during a narrow
period, while treatment outside this critical period is in-
active [124], and thus dangerous. Therefore, pharmaco-
therapeutic treatment would only be justifiable if a valid
surrogate marker for canonical Wnt pathway activity
would be available. Under such circumstances, one
could then consider treatment with ‘mild’ pathway-
modifying drugs. Lithium is such a drug: it activates the
canonical Wnt pathway [125] without at the same time
raising cancer risk [126,127]. Patients with Williams-
Beuren syndrome, MET mutations, DOCK4 microdele-
tions or Joubert syndrome might indeed benefit from
lithium treatment; however, it would probably be
contra-indicated in patients with a cadherin haplo-
insufficiency, tuberous sclerosis or MARK1 mutations.
‘Soft’ treatments of autism disorder related to Wnt
pathway-hyperactivity can in principle be found among
anti-cancer drugs. The non-steroidal, anti-inflammatory
compound sulindac could be an option. This com-
pound inhibits polymerization of dishevelled [128] and
consequently inhibits [B-catenin signaling [128-130].
Interestingly, the activity of sulindac is not related to
COX-inhibition since sulindac-sulphone, a metabolite
devoid of COX-inhibition, is equally effective as a Dvl-
inhibitor as sulindac itself [128]. However, at present it
is clearly premature to propose sulindac as treatment
for autism (respectively, autism spectrum disorders).

Conclusion

Taken as a whole it seems safe to conclude that the ac-
tivity of the canonical Wnt pathway is altered at least in
a subset of patients with autism spectrum disorder.
Whether correction of the deviant pathway activity leads
to symptomatic improvement remains unknown. It is
important to realize deviations from the optimum in
both directions seem to increase the risk for autism
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spectrum disorder. This implies that patients, depending
on their Wnt pathway activity, will have to be treated
differentially.
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