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Abstract

Background: Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease
susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves
difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this
issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect
true associations in GWAS, particularly in complex diseases such as autism.

Methods: GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association
signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association
against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-
based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic
Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually
annotated and classified by a literature review and functional grouping in order to reveal biological pathways
which might contribute to autism aetiology.

Results: Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true
positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when
there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly
typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks
overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to
the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of
these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that
regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.

Conclusions: As statistical noise is likely to particularly affect studies of complex disorders, where genetic
heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a
powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR
analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is
implicated in the aetiology of autism.
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Background

Genome-wide association studies (GWAS) have provided
a powerful tool for identifying disease susceptibility
genes. However, analysis of GWAS data has been focused
on single-point tests, such as the traditional allele-based
chi-squared test or the Cochran-Armitage Trend test [1],
which proceed by testing each single nucleotide poly-
morphism (SNP) independently. As it is likely that the
disease variants have not been directly genotyped in a
GWAS, tests that account for multiple flanking SNPs in
linkage disequilibrium (LD) with the disease variants may
increase the power to detect association [2].

Several approaches have been proposed in order to
test for association based on multiple markers, which
include the haplotype-based approach [3-5] and the
multivariate approach [6,7]. Akey et al. [8] used analyti-
cal approaches to demonstrate that multilocus haplotype
tests can be more powerful than single-marker tests. For
the multivariate approach, tests such as Hotelling’s 77
test are often used to account for multiple markers
jointly [6,9]. Although statistical power can be increased
by such multi-marker approaches, it is not a straightfor-
ward operation to select markers for testing. Including
all markers in a gene or region may not be feasible
since it greatly increases the degrees of freedom in the
test, which can reduce the power.

Follow-up studies, such as fine mapping and sequen-
cing, are necessary in order to validate association sig-
nals and they are also challenging [2]. Prioritization of
genes or regions for follow-up studies is often decided
by a threshold of P-values or ranking for significant
markers [10,11]. However, many false positives can still
exist in the markers classified as significant for follow-
up as a result of statistical noise and genome-wide mul-
tiple testing. Joint and/or meta-analysis of GWAS data
can achieve greater power if these data or P-values are
available from different datasets. If P-values from indivi-
dual and joint analyses are available, it is possible to
further increase the power by assigning more weight to
markers with replicated association signals in several
datasets or to markers that have flanking markers with
an association signal.

We propose the use of the GWAS noise reduction
(GWAS-NR) approach which uses P-values from indivi-
dual analyses, as well as joint analysis of multiple data-
sets, and which accounts for association signals from
surrounding markers in LD. GWAS-NR is a novel
approach to extending the power of GWAS studies to
detect association. Noise reduction is achieved by apply-
ing a linear filter within a sliding window in order to
identify genomic regions demonstrating correlated pro-
files of association across multiple datasets. As noise
reduction (NR) techniques are widely used to boost
signal identification in applications such as speech
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recognition, data transmission and image enhancement,
we expect that GWAS-NR may complement other
GWAS analysis methods in identifying candidate loci
that may then be prioritized for follow-up analysis or
analysed in the context of biological pathways.

Enhancing statistical power is particularly important in
the study of complex diseases such as autism. There is
overwhelming evidence from twin and family studies for a
strong genetic component to autism, with estimates of her-
itability greater than 80% [12-14]. Autism is generally diag-
nosed before the age of 4, based on marked qualitative
differences in social and communication skills, often
accompanied by unusual patterns of behaviour (for exam-
ple, repetitive, restricted, stereotyped) [15]. Altered sensitiv-
ity to sensory stimuli and difficulties of motor initiation
and coordination also are frequently present. Identifying
the underlying genes and characterizing the molecular
mechanisms of autism will provide immensely useful gui-
dance in the development of effective clinical interventions.

Numerous autism candidate genes have been reported
based on association evidence, expression analysis, copy
number variation (CNV), and cytogenetic screening.
These genes involve processes including cell adhesion
(NLGN3, NLGN4 [16], NRXN1 [17], CDH9/CDH10
[18,19]), axon guidance (SEMAS5A [20]), synaptic scaffold-
ing (SHANK2, DLGAP2 [21], SHANK3 [22]), phosphati-
dylinositol signalling (PTEN [23], PIK3CG [24]),
cytoskeletal regulation (TSC1/TSC2 [24,25], EPAC2/RAP-
GEF4 [26], SYNGAPI [21]), transcriptional regulation
(MECP2 [27], EN2 [28]) and excitatory/inhibitory balance
(GRIN2A [29], GABRA4, GABRBI1 [30]). However, aside
from rare mutations and ‘syndromic’ autism secondary to
known genetic disorders, the identification of specific
genetic mechanisms in autism has remained elusive.

Over the past decade, the vast majority of genetic stu-
dies of autism (both linkage and focused candidate gene
studies) have failed to broadly replicate suspected
genetic variations. For this reason, the assumption that
autism is governed by strong and pervasive genetic var-
iations has given way to the view that autism may
involve numerous genetic variants, each having a small
effect size at the population level. This may arise from
common variations having small individual effects in a
large number of individuals (the common disease-
common variant [CDCV] hypothesis) or rare variations
having large individual effects in smaller subsets of indi-
viduals (the rare variant [RV] hypothesis).

Given the potential genetic heterogeneity among indi-
viduals with autism and the likely involvement of
numerous genes of small effect at the population level,
we expected that the GWAS-NR could improve the
power to identify candidate genes for follow-up analysis.
We applied GWAS-NR to autism GWAS data from
multiple sources and conducted simulation studies in
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order to compare the performance of GWAS-NR with
traditional joint and meta-analysis approaches. These
data demonstrate that GWAS-NR is a useful tool for
prioritizing regions for follow-up studies such as next-
generation sequencing.

Methods

GWAS-NR

The GWAS-NR algorithm produces a set of weighted
P-values for use in prioritizing genomic regions for follow-
up study. Roeder and Wasserman [31] characterize the
statistical properties of such weighting approaches in
GWAS, observing that informative weights can improve
power substantially, while the loss in power is usually
small even if the weights are uninformative. The GWAS-
NR algorithm computes a weight at each locus based on
the strength and correlation of association signals at sur-
rounding markers and in multiple datasets, without relying
on prior information or scientific hypotheses. The weights
are applied to the P-values derived from joint analysis of
the complete data and the resulting weighted P-values are
then used to prioritize regions for follow-up analysis.

Noise reduction methods are frequently applied when
extracting a common signal from multiple sensors. The
filter used by GWAS-NR is similar to the method pro-
posed by de Cheveigné and Simon [32] for sensor noise
suppression in magneto- and electro-encephalograph
recordings. Each sensor is projected onto the other sen-
sors and the fitted values from these regressions are
used in place of the original values. The fitted values of
such regressions retain sources of interest that are com-
mon to multiple sensors. As the regression residuals are
orthogonal to the fitted values, uncorrelated compo-
nents are suppressed.

In a genomic context, the ‘sensors’ take the form of
probit-transformed P-values derived from independent
datasets, as well as P-values derived from joint analysis
of the full dataset. The filter inherently highlights cross-
validating associations, by preserving signals that jointly
occur in a given genomic region and attenuating spikes
that are not correlated across subsets of the data. How-
ever, GWAS-NR can achieve no advantage over simple
joint analysis when an association signal is restricted to
a single marker and flanking markers provide no supple-
mentary information.

We estimate ordinary least-squares regressions of the
form

Zij=aj+ Byl + Vi,

and compute projections

o~

Zi=ay+Pply
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where Z; and Z,; are the probits @ (1 - p) of the
P-values at locus i in two datasets j and k. @'(-) denotes
the inverse of the cumulative standard normal distribu-
tion. The estimates are computed within a centred slid-
ing window of w markers and fj; are constrained to be
nonnegative which sets Z; to the mean Z; in regions
having zero or negative correlation across sensors. As
B« is driven by the covariance between probits in data-
sets j and k, probits that demonstrate positive local cor-
relation will tend to be preserved, while probits
demonstrating weak local correlation will be attenuated.
One local regression is computed for each locus and is
used to compute a single fitted value Z;; for that locus.
The same method is used to compute projections Z,,.

In order to capture association signals at adjacent loci
in different datasets without estimating numerous para-
meters, the regressor at each locus is taken to be the
probit of the lowest P-value among that locus and its
two immediate neighbours. Quality control (QC) failure
or different genotyping platforms can cause SNP geno-
types to be missing in different datasets. Missing geno-
types for a locus having no immediately flanking
neighbours are assigned a probit of zero. The window
width w is calculated as w = 2/ + 1, where # is the lag
at which the autocorrelation of the probits declines
below a pre-defined threshold. In practice, we estimate
the autocorrelation profile for each series of probits and
use the average value of & with an autocorrelation
threshold of 0.20.

After computing the projections of 2]. and Zn the

resulting values are converted back to P-values and a set
of filtered P-values is computed from these projections
using Fisher’s method. The same algorithm is executed
again, this time using the probits of the filtered P-values
and the P-values obtained from the joint association
analysis of the complete data. The resulting Fisher
P-values are then treated as weighting factors and are
multiplied by the corresponding raw P-values from the
joint analysis, producing a set of weighted P-values. To
aid interpretation, we apply a monotonic transformation
to these weighted P-values, placing them between 0 and
1 by fitting parameters of an extreme value distribution.
The GWAS-NR algorithm was executed as a Matlab
script.

Simulations

Although noise reduction has been shown to be useful
in other biomedical applications [32], understanding its
properties for identifying the true positives in disease
association studies is also important. We used computer
simulations to compare the performance of GWAS-
NR with the joint association in the presence of
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linkage (APL) analysis and Fisher’s method under a vari-
ety of disease models. We used genomeSIMLA [33] to
simulate LD structures based on the Affymetrix 5.0 chip
and performed the sliding-window haplotype APL [34]
test to measure association. Detailed descriptions for the
simulation settings are provided in Additional File 1 and
detailed haplotype configurations can be found in Addi-
tional File 2.

An important goal for the proposed approach is to
help prioritize candidate regions for follow-up studies
such as next-generation sequencing. Top regions or
genes ranked by their P-values are often considered
priority regions for follow-up studies. In order to inves-
tigate the proportion of true positives that occur in the
top regions, we treated the association tests as binary
classifiers. The markers were ranked by their P-values
and markers that occurred in the top k ranking were
classified as significant, where k was pre-specified as a
cut-off threshold. The markers that were not in the top
k ranking were classified as non-significant. We then
compared the sensitivity and specificity of GWAS-NR
with the joint and Fisher’s tests. The sensitivity was cal-
culated based on the proportion of the three markers
associated with the disease that were correctly classified
as significant. The specificity was calculated based on
the proportion of markers not associated with the dis-
ease that were correctly classified as non-significant.
The sensitivity and specificity were averaged over 1000
replicates.

Ascertainment and sample description

We ascertained autism patients and their affected and
unaffected family members through the Hussman Insti-
tute for Human Genomics (HIHG, University of Miami
Miller School of Medicine, FL, USA), and the Vanderbilt
Center for Human Genetics Research (CHGR, Vander-
bilt University Medical Center, Tennessee, USA; UM/
VU). Participating families were enrolled through a
multi-site study of autism genetics and recruited via
support groups, advertisements and clinical and educa-
tional settings. All participants and families were ascer-
tained using a standard protocol. These protocols were
approved by appropriate Institutional Review Boards.
Written informed consent was obtained from parents, as
well as from minors who were able to give informed
consent; in individuals unable to give assent due to age
or developmental problems, assent was obtained when-
ever possible.

The core inclusion criteria were as follows: (1) chron-
ological age between 3 and 21 years of age; (2) presump-
tive clinical diagnosis of autism; and (3) expert clinical
determination of autism diagnosis using Diagnostic and
Statistical Manual of Mental Disorders (DSM)-IV cri-
teria supported by the Autism Diagnostic Interview-
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Revised (ADI-R) in the majority of cases and all avail-
able clinical information. The ADI-R is a semi-struc-
tured diagnostic interview which provides diagnostic
algorithms for classification of autism [35]. All ADI-R
interviews were conducted by formally trained inter-
viewers who have achieved reliability according to estab-
lished methods. Thirty-eight individuals did not have an
ADI-R and, for those cases, we implemented a best-esti-
mate procedure to determine a final diagnosis using all
available information from the research record and data
from other assessment procedures. This information
was reviewed by a clinical panel led by an experienced
clinical psychologist and included two other psycholo-
gists and a paediatric medical geneticist - all of whom
were experienced in autism. Following a review of case
material, the panel discussed the case until a consensus
diagnosis was obtained. Only those cases in which a
consensus diagnosis of autism was reached were
included. (4) The final criterion was a minimal develop-
mental level of 18 months as determined by the
Vineland Adaptive Behavior Scale (VABS) [36] or the
VABS-II [37] or intelligence quotient equivalent >35.
These minimal developmental levels assure that ADI-R
results are valid and reduce the likelihood of including
individuals with severe mental retardation only. We
excluded participants with severe sensory problems (for
example, visual impairment or hearing loss), significant
motor impairments (for example, failure to sit by 12
months or walk by 24 months) or identified metabolic,
genetic or progressive neurological disorders.

A total of 597 Caucasian families (707 individuals with
autism) were genotyped at HIHG. This dataset consisted
of 99 multiplex families (more than one affected indivi-
dual) and 498 singleton (parent-child trio) families.
A subset of these data had been previously reported
[19]. In addition, GWAS data were obtained from the
Autism Genetic Resource Exchange (AGRE) [35] as an
additional dataset for analysis. The full AGRE dataset is
publicly available and contains families with the full
spectrum of autism spectrum disorders. From AGRE,
we selected only families with one or more individuals
diagnosed with autism (using DSM-IV and ADI-R);
affected individuals with non-autism diagnosis within
these families were excluded from the analysis. This
resulted in a dataset of 696 multiplex families (1240
individuals with autism) from AGRE [35].

Genotyping and quality control and population
stratification

We extracted DNA for individuals from whole blood by
using Puregene chemistry (QIAGEN, MD, USA). We
performed genotyping using the Illumina Beadstation
and the Illumina Infinium Human 1 M beadchip follow-
ing the recommended protocol, only with a more
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stringent GenCall score threshold of 0.25. Genotyping
efficiency was greater than 99%, and quality assurance
was achieved by the inclusion of one CEPH control per
96-well plate that was genotyped multiple times. Tech-
nicians were blinded to affection status and quality-
control samples. The AGRE data were genotyped using
the Illumina HumanHap550 BeadChip with over
550,000 SNP markers. All samples and SNPs underwent
stringent GWAS quality control measures as previously
described in detail in Ma et al. [19].

Although population substructure does not cause a
type I error in family-based association tests, multiple
founder effects could result in a reduced power to
detect an association in a heterogeneous disease such as
autism. Thus, we conducted EIGENSTRAT [38] analysis
on all parents from analysed families for evidence of
population substructure using the overlapping SNPs
genotyped in both the UM/VU and AGRE datasets. In
order to ensure the most homogeneous groups for asso-
ciation screening and replication, we excluded all
families with outliers defined by EIGENSTRAT [38] out
of four standard deviations of principal components 1
and 2.

Haplotype block definition

We used haplotype blocks to define regions of interest.
Significant regions can be used for follow-up analysis
such as next-generation sequencing. We applied the
haplotype block definition method proposed by Gabriel
et al. [39] to the UM/VU dataset. We performed
GWAS-NR based on single-marker APL P-values from
UM/VU, AGRE and joint tests. We also performed
GWAS-NR on P-values obtained from sliding-window
haplotype tests with a haplotype length of three markers
for the UM/VU, AGRE and joint datasets. Since the true
haplotype length is not known, we chose a fixed length
of three markers across the genome and used GWAS-
NR to sort out true signals from the P-values. Blocks
containing the top 5000 markers, as ranked by the mini-
mum values (MIN_NR) of the GWAS-NR P-values
obtained from single-marker tests, and the GWAS-NR
P-values obtained from tests of three-marker haplotypes,
were selected for further analysis.

Combined P-values for haplotype block scoring

In order to test for the significance of the haplotype
blocks, we calculated the combined P-value for each
block using a modified version of the Truncated Product
Method (TPM) [40]. TPM has been shown to have cor-
rect type I error rates and more power than other meth-
ods combining P-values [40] under different simulation
models. Briefly, a combined score was calculated from
the markers in each block, based on the product of
MIN_NR that were below a threshold of 0.05. We used
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the Monte Carlo algorithm [40] with a slight modifica-
tion to test the significance of the combined score. Spe-
cifically, a correlation matrix was applied to account for
correlation among P-values for the markers in the same
block. The null hypothesis is that none of the markers
in the haplotype block are associated with the disease.
In order to simulate the null distribution for the com-
bined score, we generated two correlated sets of L uni-
form numbers based on the correlation of 0.67 for
CAPL and HAPL P-values, where L denotes the number
of tests in the block. The minimum values were selected
from each pair in the two sets, which resulted in a vec-
tor of L minimum values. Then the correlation matrix
was applied to the vector of L minimum values and a
null combined GWAS-NR score was calculated for the
haplotype block.

Functional analysis

In order to investigate functional relationships among
genes in the candidate set, each candidate was manually
annotated and cross-referenced, based on a review of
current literature, with attention to common functions,
directly interacting proteins and binding domains. Sup-
plementary functional annotations were obtained using
DAVID (The Database for Annotation, Visualization
and Integrated Discovery) version 6.7 [41-43].

Results

Simulations

We present the simulation results for the three-marker
haplotype disease models in Figures 1 and 2. Figure 1
presents receiver operating characteristic (ROC) curves
to show the sensitivity and specificity of GWAS-NR, the
joint APL analysis and Fisher’s tests, based on varying
cut-off values of ranking for significance. The Fisher’s
test to combine P-values was used here as a standard
meta-analysis approach. The performance of a classifica-
tion model can be judged based on the area under the
ROC curve (AUC). For scenario 1 (identical marker cov-
erage in each dataset), GWAS-NR produced a greater
AUC than the joint and Fisher’s tests. It can also be
observed from the figure that, given the same specificity,
GWAS-NR achieved a higher sensitivity for classifying
true positives as significant as the joint and Fisher’s
tests.

As independent datasets may have an imperfect over-
lap of markers, which is true of the UM/VU and AGRE
autism data, and the omission of the closest disease-
related polymorphism from the data can have substan-
tial negative impact on the power of GWAS [44], we
also compared the performance of GWAS-NR with the
joint APL tests and Fisher’s tests under a range of miss-
ing marker scenarios: 20% of the simulated markers in
one dataset were randomly omitted for the recessive
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Figure 1 Comparative classification rates for genome-wide association studies noise reduction (GWAS-NR), joint analysis and Fisher’s
test. GWAS-NR has area under the curve (AUC) of 0.703 and the joint and Fisher's tests have AUC of 0.64 and 0.615, respectively, for the
recessive model. Also GWAS-NR has AUC of 0.899 and the joint and Fisher’s tests have AUC of 0.795 and 0.777, respectively, for the multiplicative
model. For the dominant model, AUC for GWAS-NR, the joint and Fisher's tests are 0.981, 0.880 and 0.867, respectively. For the additive model,
AUC for GWAS-NR, the joint and Fisher's tests are 0.932, 0.822, and 0.807, respectively.

and multiplicative models and 50% of the simulated
markers were randomly omitted in one dataset for the
dominant and additive models. This performance is
shown in Figure 2. Again, the GWAS-NR produced a
greater AUC than the joint and Fisher’s tests and
achieved a higher sensitivity for classifying true positives
at each level of specificity.

The results for the two-marker haplotype disease mod-
els are shown in Additional File 3. The same pattern is

also observed in Additional File 3 that GWAS-NR pro-
duced greater AUC than the joint and Fisher’s tests.

We also evaluated the type I error rates of the modi-
fied TPM for identifying significant LD blocks using a
truncation threshold of 0.05. For the scenario assuming
full marker coverage as described in Additional File 1,
the modified TPM had type I error rates of 0.035 and
0.004 at the significance levels of 0.05 and 0.01, respec-
tively. For the missing-marker scenario, the type I error
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Figure 2 Comparative classification rates for genome-wide association studies noise reduction noise reduction (GWAS-NR), joint
analysis and Fisher’s test with 20% and 50% missing markers. GWAS-NR has area under the curve (AUC) of 0.689 and the joint and Fisher's
tests have AUC of 0.622 and 0.598, respectively, for the recessive model. Also GWAS-NR has AUC of 0.883 and the joint and Fisher's tests have
AUC of 0.776 and 0.760, respectively, for the multiplicative model. For the dominant model, AUC for GWAS-NR, the joint and Fisher's tests are
0.961, 0.852 and 0.844, respectively. For the additive model, AUC for GWAS-NR, the joint and Fisher's tests are 0.895, 0.785, and 0.775,
respectively.

rates for the modified TPM were 0.046 and 0.007 at the
significance levels of 0.05 and 0.01, respectively.

Autism GWAS-NR results

We applied the GWAS-NR in autism data using UM/
VU, AGRE and the joint (UM/VU)/AGRE datasets.
A flow diagram (Additional File 4) for the data analysis

process is found in the supplemental data. The selection
of haplotype blocks based on Gabriel’s definition
resulted in a total of 2680 blocks based on the top 5000
markers. Moreover, 141 markers out of the 5000 mar-
kers which are not in any blocks were also selected.
Blocks of LD were scored based on the truncated pro-
duct of P-values below a threshold of 0.05 and a P-value
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for each block was obtained through Monte Carlo simu-
lation. The P-values for 141 markers not in any blocks
were also calculated using the Monte Carlo algorithm to
account for the minimum statistics. All of the 141 mar-
kers had P-values less than 0.05 and were selected. 725
LD blocks achieved a significance threshold of P < =
0.01, and an additional 810 blocks achieved a threshold
of P < = 0.05. A complete list of these blocks is pre-
sented in Additional File 5.

In order to determine what genes reside within the 1535
significant LD blocks, we used the University of California
Santa Cruz (UCSC) Genome Browser Table Browser. The
1535 regions were converted into start and end positions
based on the SNP positions in the March 2006 (NCBI36/
hg18) human genome assembly. These start and end posi-
tions were used to define regions in the UCSC Table
Browser. We searched each region for overlap with the
RefSeq annotation track in the UCSC Browser. This search
resulted in 431 unique genes which mapped back to 646
significant LD blocks and 50 single markers. These genes
are presented in Additional File 6. For the remaining 839
LD blocks that did not overlap a RefSeq gene, we identi-
fied the nearest RefSeq gene using Galaxy [45]. The dis-
tance to these nearest genes averaged 417,377 bp with a
range from 5296 to 5,547,466 bp. These nearest genes
include candidate genes for which strong proximal asso-
ciations with autism have previously been reported, such
as CDH9 [18,19] and SEMAS5A [20]. We considered these
genes for follow-up because GWAS-NR, by construction,
may capture association information from nearby regions
that may not be in strict LD with a given SNP and because
these proximal locations may also incorporate regulatory
elements. These genes are presented in Additional File 7.
Combining these sets resulted in a candidate set of 860
unique genes (presented in Additional File 8). For genes
assigned to more than one significant LD block, the lowest
P-value among these blocks is used for sorting and discus-
sion purposes.

The most significant LD block we identified is located
at 2p24.1 (ch2 204444539-20446116; P = 1.8E-06) proxi-
mal to PUM2. One LD block located within the PUM2
exon also had nominally significant association (P =
0.024). Additional top-ranking candidates, in order of
significance, include CACNA1I (P = 1.8E-05), EDEM1
(P = 1.8E-05), DNER (P = 2.7E-05), A2BP1 (P = 3.6E-
05), ZNF622 (P = 8.11E-05), SEMA4D (P = 9.09E-05)
and CDHS8 (P = 9.09E-05). Gene ontology classifications
and InterPro binding domains reported by DAVID
[41-43] to be most enriched in the candidate gene set
are presented in Tables 1 and 2, respectively, providing
a broad functional characterization of the candidate
genes identified by the GWAS-NR in autism.

Cell adhesion represented the most common func-
tional annotation reported for the candidate gene set,

Page 8 of 16

with a second set of common functional annotations
relating to neuronal morphogenesis and motility, includ-
ing axonogenesis and neuron projection development.
Given the enrichment scores reported by DAVID
[41-43] implicating neurite development and motility,
and because numerous cell adhesion molecules are
known to regulate axonal and dendritic projections
[46,47], we examined the known functional roles of the
individual candidate genes responsible for these enrich-
ment scores. A total of 183 candidate genes were repre-
sented among the top 20 functional classifications
reported by DAVID [41-43]. Based on annotations
manually curated from a review of current literature, we
observed that 76 (41.5%) of these genes have established
roles in the regulation of neurite outgrowth and gui-
dance. These include 39 (51.3%) of the candidate genes
contained in the cell adhesion, biological adhesion, cell-
cell adhesion and homophilic cell adhesion pathways.

Gene ontology [48] specifically associates two path-
ways with the narrow synonym ‘neurite outgrowth’: the
neuron projection development (pathway 0031175); and
the transmembrane receptor protein tyrosine kinase
activity (pathway 0004714). To further test for func-
tional enrichment of genes related to neurite outgrowth,
we formed a restricted composite of these two pathways.
Enrichment analysis using the EASE function of DAVID
[41-43] rejected the hypothesis that this composite path-
way is randomly associated with the autism candidate
set (P = 2.07E-05).

Although many of the candidate genes identified by
the GWAS-NR remain uncharacterized or have no
known neurological function, we identified 125 genes
within the full candidate set having established and
interconnected roles in the regulation of neurite out-
growth and guidance. These genes are involved in
diverse sub-processes including cell adhesion, axon gui-
dance, phosphatidylinositol signalling, establishment of
cell polarity, Rho-GTPase signalling, cytoskeletal regula-
tion and transcription. Table 3 presents a summary of
these genes by functional category. Additional File 9
presents annotations for these 125 candidates. Addi-
tional File 10 presents 104 additional candidates which
have suggestive roles in neurite regulation based on
putative biological function or homology to known
neurite regulators but where we did not find evidence
specific to neurite outgrowth and guidance in the cur-
rent literature.

Outside of functions relating to neuritogenesis, the
most significant functional annotation reported by
DAVID for the candidate gene set relates to transmis-
sion of nerve impulses (p = 9.02E-04). We identified 40
genes in the candidate set related to neurotransmission
(synaptogenesis, neuronal excitability, synaptic plasticity,
and vesicle exocytosis) which did not have overlapping
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Table 1 Common functions of autism candidate genes identified by genome-wide association studies-noise reduction
(GWAS-NR)

Gene ontology (GO) term No. of GO term P-value' Examples
genes identification
Cell adhesion 76 0007155 6.29E-13 CDH8, NCAM2
Biological adhesion 76 0022610 6.64E-13 CDH2, CTNNB1
Cell-cell adhesion 35 0016337 6.24E-08 CTNNA2,
AMIGO2
Homophilic cell adhesion 21 0007156 1.21E-06 PTPRM, FAT1
Cell motion 44 0006928 6.65E-06 SEMASA, FYN
Neuron differentiation 41 0030182 1.14E-05 EN2, NRXN1
Enzyme linked receptor protein signalling pathway 33 0007167 5.40E-05 NCK2, FGFR2
Neuron development 32 0048666 1.07E-04  ROBO2, RTN4R
Negative regulation of gene expression 42 0010629 1.27E-04 SIX3, CUX2
Axonogenesis 22 0007409 1.31E-04  SEMAGA, SLITRK5
Cell morphogenesis involved in differentiation 25 0000904 2.16E-04 PRKCA, PTK2
Cell motility 29 0048870 240E-04 DNER, PPAP2B
Localization of cell 29 0051674 2.40E-04 PTEN, NRP2
Negative regulation of transcription 38 0016481 3.19E-04 RBPJ, MEIS2
Cell morphogenesis involved in neuron differentiation 22 0048667 3.94E-04 PARD3, KALRN
Transmembrane receptor protein tyrosine kinase signalling 23 0007169 3.98E-04 SOCS2, DOK5
Neuron projection development 25 0031175 4.40E-04 RTN4R, NGF
Neuron projection morphogenesis 22 0048812 5.07E-04 PVRL1, CDH4
Regulation of cell projection organization 13 0031344 5.33E-04 SEMA4D,
CDC42EP4
Negative regulation of nucleobase, nucleoside, nucleotide, and nucleic acid 40 0045934 6.79E-04 BCL6, ZHX2

metabolic process

Table 2 Common binding domains of autism candidate genes identified by genome-wide association studies-noise
reduction (GWAS-NR)

INTERPRO term No. of genes INTERPRO identification P-value’
Immunoglobulin I-set 20 IPRO13098 8.97E-06
Cadherin 16 IPRO02126 6.98E-05
Cadherin cytoplasmic region 7 IPRO00233 1.14E-04
Pleckstrin homology 26 IPRO01849 5.03E-04
Immunoglobulin 21 IPRO13151 5.61E-04
Immunoglobulin subtype 2 21 IPRO03598 6.77E-04
Fibronectin, type lll-like fold 19 IPRO08957 1.19E-03
Fibronectin, type |ll 19 IPR0O03961 1.72E-03
Epidermal growth factor (EGF) 14 IPRO06209 3.71E-03
Meprin/A5-protein/PTPmu (MAM) 5 IPRO00998 6.78E-03
Protein-tyrosine phosphatase, receptor/non-receptor type 7 IPRO00242 7.36E-03
Pleckstrin homology-type 24 IPRO01993 741E-03
von Willebrand factor, type A 10 IPR002035 741E-03

Immunoglobulin-like 35 IPRO07110 7.57E-03
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Table 3 Autism candidate genes with known roles in neurite outgrowth and guidance

Function Candidate gene (by lowest P-value)

Cadherin-catenin

CDH8, CDH2, CDH11, CTNNB1, CTNNA2, PKP4, CTNND2, CDH4, CTNND1, CTNNA3

function

Cell adhesion NCAM2, CNTN3, OPCML, ODZ4, NID1, CNTNS5, F3, PVRL1, PTPRG, PARVA, FLRT2, ODZ2, NRXNT1, ITGA9, ELMO1, FUT9,
AMIGO?2, KIRREL3, CNTNAP2, NTM

lon channel CACNATI, CACNATG

Axon guidance

SEMAA4D, RTN4R, ROBO2, SEMASA, PLXDC2, SLITRKS, SEMA6A, RGMA, UNC5D, ALCAM, NTNG2, RTN4RL1, PLXNCT1, NRP2

Vesicle transport STX2, STX16, STXBP5, SYT6

Post-synaptic scaffold DLGAP2, MAGI1, MAGI2

Signal transduction

DNER, SPRY4, FRK, PRKCA, DOK6, PDE3A, FER, IRS2, SOCS2, SPRY2, FRS3, DOKS, FYN, LZTS1, PTPRD, FGFR2, NRG3, PPP2R2B

ALK, RYR2, PALM2-AKAP2, MAP3K7, NTRK3, NGF, PPM1H, GDNF, CXCR4, PTK2, NEDD9, PTPN1, LEPR

Phosphatidylinositol
signalling

PLA2G6, PIK3C2B, PTEN, PLA2G4A

Cell polarity FAT1, PARD3, PARD6G, DCHS2

Rho-GTPase signalling

NCK2, DOCK1, PREX1, CDC42EP4, RND3, RGNEF, DOCKS, CIT, SRGAP3, KALRN, IQGAP2

Cytoskeletal regulation

SGK1, MYLK, GPR56, APBB1IP, PTPRM, WIPF3, PTPRT, MAP3K8, MICAL2, DGKG, COBL, CALD1

Transcription

PUM2, A2BP1, NKX6-1, SOX14, EN2, EBF1, MAP3K1, FOXGT, NFIC, BCL11A

roles in neurite regulation. Table 4 presents a summary
of these genes by functional category.

In order to investigate how the GWAS-NR results
compared with the joint APL tests and Fisher’s tests, we
examined the lists of top 5000 markers selected based on
GWAS-NR, joint APL test and Fisher’s test P-values.
A total of 3328 of the markers are overlapped between
the lists for the GWAS-NR and joint APL tests, while
1951 of the markers are overlapped between the lists for
the GWAS-NR and Fisher’s tests. Thus, GWAS-NR had
a higher concordance with the joint APL tests than the
Fisher’s tests. The results suggested that Fisher’s test may
have the lowest sensitivity to identify the true positives,
which is consistent with our simulation results. More-
over, 120 markers that are not overlapped between Illu-
mina Infinium Human 1M beadchip and Illumina
HumanHap550 BeadChip were among the top 5000 mar-
kers selected based on GWAS-NR. Some of the 120 mar-
kers are in the significant genes identified by haplotype
blocks such as PUM2, A2BP1, DNER and SEMA4D.

In order to similarly investigate the overlap of candi-
date genes indentified by GWAS-NR and joint APL
tests, we repeated the haplotype block scoring method

with the top 5000 markers as identified by joint APL:
this analysis resulted in 1924 significant LD blocks. Of
these, 1257 overlapped with the blocks selected by
GWAS-NR analysis. Identification of the RefSeq genes
within with these 1257 shared regions showed that 380
potential candidate genes were shared by the two meth-
ods. In addition, GWAS-NR analysis produced 53 non-
overlapping genes while the joint APL analysis produced
349 non-overlapping genes.

As GWAS-NR amplifies association signals that are repli-
cated in multiple flanking markers and across data sets, the
method can be expected to produce a reduced list of higher
confidence candidate regions for follow-up, compared
with standard single-locus methods. At the same time,
GWAS-NR does not generate a large number of significant
candidates in regions that would otherwise be ranked as
insignificant. While it is not possible to exclude a role in
autism for the 349 additional candidate genes produced by
the joint APL analysis, it is notable that among the top 20
gene ontology pathways reported by DAVID [41-43] for
this set of genes, not one is specific to neuronal function
(data not shown). This analysis highlights the utility of
GWAS-NR to narrow and prioritize follow-up gene lists.

Table 4 Autism candidate genes with roles in synaptic function

Function

Candidate gene (by lowest P-value)

Synaptogenesis LRRTM4, SYN3

Excitatory/inhibitory balance

KCNIPT, KCNQT1, KCNQ5, KCNJ4, SLCOA13, IQCF1, GABBR2, GRIK4, OAT, KCNN3, GRM3, GCOMT1,

CACNA2D1, GRM7, ADRB2, KCNH7, KCNIP4, GRIK2, CACNG2, KCNMAT, KCNGT

Synaptic plasticity

RIMST, PTGER2, SLC24A2, NETO1, PTGS2

Vesicle exocytosis PTPRN2, AMPH, RAB11B, SYNPR

Other

TPH2, CHRNA9, RIMBP2, ATXN1, CHRNB4, NOVAT1, SNCAIP, CHRM3
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Discussion

We propose the use of GWAS-NR, a noise-reduction
method for genome-wide association studies which aims
to enhance the power to detect true positive associations
for follow-up analysis. Our results demonstrate that
GWAS-NR is a powerful method for the enhancement of
the detection of genetic associations. Simulation evidence
using a variety of disease models indicates that, when
markers are ranked by P-values and candidates are
selected based on a threshold rank, GWAS-NR achieves
higher classification rates than the use of joint P-values
or Fisher’s method. In simulated data, the GWAS-NR
also achieves strong performance when there is imperfect
marker overlap across datasets and when the closest dis-
ease-related polymorphism is not typed. As Miiller-Myh-
sok and Abel have observed, when less-than-maximum
LD exists between a disease locus and the closest biallelic
marker, the required sample size to achieve a given level
of power may increase dramatically, particularly if there
is a substantial difference in allele frequencies at the dis-
ease marker and the analysed marker [49].

In the context of allelic association, noise can be
viewed as observed but random association evidence
(for example, false positives) that is not the result of
true LD with a susceptibility or causative variant. Such
noise is likely to confound studies of complex disorders,
where genetic heterogeneity among affected individuals
or complex interactions among multiple genes may
result in modest association signals that are difficult to
detect. The influence of positive noise components is
also likely to contribute to the so-called ‘winner’s curse’
phenomenon, whereby the estimated effect of a puta-
tively associated marker is often exaggerated in the
initial findings, compared with estimated effects in fol-
low-up studies [50]. GWAS-NR appears to be a promis-
ing approach to address these challenges.

By amplifying signals in regions where association
evidence is locally correlated across datasets, the
GWAS-NR captures information that may be omitted or
underutilized in single-marker analysis. However, the
GWAS-NR can achieve no advantage over simple joint
analysis when flanking markers provide no supplemen-
tary information. This is likely to be true when a true
risk locus is typed directly and a single-marker associa-
tion method is used or when a true risk haplotype is
typed directly and the number of markers examined in a
haplotype-based analysis is of the same length.

Joint analysis generally has more power than indivi-
dual tests due to the increase of sample size. Therefore,
GWAS-NR, which uses P-values from individual ana-
lyses as well as joint analysis of multiple datasets, is
expected to have more power than individual tests.
However, if there are subpopulations in the sample and
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the association is specific to a subpopulation, joint ana-
lysis may not be as powerful as an individual test for the
subpopulation with the association signal. If samples
from multiple populations are analysed jointly, test
results for individual datasets should also be carefully
examined with the GWAS-NR results.

It is common for linear filters to include a large set of
estimated parameters to capture cross-correlations in
the data at multiple leads and lags. However, in a geno-
mic context, the potentially uneven spacing of markers
and varying strength of linkage disequilibrium between
markers encouraged us to apply a parsimonious repre-
sentation that would be robust to data structure. We
expect that a larger, well-regularized parameterization
may enhance the performance of the noise filter, parti-
cularly if the filter is constructed to adapt to varying
linkage disequilibrium across the genome. This is a sub-
ject of further research.

Our simulation results indicate that applying the modi-
fied TPM to select LD blocks based on GWAS-NR can
have conservative type I error rates. The original TPM
reported by Zaykin et al. [40] produced the expected
level of type I error, as a known correlation matrix was
used in the simulations to account for correlation among
P-values due to LD among markers. However, the true
correlation is unknown in real datasets. Accordingly, we
estimated correlations in our simulations and analysis by
bootstrapping replicates of samples, as well as using the
sample correlation between P-values obtained though
single marker APL and sliding window haplotype analy-
sis. It is possible that the use of estimated correlations
may introduce extra variations in the Monte-Carlo simu-
lations of TPM, which may contribute to conservative
type I error rates. As we have demonstrated that GWAS-
NR achieves higher sensitivity at each level of specificity,
the resulting regions with top rankings can be expected
to be enriched for true associations when such associa-
tions are actually present in the data, even if the LD
block selection procedure is conservative. Overall, the
simulation results suggest that GWAS-NR can be
expected to produce a condensed set of higher confi-
dence follow-up regions, and that this prioritization strat-
egy can control the number of false positives at or below
the expected number in analysis.

Autism

Our data identify potential candidate genes for autism
that encode a large subset of proteins involved in the
outgrowth and guidance of axons and dendrites to their
appropriate synaptic targets. Our results also suggest
secondary involvement of genes involved in synaptogen-
esis and neurotransmission which further contribute to
the assembly and function of neural circuitry. Taken
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together, these findings augment existing genetic, epige-
netic and neuropathological evidence suggestive of
altered neurite morphology, cell migration, synaptogen-
esis and excitatory-inhibitory balance in autism [49].

Altered dendritic structure is among the most consis-
tent neuroanatomical findings in autism [51,52] and sev-
eral other neurodevelopmental syndromes including
Down, Rett and fragile-X [53,54]. Recent neuroanatomi-
cal findings include evidence of subcortical, periventri-
cular, hippocampal and cerebellar heterotopia [55] and
altered microarchitecture of cortical minicolumns [56],
suggestive of dysregulated neuronal migration and gui-
dance. In recent years, evidence from neuroanatomical
and neuroimaging studies has led a number of research-
ers to propose models of altered cortical networks in
autism, emphasizing the possible disruption of long-
range connectivity and a developmental bias toward the
formation of short-range connections [57,58].

Neurite regulation is a common function of numerous
top-ranking candidates. PUM2 codes for pumilio homo-
log 2, which regulates dendritic outgrowth, arborization,
spine formation and filopodial extension of developing
and mature neurons [59]. DNER regulates the morpho-
genesis of cerebellar Purkinje cells [60] and acts as an
inhibitor to retinoic-acid induced neurite outgrowth
[61]. A2BP1 binds with ATXN2 (SCA2), a dosage-
sensitive regulator of actin filament formation that is
suggested to mediate the loss of cytoskeleton-dependent
dendritic structure [62]. SEMA4D induces axonal
growth cone collapse [63] and promotes dendritic
branching and complexity in later stages of development
[64,65]. CDHS8 regulates hippocampal mossy fibre axon
fasciculation and targeting, complementing N-cadherin
(CDH2) in the assembly of synaptic circuits [66].

Neurite outgrowth and guidance can be conceptualized
as a process whereby extracellular signals are transduced
to cytoplasmic signalling molecules which, in turn, regu-
late membrane protrusion and neuronal growth cone
navigation by reorganizing the architecture of the neuro-
nal cytoskeleton. In general, neurite extension is depen-
dent on microtubule organization, while the extension
and retraction of finger-like filopodia and web-like lamel-
lipodia from the neuronal growth cone is dependent on
actin dynamics. Gordon-Weeks [67] and Bagnard [68]
provide excellent overviews relating to growth cone regu-
lation and axon guidance. Figure 3 provides a simplified
overview of some of these molecular interactions.

The autism gene candidates identified by GWAS-NR
show functional enrichment in processes, including
adhesion, cell motility, axonogenesis, cell morphogenesis
and neuron projection development. Notably, a recent
analysis of rare CNVs in autism by the Autism Genome
Project Consortium indicates similar functional
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enrichment in the processes of neuronal projection,
motility, proliferation, and Rho/Ras GTPase signalling
[21].

We propose that, in autism, these processes are not
distinct functional classifications but instead cooperate
as interacting parts of a coherent molecular pathway
regulating the outgrowth and guidance of axons and
dendrites. Consistent with this view, the candidate set is
enriched for numerous binding domains commonly
found in proteins that govern neuritogenesis. These
include immunoglobulin, cadherin, pleckstrin homology,
MAM, fibronectin type-III and protein tyrosine phos-
phatase (PTP) domains [69-71].

The cytoskeletal dynamics of extending neurites are
largely governed by the activity of Rho-GTPases, which
act as molecular switches to induce actin remodelling.
Molecular evidence suggests that disassociation of cate-
nin from cadherin promotes the activation of Rho-family
GTPases Rac and Cdc42, resulting in cytoskeletal rear-
rangement [72]. Guanine nucleotide exchange factors
(GEFs) such as DOCK1 [73] and KALRN [74] activate
Rho-GTPases by exchanging bound guanosine dipho-
sphate (GDP) for guanosine triphosphate (GTP), while
GTPase activating proteins (GAPs) such as SRGAP3
[75] increase the rate of intrinsic GTP hydrolysis to
inactivate GTPases. Pleckstrin homology domains, char-
acteristic of several GEFs and GAPs, bind to phosphoi-
nositides to establish membrane localization and also
may play a signalling role in GTPase function [76].
Certain GTPases outside of the Rho family, particularly
Rap and Ras, also exert an influence on cytoskeletal
dynamics and neurite differentiation [77,76].

Several genes in the candidate set with established
roles in neurite formation and guidance have been pre-
viously implicated in autism. These include A2BP1 (P =
3.60E-05), ROBO2 (2.00E-03), SEMAS5A (2.30E-03), EN2
(4.00E-03), CACNA1G (6.00E-03), PTEN (8.00E-03),
NRXNI1 (1.10E-02), FUT9 (1.80E-02), DOCKS (2.10E-02),
NRP2 (2.60E-02) and CNTNAP2 (2.70E-02). Other pre-
viously reported autism candidate genes with suggestive
roles in neurite regulation include PCDH9 (1.76E-03),
CDH9 (6.00E-03) and CSMD3 (2.10E-02).

The enriched presence of transcription factors in the
candidate set is intriguing, as many of these candidates,
including CUX2, SIX3, MEIS2 and ZFHX1B have estab-
lished roles in the specification of GABAergic cortical
interneurons [76]. Many guidance mechanisms in the
neuritogenic pathway, such as Slit-Robo, semaphorin-
neuropilin, and CXCR4 signalling also direct the migra-
tion and regional patterning of interneurons during
development. Proper targeting of interneurons is vital to
the organization of cortical circuitry, including minico-
lumnar architecture which is reported to be altered in
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Figure 3 Simplified schematic illustrating molecular mechanisms of neurite regulation. Extracellular events such as cell contact [79], guidance
cues [64], neurotransmitter release [80], and interactions with extracellular matrix components [46] are detected by receptors and cell adhesion
molecules at the membrane surface and are transduced via cytoplasmic terminals and multidomain scaffolding proteins [47] to downstream signalling
molecules [81-83]. Polarity and directional navigation is achieved by coordinating local calcium concentration [84], Src family kinases [85], cyclic
nucleotide activation (CAMP and cGMP) [86], and phosphoinositide signalling molecules which affect the spatial distribution and membrane
recruitment of proteins that regulate the neuronal cytoskeleton [87]. Chief among these regulators are the small Rho family GTPases RhoA, Rac and
Cdc42, which serve as molecular ‘switches' to activate downstream effectors of cytoskeletal remodelling [88]. In developed neurons, this pathway
further regulates the formation of actin-dependent microarchitecture such as mushroom-like dendritic spines at the postsynaptic terminals of
excitatory and inhibitory synapses [89]. This simplified schematic presents components in an exploded format for tractability, and includes an abridged
set of interactions. Additional File 9 presents autism candidate genes identified by GWAS-NR having known roles in neurite regulation. RPTP (receptor
protein tyrosine phosphatase); EphR (Eph receptor); FGFR (fibroblast growth factor receptor); EphR (Eph receptor); PLXN (plexin); NRP (neuropilin); Trk
(neurotrophin receptor); ECM (extracellular matrix); NetR (netrin receptor); NMDAR (NMDA receptor); mGIuR (metabotropic glutamate receptor); AA
(arachidonic acid); PLCy (phospholipase C, gamma); MAGI (membrane associated guanylate kinase homolog); IP3 (inositol 1,4,5-trisphosphate); DAG
(diacylglycerol); PIP2 (phosphatidylinositol 4,5-bisphosphate); PIP3 (phosphatidylinositol 3,4,5-trisphosphate); PI3K (phosphoinositide-3-kinase); nNOS
(neuronal nitric oxide synthase); NO (nitric oxide); IP3R (inositol trisphosphate receptor); RyR (ryanodine receptor); GEF (guanine exchange factor); GAP
(GTPase activating protein); MAPK (mitogen-activated protein kinase); and JNK (c-Jun N-terminal kinase).

autism [78]. Thus, the functional roles of the candidate
genes we identify may embrace additional forms of neu-
ronal motility and targeting.

Conclusions

We proposed a noise-reduction methodology,
GWAS-NR, to enhance the ability to detect associa-
tions in GWAS data. By amplifying signals in regions

where association evidence is locally correlated
across datasets, the GWAS-NR captures information
that may be omitted or underutilized in single-mar-
ker analysis. Simulation evidence demonstrates that
under a variety of disease models, GWAS-NR
achieves higher classification rates for true positive
associations, compared with the use of joint p-values
or Fisher’s method.
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The GWAS-NR method was applied to autism data,
with the objective of prioritizing regions of association
for follow-up analysis. Gene set analysis was conducted
in order to examine if the identified autism candidate
genes were over-represented in any biological pathway
relative to the background genes. The significance of a
given pathway suggests that the pathway may be asso-
ciated with autism due to the enrichment of autism
candidate genes in that pathway. We find that many of
the implicated genes cooperate within a coherent
molecular mechanism. This neuritogenic pathway reg-
ulates the transduction of membrane-associated signals
to downstream cytoskeletal effectors that induce the
directional protrusion of axons and dendrites. This
mechanism provides a framework that embraces
numerous genetic findings in autism to date, and is
consistent with neuroanatomical evidence. While con-
firmation of this pathway will require additional evi-
dence such as the identification of functional variants,
our results suggest that autistic pathology may be
mediated by the dynamic regulation of the neuronal
cytoskeleton, with resulting alterations in dendritic and
axonal connectivity.

Additional material

Additional File 1: Appendix

Additional File 2: Table S7: Haplotype configuration Association
configuration for the power simulations.

Additional File 3: Comparative classification rates for genome-wide
association studies - noise reduction (GWAS-NR), Joint analysis and
Fisher’s Test. GWAS-NR has an area under the curve (AUC) of 0.679 and
the joint and Fisher’s tests have AUC of 0.624 and 0.604, respectively, for
the recessive model. Also GWAS-NR has AUC of 0.855 and the joint and
Fisher's tests have AUC of 0.781 and 0.751, respectively, for the
multiplicative model. For the dominant model, AUC for GWAS-NR, the
joint and Fisher's tests are 0.964, 0.871 and 0.853, respectively. For the
additive model, AUC for GWAS-NR, the joint and Fisher's tests are 0.893,
0.806 and 0.771, respectively.

Additional File 4: Flow Chart: GWAS-NR analysis workflow in autism
datasets. A flow chart demonstrating the data analysis and candidate
gene selection of the autism datasets presented. HIHG: Hussman Institute
for Human Genomics dataset, AGRE: Autism Genetic Resource Exchange
dataset, APL: Association in the Presence of Linkage, GWAS-NR: Genome-
wide Association Study - Noise Reduction, DAVID: Database for
Annotation, Visualization and Integrated Discovery.

Additional File 5: Table S1: linkage disequilibrium (LD) blocks
identified by Genome-wide Association Study - Noise Reduction
(GWAS-NR). Every LD block identified by GWAS-NR and haplotype
analysis with a P-value < 0.05 is listed with the chromosome start and
stop position, the length in basepairs of the LD block, and the minimum
GWAS-NR P-value of the block.

Additional File 6: Table S2: RefSeq genes overlapping linkage
disequilibrium (LD) blocks identified by Genome-wide Association
Study - Noise Reduction (GWAS-NR). Every LD block identified by
GWAS-NR and haplotype analysis with a P-value < 0.05 and that overlaps
a gene in the RefSeq database is listed with the chromosome start and
stop position, the length in basepairs of the LD block, the minimum
GWAS-NR P-value of the block, and the RefSeq name of the gene(s) that
overlap the block.
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Additional File 7: Table S3: RefSeq genes nearest to linkage
disequilibrium (LD) blocks identified by Genome-wide Association
Study - Noise Reduction (GWAS-NR). Every LD block identified by
GWAS-NR and haplotype analysis with a P-value < 0.05 that does not
overlap with a gene in the reference sequence (RefSeq) database is listed
with the chromosome start and stop position, the length in basepairs of
the LD block, the minimum GWAS-NR P-value of the block and the
RefSeq name of the gene(s) that is nearest to the block.

Additional File 8: Table S4: Autism candidate genes identified by
Genome-wide Association Study - Noise Reduction (GWAS-NR). A
complete list of reference sequence (RefSeq) genes either overlapping or
nearest to every LD blocks with the P-value of either the overlapping or
nearest block.

Additional File 9: Table S5: Autism candidate genes [Genome-wide
Association Study - Noise Reduction (GWAS-NR)] having known
roles in neurite outgrowth and guidance. A list of autism candidate
genes with known roles in neurite outgrowth and axon guidance
followed by a comment on molecular function and PubMed
identifications of supporting literature.

Additional File 10: Table S6: autism candidate genes [Genome-wide
Association Study - Noise Reduction (GWAS-NR)] having suggestive
roles in neurite outgrowth and guidance. A list of autism candidate
genes with presumptive roles in neurite outgrowth and axon guidance
followed by a comment on molecular function and PubMed
identifications of supporting literature.
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