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Abstract

Organophosphorous (OP) Nerve agents (NAs) are known as the deadliest chemical warfare agents. They are divided
into two classes of G and V agents. Most of them are liquid at room temperature. NAs chemical structures and
mechanisms of actions are similar to OP pesticides, but their toxicities are higher than these compounds. The main
mechanism of action is irreversible inhibition of Acetyl Choline Esterase (AChE) resulting in accumulation of toxic
levels of acetylcholine (ACh) at the synaptic junctions and thus induces muscarinic and nicotinic receptors
stimulation. However, other mechanisms have recently been described. Central nervous system (CNS) depression
particularly on respiratory and vasomotor centers may induce respiratory failure and cardiac arrest. Intermediate
syndrome after NAs exposure is less common than OP pesticides poisoning. There are four approaches to detect
exposure to NAs in biological samples: (I) AChE activity measurement, (II) Determination of hydrolysis products in
plasma and urine, (III) Fluoride reactivation of phosphylated binding sites and (IV) Mass spectrometric determination
of cholinesterase adducts. The clinical manifestations are similar to OP pesticides poisoning, but with more severity
and fatalities. The management should be started as soon as possible. The victims should immediately be removed
from the field and treatment is commenced with auto-injector antidotes (atropine and oximes) such as MARK I kit.
A 0.5% hypochlorite solution as well as novel products like M291 Resin kit, G117H and Phosphotriesterase isolated
from soil bacterias, are now available for decontamination of NAs. Atropine and oximes are the well known
antidotes that should be infused as clinically indicated. However, some new adjuvant and additional treatment such
as magnesium sulfate, sodium bicarbonate, gacyclidine, benactyzine, tezampanel, hemoperfusion, antioxidants and
bioscavengers have recently been used for OP NAs poisoning.
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Introduction
Chemical warfare nerve agents (NAs) are one of the im-
portant groups of organophosphorous (OP) compounds
that have been used as tactical weapons and for terror-
ism during recent decades. OP compounds have also
been used as petroleum additives and pesticides [1]. Al-
though NAs are strongly similar in chemical structure
and biological function to many OP pesticides, fatality
potency of NAs is generally higher than the OP
pesticides [2].
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The NAs are traditionally classified into two classes of
G and V agents, but also GV compounds (GV:2-dimethyla-
minoethyl-(dimethylamido)-fluorophosphate) which con-
tained structures of both G and V agent are now exist.
The G agents include Tabun (GA; ethyl N, N-dimethylpho-
phoramidocyanidate), Sarin (GB; 2-fluoro-methylphophor-
yloxypropane), Soman (GD; 3-fluoromethyl-phosphory
loxy-2, 2-dimethyl-butane) and Cyclosarin (GF; fluoro-
methylphophoryloxycyclohexane). The important warfare V
agents include VE (S-2-diethylaminoethyl O-ethylethyl-
phophonothioate), VM (2-ethoxy-methylphosphoryl sulfanyl-
N,N-diethylethanamine), VG (2 diethoxyphosphorylsulfanyl-
N,N-diethylethanamine), VR (Russian VX; N,N-diethy-
2-methyl-2-methylpropoxy phosphorylsulfanylethanamine)
and VX (S-2 diisopropylamino O-ethylmethylphospho-
nothioate) [3-5]. There are no common names for other G
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iginal work is properly cited.
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and V agents. VX is the main and oldest agent of V series
which has been produced in large quantities [1,5,6]. Re-
cently a new type of NAs has been claimed to develop
named "Novichoks" (means “newcomer” in Russia). This
has been attracting increasing attention in recent years,
particularly among non-governmental organizations
(NGOs). It has been claimed that the toxicity of certain
“Novichok” agents may exceed that of VX. The action
mechanism is also dissimilar to the other NAs and thus
conventional antidotes may be ineffective. Though, to
date, there is nothing in details on such chemical has ever
been declared in the literature [7,8]. NAs are delivered by
missiles, bombs, spray and cluster spray [9].
NAs have fatal effects in acute phase of poisoning

and also have considerable long term complications
due to irreversible inhibition of Acetyl Choline Ester-
ase (AChE). They have been known as the most le-
thal agent among chemical warfare agents (CWA)
[1,10-13].
It is important to consider the management of civilian

casualties due to the possibility of NAs use in terrorist
attacks. Despite early treatment and the use of urgent
countermeasures (atropine and oxime) in exposure
zones, it may take a long time to recover from or even
alleviate the complications of NAs exposure. Thus, it
was aimed to comprehensively explain clinical manifes-
tations and recent advances in treatment of chemical
warfare NAs poisoning in this review article.

History
NAs were first synthesized in 1854 but were not used as
a CWA in a large scale until eight decades later [13].
The G agents were first produced in Germany at IG
Frben industries by Dr. Gerhard Schrader team in 1930s.
They synthesized tabun in 1938 and then sarin. These
compounds were named after him and his two co-
workers. The letter G for G agents means German
[4,14]. The V agents were synthesized after the World
War II in the United Kingdom in 1952. The V agents
were derived from the word victory; the share of allied
forces from World War II [4,6]. NAs had not ever been
used on the battlefield until Iran-Iraq war. During the
Iran-Iraq conflict in 1983–1988, NAs were infamously
used by Iraqi military against Iranian troops and even
civilians. Among CWA, Sulfur Mustard and NAs (sarin
and tabun, specifically) had been mostly used by Iraq in
several chemical massacres [1].
Tabun was the first NAs used in the war at Majnoon

Island in February 1984. Several thousands were poi-
soned by tabun and more than 300 victims died within
30 min. Mortality rate was much more in first years of
the war because of the unavailabilities of protective
equipment first-aid medications such as atropine and
oximes auto-injectors [4,9,15]. Later in 1987 and 1988
another NA named sarin was used against Iranian troops
and innocent people in Halabjah massacre [15,16]. It
was estimated that over 100,000 individuals were poi-
soned by chemical attacks during the Iran-Iraq war.
Meanwhile, NAs are associated with higher mortality
than the other CWAs and had a drastic role in Iraqi
missile attacks during the Iran-Iraq war [4].
Other tragedies of NA attacks were Sarin terrorist

attacks in 1994 in Matsumoto, Japan and six months
later in Tokyo Subways which poisoned 6,100 people in-
cluding rescue staff with 18 mortalities. These terrorist
incidences significantly raised interests in other coun-
tries and leaded to a number of symposia as the seminar
on responding to the consequences of chemical and bio-
logical terrorism held at Bethesda, Maryland, in July
1995 [17]. United States have had two conflicts with Iraq
during 1991 and 2003 which in both wars none of the
countries used CWA. Iraq admitted possession of NAs
to the USA in 1995 as well as other biologic and chem-
ical weapons. In 1995, the USA also signed the Chemical
Weapon Convention. According to this, all the nations
that stored CWAs including NAs had to destroy their
stockpiles by 2012 [5,18]. The Organization for Prohib-
ition of Chemical Weapons (OPCW) is now responsible
to control the CWA threat worldwide. Fortunately, in
recent conflict and terrorist events, such as the 11Sept
attacks in New York and Washington, Bali island of
Indonesia, London and Madrid tube bombings, CWA
was not used at all. Nevertheless, the use of CWA, par-
ticularly NAs is still a threat.

Chemical structures and properties
NAs are alkylphosphonic acid esters. Tabun has a cyan-
ide group. Sarin and soman are methylphosphonofluori-
date. They contain a fluorine substituent group. These
NAs have a unique C–P bond that it is not found in OP
pesticides and is very hydrolysis resistant. VX contains
sulfur and is an alkylphosphonothiolate [19]. The tox-
icity of these agents are largely more influenced by the
chirality around the phosphorus atom than the P(+) iso-
mers. The structural formulae of some main NAs are
shown in Figure 1 and some main properties of NAs are
presented in Table 1.
The term “nerve gas” is a historical misunderstanding,

because all the classic forms of NAs are liquid at room
temperature. The first chemical warfare agents (CWA)
such as chlorine and phosgene are the reason as they are
true gases at standard pressure and temperature [9,11].
All the NAs are liquid in room condition, tasteless and
odorless and potentially volatile. However, there are
some differences in chemical and density properties
(Table 1). G agents’ densities are the same as water and
they also evaporate at about the same rate. The freezing
points are around 0°C (the same as water) and the



Figure 1 Structural formulae of main nerve agents [1].
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boiling point is around 150°C. G agents rapidly spread
on skin. They spread rapidly and remain in the environ-
ment for several hours and thus are known as “non-
persistent agents”. G agents are released from clothing
for about 30 minutes after vapor contact [12]. In con-
trast, V agents specially the VX are more oily, the same
as motor vehicle oil and thus evaporate more slowly
which is known as “persistent agents” [10-12]. Sarin is
Table 1 Physical and chemical properties of main organopho

Properties Tabun (GA) Sarin (GB)

Chemical name ethyl N, N-
dimethylphophoramidocyanidate

2-fluoro-
methylphophoryloxy

CAS No. 77-81-6 107-44-8

Molecular weight 162.1 140.1

State liquid liquid

Odor Slight fruity odor None

Appearance Clear colorless; tasteless; Clear colorless; tastel

Density
(liquid, g/ml)

1.08 1.09

Density (vapor,
compared to air)

5.6 4.8

Volatility (mg/m3) 610 22,000

Solubility (in water,
g/100g)

9.8 Miscible

Solubility (in other
solvents)

Soluble in most organic solvents Soluble in all solvent

Boiling point (°C) 220-246 158

Flash point (°C) 77.8 NR

Melting point (°C) −50 −56

CAS, Chemical Abstract Service.
Unless noted, properties are determined at 25°C and pressure of 760 mmHg.
Adapted from references 6, 11, 43 and 88.
the most volatile agent with a vapor pressure of 4,000
times more than VX as of the least volatile agent [20].
Although VX has less vapor hazard than G agents (due
to the least volatility), when it comes to "persistency", it
can contaminate an area for longer time. Due to the oily
condition, VX is the most efficiently absorbed NA
through the skin [13]. Thickening agents, like acrylates,
can be added to some NAs. They alter part of the
sphorous nerve agents

Soman (GD) VX

propane
3-fluoromethyl-
phosphoryloxy-2, 2-dimethyl-
butane

S-2 diisopropylamino O-
ethylmethylphosphonothioate

96-64-0 50782-69-9

182.2 267.4

liquid oily

Slight fruity odor None

ess; Clear colorless, ages to
brown

Amber color, tasteless

1.02 1.0083

6.3 9.2

3,900 10.5

2.1 Miscible<2.4 °C

s Soluble in some solvents Soluble in all solvents

167-200 298

121.1 158.9

NR −39 (calculated)
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physical properties of the new combined component,
raising persistency of NAs in the environment [21].
Sarin is water soluble in any ratio and water hydro-

lyzes it to remove fluorine and produce a nontoxic prod-
uct compared with the parent compound. Soman and
tabun are solved easily in organic solvents, however,
moderately mixed with water. VX is slightly water sol-
uble in room temperature. Cold water and organic sol-
vents are strong solvents for VX. G agents are quickly
hydrolyzed at alkaline pH solutions. The half-life of sarin
in water (pH=7.0) is 5.4 hours while it is 15 min. at a pH
of 9.0. Decontaminating with alkaline solution like
household bleach solutions (0.5% sodium hypochlorite)
is done based on this property [22].
The vapor density of all the NAs is more than one. It

means the vapor of NAs are heavier than air and they
tend to stay close to the land, thus it would be a risk for
people in lower areas and underground shelters [13,21].
Mechanism of action
The main mechanism of action is irreversible inactiva-
tion of AChE at the cholinergic synapses leading to ac-
cumulation of toxic levels of acetylcholine (ACh) at the
synaptic junctions. It over stimulates the cholinergic
pathway and consequently desensitizes the cholinergic
receptor site. ACh is a neurotransmitter which contri-
butes to nerve conduction in central nervous system
(CNS), at autonomic ganglia including parasympathetic
postganglionic synapses and sympathetic preganglionic
synapses. They also act at the parasympathetic nerve
endings like those at neuromuscular junction of skeletal
muscles and in the sweat glands [1,4,13].
There are three types of cholinesterase in human body.

The main and principal form is AChE which is referred
to as “true cholinesterase” and found in neurons, neuro-
muscular junctions and erythrocyte membrane. AChE is
a serine protease that hydrolyzes the neurotransmitter
ACh. It is also reported that AChE has some non-
hydrolyzing functions. Park S (2004) has stated that
AChE has a critical role in the development of apopto-
some, a large quaternary protein structure formed in the
process of apoptosis, in the body through blocking the
interaction between apoptotic protease-activating factor-
1(APAF1) and cytochrome C [23]. Butyrylcholinesterase
(BChE) or pseudocholinesterase may have a role in cho-
linergic neurotransmission, and is occupied in other ner-
vous system functions. It is also important as a
biomarker of exposure to OP [24]. BChE inhibition by
NAs seems to have no important physiological effect in
the absence of other toxicants [25].
Serum cholinesterase (SChE) is the third form. It is a

circulating plasma glycoprotein synthesized in the liver
including group of enzymes present in cerebrospinal
fluid, liver, glial cells and plasma. SChE does not seem to
have any physiological function [4,26].
NAs play their role by binding to serine residue at the

active site of AChE molecule and form a phosphate or
phosphonate ester [9,11]. Thus, the resulted phosphory-
lated molecule is incapable of hydrolyzing ACh, and re-
generate very slowly. The inhibition will be permanent
until the generation of a new enzyme or a reactivator
usage such as an oxime [27]. Binding reactions of NAs
to esterases such as ChE, AChE, carboxylesterases
(CarbE) and other proteins will also occur. Both OP pes-
ticides and NAs lose their acyl radicals in addition to
their reaction with the esterases. After binding to AChE
and BChE, there is a non-enzymatic time-dependent
intra molecular rearrangement which leads to loss of
one alkyl group bound to the phosphorus, known as
“aging reaction” (The time between NA exposure and ir-
reversible phosphorylation). This leads to a persistant
non-reactivable AChE, resistant to the both spontaneous
and oxime-induced reactivation [28-30]. The half time of
aging varies from a few minutes for soman, five hr. for
sarin, 22 hr. for cyclosarin and more than 40 hr. for
tabun and VX [9,28,31,32]. Due to reversible binding of
soman and sarin to CarbE, there is a hypothesis which
supposes a role for CarbE in metabolic detoxification of
these agents to their non-toxic metabolites isopropyl
methylphosphonic acid (IMPA) and pinacolyl methyl-
phosphonic acid (PMPA) [31-34].
Cholinergic inhibition is not the only mechanism of

action of NAs. There are some data showing other prob-
able underlying mechanisms during NAs intoxication.
Fonnum and Sterri (1981) reported that toxic effects of
soman is due to only 5% of LD50 in rats, about 5μg/kg,
which reacts with AChE and the rest lead to various
metabolic reaction [35]. It has also been stated that NAs
can inhibit enzymes outside of the cholinergic system,
mainly serine esterase. It has been reported formerly
that NAs alter the persistence and metabolism of some
neuropeptides degraded by serine esterase, such as enke-
phalins, endorphins, and substance P. This may describe
some atropine resistant symptoms of NAs [36].
Clement and Copeman (1984) reported longstanding
analgesia in mice after exposure to sarin and soman,
and nalaxone, an opiate antagonist, alleviates this phe-
nomena. Nevertheless, no exact information is available
in opioid receptors following NAs exposure [36].
Duysen and colleagues (2001) studied other probable
mechanism of VX on knockout mice. They treated with
0, 50, and 100% AChE activity mice with subcutaneous
VX. AChE−/− presented the same cholinergic signs of
toxicity as the wild type mice, even though AChE−/−
mice have not any AChE whose inhibition could lead to
cholinergic signs. It was thus concluded that toxic effects
in NAs exposure is due to inhibition or binding to several
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proteins, only one of which is AChE [37]. Other involved
mechanisms included changes in other enzymes,
neurotransmitter, anaphylactoid reactions, immune
changes, oxidative stress etc [32,38-41]. Long lasting
effects have more reasons beside ChE inhibition. It is
formerly reported that NAs also act as secretagogues
and can augment bronchial spasm by anaphilactoid
reactions. Apart from the cholinergic crisis in NAs
poisoning, secondary adverse reactions due to other
underlying mechanisms may complicate NAs toxicity.
Excitatory amino acids are also involved in both OP
pesticides and NAs poisoning. Adenosine receptor
agonists have been showed to have good protective
activity on this basis [42].

Relative toxicity
Regardless of route of entery, VX is the most potent
among NAs. The stability, resistance to detoxification
and environmental persistency of VX are higher than
the other NAs. It is also less volatile and more impres-
sive at skin penetration. Hence, VX is labeled as a skin
penetrant and lethal contact agent rather than inhal-
ation threat [43]. VX at 10μM largely reduced cell me-
tabolism within two hours [44]. The G agents are
toxic or even fatal by any route of exposure at suffi-
cient concentration.
Based on animal studies, the G agents have lethal

inhaled dose of about 1 mg in human. They also repre-
sent a skin contact hazard through contaminated cloths,
especially when evaporation is minimized. However, the
G agents absorption rate is much less rapid in per-
cutaneous than in the inhalation form [1]. VX is eas-
ily absorbed through the skin and generally does not
have a major inhalation hazard in the zone [1,43].
Overall relative lethality of NAs in animal studies is:
VX>Soman>Sarin>Tabun [45].

Metabolism
NAs’ metabolism is mostly explained under mechanism
of action. The common NAs have an asymmetric center
(chiral compounds), which they have two (e.g., sarin) or
four enantiomers (e.g., soman) with different toxicity
effects on human. Unfortunately, the more toxic enan-
tiomers have longer half life than others in the body. En-
zymatic and chemical catalysis of NAs results in the
formation of inactive phosphonic acids, which are
excreted via renal [46,47]. In in-vitro studies, the
elimination half-life of G agents was rather shorter
than V agents (less than one hour), whereas VX per-
sists for several hours in intravenous administration
and even longer in percutaneous exposure [48].
Oxidation and hydrolysis are principal metabolic

reactions which occur mainly by reaction with gluta-
thione and also may happen by glucuronidation and
demethylation. Oxidation gives rise to production more
or less toxic products. Tabun causes the largest number of
degradation products among G agents. Detoxification of
tabun takes place slowly, by the enzyme di-isopropyl-
fluorophosphatase; formerly termed tabunase [49]. There
are sparse toxicity data available for subset of tabun deg-
radation products. Ethyl-dimethylaminophosphoric acid
(EDMPA) is the main product of tabun dimethylamin,
which is also produced by hydrolysis of tabun among
other reactions. Dimethylamin cause human irritation in
the respiratory tracts [50].
Isopropyl-methylphosphonic acid (IMPA) is metabolite

of Sarin which subsequently hydrolyses to the high
stable methylphosphonic acid (MPA) and resistance to
further hydrolysis. MPA mildly irritates rabbit’s skin and
human skin and eyes. It also produces low oral toxicity
in mice and rats [24,51].
In rats, 10 minutes after intravenous sarin, about se-

venty percent of the plasma level was bound to large
protein molecules similar to carboxylesterase [52]. The
toxicity of sarin enhanced six to eight time when rats
were pretreated with triorthocresyl phosphate (TOCP), a
weak anti-ChE OP with irreversibe blocking carboxyles-
terase property [53].
In a study of Little et al. (1986) 80 μg/kg of sarin was

injected intravenously to mice. Tissue distribution was
recorded for 24 h. Within 1 minute sarin concentration
was at the highest in the kidney, liver and plasma. Over
the first minute, about half of the labeled sarin was asso-
ciated with the major sarin metabolite; IMPA and the
kidneys contained the highest concentration of sarin and
its metabolites. Much lower concentration detected in
liver after 24 hr, suggested the main role of the kidneys
in detoxification of sarin [54]. In another study of Little
et al. (1988) with the same method, hypothalamus con-
tained concentration of both sarin and metabolites 2–5
times greater than those in other brain areas. This find-
ing suggests that hypothalamus is important with respect
to central effects of NAs [55]. Brain distribution of sarin
was detected in 4 of 12 victims who died after the
Matsumoto event. In patients of the Matsumoto with
sarin exposure the levels of IMPA and MPA correlated
with clinical manifestations [56].
Pinacolyl methylphosphonic acid (PMPA) is the pre-

dominant hydrolytic product of the soman [57].
The anticholinesterase mechanism of action of V

agents is due to the "oxo" group (O) as well as presence
of alkyl substituents. VX, as a V agent, is different from
G agents in both pharmacodynamics and pharmacokin-
etics characteristics. It distributes in blood as protonated
amine. Its hydrolysis is slower than G compounds and
reacts more slowly with A-esterases and CarbE. Oxida-
tion reactions at nitrogen and/or sulfur are another
routes for VX metabolism beside hydrolysis [4,24].
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Tsuchihashi et al. (1998) detected both EMPA and
2-(diisopropylamino-ethyl) methyl sulfide in VX exposed
serum samples [58]. These results clarified the first docu-
mented detection of the specific VX metabolites in vic-
tims’ serum and also explained a part of metabolic
pathway of VX in human body which has been later used
in measuring the VX-inhibited AChE hydrolytic product
EMPA [59,60].

Detection and determination methods
Most research on diagnostic methods of NAs exposure
has been directed at the most available samples of survi-
vors such as blood (serum, plasma, whole blood, or red
cells) and urine. Intact G agents are available in the or-
ganism for a few hours; therefore, blood sampling should
be obtained in a few hours after OP exposure. Thus in-
tact agents don’t seem to be a good target of retrospec-
tive detection of exposure [60-62]. There are about four
approaches to detect exposure to NAs:

AChE inhibition measurement
Although this method is the most common way to iden-
tify NAs exposure, there are some impediments in this
procedure. Firstly, it does not identify the exact exposed
agent and also its specification is low, because there are
some other chemicals contribute to inhibition of AChE.
Secondly, inhibition levels less than 20% are not detect-
able and it cannot be used as a retrospective measure-
ment due to new synthesis of the enzyme. However, it is
the most widely used method for evaluation of OP NAs
exposure [30,60]. Wang and co-workers (2008) have
assessed salivary ChE enzyme activity by using carbon
nanotube-based electrochemical sensor. An electro-
chemical sensor based on a carbon nanotube (CNT)-
modified screen-printed carbon electrode and coupled
with a microflow injection system was applied for a sen-
sitive, rapid, and simple assessment of salivary ChE en-
zyme activities of rat. The method provides a noninvasive
biomonitoring of contact to OP NAs [61].

Determination of hydrolysis products in plasma and urine
Rapid elimination of intact OP causes that OP-modified
enzymes and metabolites are more stable in the organ-
ism. Thus, the new methods for identification and quan-
tification of OP biomarkers modifications need to be
developed [62]. Analytical methods employed are often
based on gas chromatography–mass spectrometry
(GC-MS), which derivatized substances before analysis,
and liquid chromatography-mass spectrometry (LC-MS)
which has advantage of not require derivatization.
Minami et al. (1997) detected sarin product MPA in

Tokyo subway attack victims’ urine, using gas chro-
matography (GC) with flame photometric detection
(GC-FPD) [47]. The GC-FPD can be useful for estimating
the exposure level to sarin and is appropriate for a large
number of samples.
Lately, a LC-tandem MS method has been developed

for quantitative determination of IMPA in blood and
urine. The main disadvantage of using hydrolysis pro-
ducts in NAs exposure detection is rapid elimination
rate of these products (a few days) from the organism
that restrict their usage in retrospective measurements
[60]. John H (2010) presented matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) method for detecting and identifying
novel adducts of human serum albumin and suggested
the method as a confirmation tool for high-dose
exposure to NAs [63,64] . Tabun presents a problem as
its initial hydrolysis product, EDMPA and ethyl phos-
phorocyanidic acid, are not stable and hydrolyze further
to ethyl phosphoric acid and then slowly to phosphate.
Unfortunately, the general population has a high level of
ethyl phosphoric acid, due to plasticizers and pesticides
[65]. Several assessment methods of NAs metabolites
which were mostly founded on GC-MS and LC-MS
released over the past two decades. The trend is toward
LC-MS nowadays and also MS-MS, which generally pro-
vides lower limits of detection than single-stage MS, and
combined with a greater selectivity.
Fluoride reactivation of phosphylated binding sites
This method is an analysis of phosphylated binding sites
of BuChE in plasma or serum sample. It is based on re-
activation of phosphylated enzyme with fluoride ions.
The BuChE has a half-life of 5–16 days and abundant
enough for biomonitoring exposure to OPs and NAs
(plasma concentration, approximately 80 nMol). In this
way, the extent as well as the origin of the toxicity can
be determined. The other benefit of this method is abil-
ity of BuChE inhibition measurement at levels much less
than those which can be measured based on decreasing
AChE activity [64,66]. An analogues method was per-
formed for the Tokyo subway sarin exposure based on
isolation and trypsinization of inhibited ChE, subsequent
treatment with alkaline phosphate, followed by isolation,
derivatization, and GC-MS analysis of the released phos-
phyl moiety [67].
Mass spectrometric determination of cholinesterase
adducts
Straightforward isolation of adducted BuChE from
plasma is carried out by means of affinity chromatog-
raphy with a procainamide column. It is followed by
pepsin digestion and LC-MS-MS analysis of a specific
nonapeptide, containing the phosphonylated active site
serine. This method surpasses the priors since it can also
deal with aged phosphonylated BuChE [68].
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A review article by Robin Black published in 2010 pro-
vides details of bio-analythycal methods for NAs
detection [65].
Clinical presentations
The complexity and persistent nature of NAs induce
several organic complications among poisoned patients.
Compared with other OP compounds and CWA such as
sulfur mustard, NAs have relatively more acute lethal
toxicity and are known as lethal agents and the deadliest
CWAs [5,69]. Severity of clinical manifestations are
affected by many environmental factors such as
temperature, humidity, wind direction, personal protect-
ive equipment, activity level of the soldier and the time
during soldier remains in the zone [69,70]. Despite pri-
mary treatment and use of urgent countermeasures (at-
ropine and oxime), it may take long to recover or even
alleviate the complications. Clinical manifestations can
be divided into acute and late complications.
Acute effects
The NAs are fatal in acute phase of heavy exposure.
Thus, life threatening complications should be consid-
ered by clinicians. Depression of respiratory and vaso-
motor centers in the brain can induce life threatening
manifestations and may lead to respiratory failure
[71-73]. Hypoxia is also a life threatening effect which
may lead to cerebral edema, convulsions, and histo-
pathological brain damage [4].
ACh accumulation at the muscarinic and nicotinic re-

ceptor sites is the reason of most systemic complica-
tions. Initial symptoms and signs are mostly related to
local effect rather than systemic toxicity.
Ocular system
The most common sign in the eye is miosis which is
more observed in vapor exposure. The miosis duration
is varied from several days to as long as 9 weeks [74,75].
Sharp or aching ocular pain is due to ciliary spasm and
can be associated with headache [76]. Impaired visual
acuity, tearing and bloodshot appearance, due to sub-
conjunctival vascular dilation, are other common
features [13,73,76].
Respiratory system
Rhinorrhea is generally considered as a local irritation
effect but can also occur due to the systemic toxicity.
Rhinorrhea is always heavier than those caused by hay
fever or cold and the severity is dose-dependent [77].
Bronchorrhea, wheezing, bronchiolar smooth muscle
constriction, and ventilator failure may be seen due to
large exposure to vapor of OP NAs [73,77].
Cardiovascular system
The expected effect is increased vagal tone which leads
to bradychardia and atrioventricular block. In fact, the
heart rate can actually increase. It may be due to accu-
mulation of ACh in sympathetic ganglia and at the ad-
renal medulla, or because of fear and anxiety of the
patient. Ventricular arrhythmias are rare [78]. Ludo-
mirsky et al. (1982) reported Q-T prolongation in 14
and malignant tachy-arrhythmias in 6 patients out of 15
accidental OP poisoned patients [79]. Tabun, sarin and
VX at 5 to 10 times LD50 caused circulatory arrest a
few minutes after apnea in non-treated guinea pigs.
Histopathological studies suggesting myocarditis have
been reported in animal experiments, though, not con-
clusively proved in human studies [80].

Nervous system
High doses of NAs can cause fatigue, muscle weakness,
and even flaccid paralysis. Generalized fasciculation can
continue more than other acute complications [77]. Jalali
et al. (2011) studied patients with moderate and severe
OP pesticide poisoning 10–210 days post exposure by
means of electromyography (EMG) and nerve conduc-
tion velocity (NCV). On EMG, sensory-motor peripheral
polyneuropathy was observed which a distal sensory def-
icit was predominantly. The Dysfunction of Sensory
nerve (84.4%) was significantly higher than motor nerve
(18.7%). Sensory nerve dysfunction in the lower extrem-
ities was more common than motor nerves, which was
mainly a distal sensory deficit [81]. Seizure is also
recorded as an acute effect which can be prolonged
with status epilepticus. Apnea may happen abruptly
and does not resolve without antidotal therapy [6].
Victims of low dose NAs exposure may experience
headache, dizziness, restlessness, anxiety, mental confu-
sion, ataxia, irritability, insomnia, bad dreams, depression,
forgetfulness, impaired judgment, and lack of concentra-
tion even in absence of any physical signs [1,4,6].

Skin and mucosal membrane
Systemic signs and symptoms can occur about two to
three hours after exposure via skin. However, Skin pene-
trating powers of NAs are different. VX is absorbed
through skin nearly eight times more rapidly than other
NAs. NA skin absorption increases markedly as sur-
rounding temperature rises from 18 to 46°C [1,82]. Gen-
eralized sweating is a common complication following
prolonged dermal or inhaled exposure [77].

Gastrointestinal system
Mobility and secretion of gastrointestinal system in-
crease according to excess accumulation of ACh. Nausea
and vomiting occur among the first signs followed by
dermal exposure and can be due to nervous system
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complications. Diarrhea is an infrequent symptom.
Among 111 patients examined after Tokyo sarin attack,
60.4% complained from nausea, 36.9% reported vomit-
ing, and diarrhea was observed in just 5.4% of the
patients [82]. Hyperglycemia may occur due to adrenal
medulla stimulation that raises the blood concentrations
of circulatory norepinephrine and epinephrine [6].

Genitourinary system
Urinary system has a critical role in excretion of the
NAs. During 24 hours, 76-100% of the radioactive sub-
stance presented in the urine of volunteers who received
32P-dimethoate orally [83]. Micturition can occur after
large dermal contact and after the inhalation of consid-
erable amounts of vapors [6].

Intermediate syndrome (IMS)
IMS occurs 24–96 hours after exposure to organophos-
phate pesticides or theoretically after NAs exposure [84].
Recovery begins 4 to 18 days later. IMS is characterized
by reversible weakness in proximal muscles, especially
chest muscles, and cranial nerve palsies [85,86]. Al-
though the etiology of IMS is not well defined, delayed
AChE inhibition, down regulation or desensitization of
postsynaptic ACh receptors, muscle necrosis, oxidative
stress-related myopathy and failure of postsynaptic ACh
release are some proposed involved mechanisms [87].
Plasma AChE of less than 200 units is a predictor and
the 30 Hz repetitive nerve stimulation depreciatory re-
sponse could be a useful marker for the IMS [88]. Be-
cause of potential dangers of IMS, clinicians must be
aware of the syndrome and should perform neuromus-
cular studies and use mechanical ventilation if necessary.
However, there is limited data regarding the occurrence
of IMS after NAs exposure [89]. IMS has not been
observed obviously after NAs intoxication in animal nor
has it been noted in the handful of persons with high
contact to NAs [90].

Organophosphate-induced delay neuropathy (OPIDN)
It is defined by sensory and motor disorder of the per-
ipheral nervous system 2–4 weeks after exposure and
characterized by progressive weakness, impaired reflexes
and distal paraesthesia [91]. Inhibition of an enzyme
called neuropathy target enzyme (NTE) in CNS is re-
sponsible in OPIDN [92]. Degeneration of myeline and
axons and inhibition of NTE is the probable etiology of
OPIDN. After 1–4 weeks post exposure, approximately
30% of the patients represent cholinergic irritation (nose
secretion, increased salivation, pharyngitis, and laryngi-
tis) following by paralysis of the leg muscles which per-
sists for 1–2 month but does not leave any changes in
sensitive innervation. Then, denervation and atrophy of
the leg muscles is observed [86,91,92].
Late complications
The NAs are less likely to cause chronic diseases in
comparison with other CWAs. However, NAs poisoning
was reported to have association with late complications
in both experimental animals and human beings. Hyp-
oxic encephalopathy is one of the most remarkable long-
term neurologic effects of NAs reported by Newmark
[11]. Cardiomyopathy has been reported in soman and
sarin intoxicated rats, which may be contributory cause
of death, however it is not reported in human cases yet
[80]. Neurological assessment of 43 Iranian veterans 22–
27 years post exposure revealed fatigue, paraesthesia and
headache as the most common symptoms and sensory
nerve impairments as the most common observed clin-
ical complication. The authors concluded that late
neurological complications of CWAs poisoning are not-
able [93]. Sensory nerve dysfunction is more prevalent
than motor nerves, which predominantly was a distal
sensory deficit [94].
Engel et al. (2004) described fatigue as one of the pre-

sentations of “Gulf war syndrome” as well as depression
and chronic pain [95]. Electroencephalogram (EEG)
studies on sarin patients showed considerable slowing
with bursts of high voltage waves at a rate of five per
second epileptic type changes of EEG, 11 months after
the exposure [96,97]. Asthenia, insomnia, fatigue,
blurred vision, narrowing of the visual field, shoulder
stiffness, slight fever, and asthopenia was associated with
grades of sarin contact 1 and 3 years after Tokyo subway
explosion [98]. Long-term psychological effects are also
recorded. Fullerton and co-authors (1990) on a review of
article mentioned temporary psychological effects such
as depression, insomnia, fatigue, nervousness, irritability,
and memory impairment as long-term complication of
acute and chronic exposure to NAs [99]. Page (2003) on
a telephone survey of 4,022 sarin exposed patients 28
years post exposure reported significantly more concen-
tration lack and sleep disturbances in the patients in
comparison with the controls [100]. Grauer et al. (2008)
has studied late neuronal and behavioral deficit after
sarin exposure to rats. The glial activation following
neural damage was also established. The data showed
long lasting impairment of brain function after single
sarin exposure in rats that developing with time [101].
There is not acceptable evidences on carcinogenicity,
mutagenocity and teratogenocity of NAs [32,41,76].

Management of NAs poisoning
First aid advices (hot zone)
Treatment for a severe NA exposure must be started im-
mediately, and even seconds are important for making
the difference between life and death. The first aid for
victims of NAs is their immediate removal from the field
or contaminated area. The rescuers should worn
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protective devices to prevent exposure. They must pay
attention to Airway- Breathing-Circulation (ABC), and
put the unconscious casualty in recovery position to pre-
vent aspiration as the consequence of possible vomiting.
When the victim is apneic and medical aid station is not
near, anybody who wants to assist might consider
mouth-to-mouth ventilation [102]. The rescuer should
be sure about presence of vapor hazard before initiation,
though, is not always possible. Only less than 10% of
inspired sarin is expired [103]. It is estimated that hazard
of expired breathing of casualty is minor [102].
It must be remembered that usually the casualties of

NA attack are not pure chemical victims and they might
simultaneously have other blunt or penetrating injuries
that need evaluation and treatment. Thus they must be
completely assessed.
As quickly as possible, decontamination and antidote

therapy, based on severity, should be initiated [1]. Anti-
dotes could be injected with several type of auto injec-
tors by own victim or everybody finds him.
There are some types of auto-injectors that have dif-

ferent amount of antidotes, such as MARK I kit and
antidote treatment nerve agent auto-injector (ATNAA)
[102,104]. MARK I kit, which is the most popular one, is
composed of 2 mg atropine (0.7 ml) and 600 mg 2-
pyridine aldoxime methyl chloride (2-PAMCl) [105].
The ATNAA, designated by the Department of Defense
of U.S., contains 2.1 mg/0.7 mL atropine and 600 mg/
2 mL 2-PAM, and has ability of simultaneously injection
both of them through single needle [102,106].
Every soldier carries 3 kits and one auto-injector con-

taining 10 mg diazepam when there is a suspicious of
NA attack [105].
One MARK I should be given to a casualty with only

miosis and severe rhinorrhea. The second one should be
added depends on the severity of respiratory distress.
Applying three MARK I kits and diazepam is necessary
when severe breathing difficulty or apnea, cyanosis,
muscle fasciculation or twitching, seizure or loss of con-
sciousness are present [105,107-110].
The dose of atropine of MARK I kit is between thera-

peutically desirable dose and safely administrable dose
to a non-intoxicated person [102]. The major disadvan-
tage of 2 mg of atropine is decreasing in sweating. The
walking tolerance of 35 soldiers who were treated with
2 mg of atropine significantly decreased because of rais-
ing their body temperature resulted in limitation of
sweating [111].
Absorption of antidotes when administered with

autopens is more rapid than by intramuscular needle-
and-syringe, because injection by autopens sprays the li-
quid throughout the muscle as the needle goes in, while
the classical types of needle-and-syringe make a “globe”
or puddle of liquid in muscle [102].
Decontamination
NAs vapor readily absorb through inhalation and eye
contact and they rapidly produce local and systemic
effects. However, the absorption of the liquid types is
readily through the skin, their effects might be post-
poned for several minutes and even up to18 hours [110].
Contaminated skin or clothing of victims can contamin-
ate others by close contact or through off-gassing
vapor [110]. Thus, decontamination should be per-
formed as soon as possible to reduce skin absorption of
NAs and prevention of the rescuers contamination,
members of medical team and other patients [1,105].
This is the beat that all casualties before transport are
decontaminated [110].
Medical and paramedical personnel who manage and

assist to casualties either in the field, during transporta-
tion or in the hospital, must protect themselves from
NAs contamination [105]. Eight staff who had taken
apart in Matsumoto incident had mild symptoms of
sarin poisoning [112]. Two important things for this
purpose are applying personal protective equipment and
decontamination of patients before entering a clinic or a
ward [1]. Surgical or similar mask and gloves are not
sufficient, and personnel should apply mask containing a
charcoal filter, heavy rubber gloves and proper cloths.
They should avoid skin contact with victims before de-
contamination [1,105,109,113].
Furthermore, patient handling equipment, such as gur-

ney and back boards, should be decontaminated to pre-
vent cross contamination. Because of easier cleaning of
fiberglass back boards, it would rather to use this type of
the equipment [110].
The decontamination has two important parts: phys-

ical and chemical. Early physically removal of the agent
is more preferred than chemically. It means that de-
contamination should not be delayed because of un-
availability of suitable solution and it must be started
by the best means available such as water, soap plus
water or other common household products to prevent
NA absorption. In sarin contaminated animals which
were flushed with water, dose requirement of Sarin for
inducing the same morality rate as non decontami-
nated animals have been raised up to 10.6 times. In
This method, physical removal predominates over
hydrolysis [114].
Desirable secondary objective is detoxification

(destruction chemically) of the NA. Chemical decontam-
ination may be performed by methods: water/soap wash,
oxidation, and acid/base hydrolysis [114]. G agents and
VX have phosphorus groups that can be hydrolyzed
[114-116]. Furthermore, VX contains sulfur molecules
which are readily subject to oxidation reactions
[114,115]. Oxidation/Hydrolysis is one of the main
routes of CWAs decontamination [114].
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Oxidative chlorination with "active chlorine” is the
most important reactions of chemical decontamination.
A 0.5% sodium or calcium hypochlorite solution (house-
hold bleach) for decontamination of skin followed by
copious water rinsing is recommended. A 5% solution of
the household bleach should be used for contaminated
tools [1,114,117].
The hydrolysis rate of NAs increases at pH values

higher than 8 and it also four times increases for every
10°C rise in temperature of water [118]. However, there
are some potent detoxificant solutions, such as NaOH.
They can damage the skin and tissues [114]. VX and the
G agents are quite well hydrolyzed by alkaline pH, hypo-
chlorite, as well as sulfur mustard [15,70,114,117,118].
Washing with water/soap, fresh water or sea water can

also remove warfare agents through hydrolysis, slower
than the other type of physical decontamination
[15,18,119]. High lipid solubility of NAs significantly
limits the hydrolysis rate [114]. Applying alkaline soap
may increase the detoxification through rising water
solubility and alkaline hydrolysis [4,114].
All contaminated clothes, shoes and jewelry of victim,

should be taken off and flooded in a 5% solution of
hypochlorite or put inside a plastic bag and sealed. De-
contamination of intertriginous areas, axilla, groin,
under the nails and hair, is also essential [1,120]. If the
casualty only exposed to NA vapor, skin decontamin-
ation is not necessary, whereas his/her clothes should be
all removed [105].
M291 resin kit, that contains carbonaceous adsorbent,

a polystyrene polymeric, and ion exchange resins , is well
suited for field use due to small and dry thus soldier are
able to carry it easily [114,121,122]. It can be used on
the skin, the face, and around wounds. As powder is
scrubbed over the contaminated skin, its carbonaceous
material rapidly adsorbs the agents and physically
removes them from skin. Then the trapped agents in the
interior of the resin particles will be neutralized through
chemical detoxification due to the presence of basic and
acidic groups in the resin. These groups destruct the
agents by way of acid and base hydrolysis [114,123].
It seems that dry powders like flour, earth, and soap

detergents are useful. In emergency condition, pushed
flour over contaminated area, followed by wiping with
wet tissue paper, has been efficient against soman, VX,
and sulfur mustard [124].
The ability of mass production of G agent degrading

enzyme is possible with over-producing recombinant cell
line that has encoded genes of OP acid anhydrolases
[125]. In addition, for detoxification of NAs, Escherichia
coli, which OP hydrolase was expressed on surface, is
immobilized by utilization of cell immobilization tech-
nology [126]. Phosphotriesterase extracted from the soil
bacteria Pseudomonas diminuta is also applied for
recognition and decontamination of insecticides and
CWAs [127]. One BChE mutant G117H, was prepared
through protein engineering techniques, can hydrolyze V
and G agents, however, it does not react so fast [1].
There is some sponge made by a polyurethane matrix
that is covalently coupled cholinesterases. They can trap
and detoxificate NAs from contaminated surface
[1,4,128].
As mentioned previously, NAs casualty are not pure

chemical victims and they may suffer some types of
other injuries and wounds which have or not bandage
dressing and need to decontaminate. The toxicity of
NAs could reach to wound tissues and increases injuries
and toxicity. In this state, due to rapid absorption, a
small drop could be lethal [128]. VX absorption is less
quickly than other NAs and may persist longer in the
wound [110]. All bandages should be removed and
wounds be decontaminated by flushed water and remove
all foreign materials from wounds. Wounds will be ban-
daged again only if bleeding recurs. Tourniquets and
Splints are also replaced with clean ones, under
physician supervision, and original sites should be
decontaminated [13,114].
Cross contamination of surgeon works with contami-

nated wounds result by NAs on foreign bodies in the
wound and by the thickened agents. It does not arise
from off gassing. Thus, surgical personnel do not need
to chemical-protective mask when there is not foreign
body or the thickened agents. The surgeons and their
assistants should wear a pair of thin, butyl rubber gloves
or double latex surgical gloves and change them when
they sure that the wound is free of foreign bodies or the
thickened agents [110,129,130].
As Hypochlorite solution has potential for corneal in-

juries, it is contraindicated for the eyes [105]. If the eyes
have been exposed to liquid NAs, they should be irri-
gated within minutes of exposure with running water or
saline by leaning the head to the side, pulling eyelids
apart with fingers, and pouring solution gentle [1,110].
However, flushing is not necessary for an eye exposure
to NA vapor [110]. Hypochlorite solution is also contra-
indicated for irrigation of the abdominal cavity and not
recommended for brain and spinal cord injuries [114].
Do not induce emesis in cases of NAs ingestion, admin-
ister activated charcoal without delay, if the victim is
conscious and able to swallow [110].
Treatment
General
The patients should be evaluated completely because the
NA poisoning may be complicated with multiple trau-
mas or other CWAs. Conscious patients with full mus-
cular power will require minimal care. Victims with
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possibility of liquid exposure need to be observed at
least 18 hours [110].
Airway, breathing, and circulation should be evaluated.

Administer antidotes without delay. Intubate the trachea
in case of respiratory compromise and suck excessive
bronchial secretions [110]. Severely hypoxic patients
need supplemental oxygen with positive end-expiratory
pressure [1,2]. It is important that improved tissue oxy-
genation before administration of atropine to reduce
ventricular fibrillation risk [4].

Anticholinergics and Atropine sulfate
Atropine is a parasympatholytic and competitive antag-
onism of ACh on muscarinic receptors [15,131]. It is an
antidote for the muscarinic signs but not nicotinic and
CNS symptoms of NAs poisonings [6]. Therefore, atro-
pine has not been able to neutralize fasciculation, weak-
ness, flaccid paralysis, or respiratory arrest which is
resulted by blocking neuromuscular nicotinic receptors
[4,132]. In addition, atropine does not restore blocked
AChE and thus it is not curative [6,102]. But it is very ef-
fective in reversing bradycardia, drying the secretions of
exocrine glands and reducing smooth muscle constric-
tion result in decreasing bronchoconstriction and hyper
motility of gastrointestinal [15,102,105]. The goal of
treatment with atropine sulfate is, alleviation of bronch-
oconstriction and bradycardia and drying the secretions.
Thus, its dosage should be titrated based on these aims
and there is no clarified exact dose for atropine [1].
Balali-Mood has recommended the following protocol
based on his experience on Iranian OP pesticides intoxi-
cated patients and the Iranian soldiers who exposed to
NAs,: Atropine is started at 2 mg, as available in auto-
injector, and will be added based on patient response up
to sings of mild to moderate atropinization (tongue dry-
ness, reduced secretion of oropharyngeal and bronchial
tree, tachycardia, and flushing) be appeared [1,4,15]. The
same dose that induces initial atropinization should be
constantly infused in 500 mL dextrose 5% to sustain
mild atropinization and repeated based on need until
the patient becomes asymptomatic. The main objective
is the dryness of the mucosal membrane [1,4]. However,
according to clinical experience of Balali-Mood, dose re-
quirement of atropine for NAs is much lower than for
the severe OP poisoning [1,4]. It may be due to greater
fat solubility and slower metabolic rate of OP pesticides
in compare with NAs [102].
Foroutan, who had treated Iranian causalities in the

field and another hospital of Iran, reported another simi-
lar atropine administration protocol. He has recom-
mended 4 mg atropine for initial dose. Then after 1 to 2
minutes, he administered another 5 mg intravenously
over 5 minutes unless atropinization signs had pre-
sented. He checked pulse rate through infusion. He
titrated his dose according to pulse rate and tried to set
at 60–110 beat per minute in adults [102,133].
The endpoints of atropinization has been rec-

ommended by different authors, Balali-Mood [1,4],
Foroutan [133], Eddleston [134], Sidell [102], are very
similar:, ease of respiration, lack of bronchoconstriction,
drying of respiratory secretions, and a heart rate > 80
beats per minute.
Atropine absorbs via bronchial tree, thus it could be

administrated in hypotensive patients through endo-
tracheal tube or intratracheally, and it will be shown
local and systemic effect [1,4,15]. “Medical aerosolized
nerve agent antidote” (MANAA) is an inhaled form of
atropine which is used by United States military physi-
cians and has been approved by FDA [102].
Atropine could not revere NAs induced miosis, except

in high doses [102,105] and the pupils’ size is not a re-
sponse indicator [102]. If 15 to 30 minutes after the
vapor exposure has terminated, a victim has only pre-
sented miosis, atropine administration may not be indi-
cated [102]. However, if victim, with only miosis, is
visited immediately after nerve agent vapor exposure,
he/she should receive one Mark I kit or ATNAA [102].
Ophthalmic application of atropine like hematropine
could reduce severe eyes or head pain associated with
nausea and the miosis. As these topical application are
able to cause prolong blurred vision, they should not be
used without appropriated reason such as severe pain.
Atropine Side effects include delirium, inhibition of

sweating that induces heat related illness [105].
It is predictable that any compound that could block

cholinergic might have antidotal activity [102]. More lip-
oid soluble anticholinergic substances could penetrate
the CNS more readily than atropine and display greater
antidotal activity [96,135].
Benactyzine is a lipid soluble anticholinergic drug

which has been used as antidepressant [136,137]. Al-
though, its administration for these indications is limited
due to the side effects, it is shown that the CNS effects
of NAs intoxication are reversed more rapidly by benac-
tyzine than atropine [102,135]. Furthermore, benactyzine
inhibits sweating or impairs accommodation much less
than atropine. Therefore, it seems that it is more suitable
than atropine for soldiers particularly in warm environ-
ments [102]. Benactyzine could also terminate NAs
induced seizure more effectively than diazepam, in
guinea pig model [138]. Some countries use “TAB” for
immediately nerve agent treatment. It contains TM B-4
(an oxime), atropine, and benactyzine [102].

Oximes
Oximes are mainly pyridinium compounds which are
divided into mono and bi-s pyridium. Their general for-
mula is R1R2C=NOH, where R1 and R2 represent any



Table 2 Relative effects of oximes in organophosphrous
nerve agent poisoning

Oximes Soman Tabun Sarin Cycoserin VX

HI6 ++++ +/++ +++ ++/+++ +++

HLO7 +++ - ++++ ++++ +++

HGG12 +++ - NA NA NA

2-PM ++ - ++/+++ +/− ++/+++

TMB4 NA ++ NA NA NA

BI6 NA - ++ NA ++

obidoxime +/+++ ++ ++ ++ +++

pyrimidoxime ++ ++ ++ + ++

K oximes - ++/+ NA NA NA

NA=No data available - =no effective += less effective ++= mild effective.
+++= moderately effective ++++= most effective.
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carbon group or hydrogen [1,139]. They are nucleophilic
substances and reactivate the phosphonylated cholin-
esterase enzyme by breaking the nerve agent-enzyme
bond [13,105]. Therefore, it is believed that Oximes are
more physiologic antidotes than atropine for NAs
poisoning [102,140].
According to mechanism of oximes action, it seems

that they might completely reverse the NAs effects.
However, there are five reasons that they are practically
less effective than atropine as follows:

(I) It is possible that NAs act through mechanisms
other than ChE inhibition [102,107,141].

(II) The oximes are unable to reverse apparent
clinically muscarinic sings and they act on the
nicotinic sites [4,15,105].

(III)Most of oximes are quaternary drugs with limited
CNS penetration, thus they could not improve
central effects of NAs intoxication [142,143].
Although a prodrug of 2-PAM, that is tertiary
amine, has penetrated into the blood brain barrier,
it quickly undergoes oxidation in the brain to
produce an active 2-PAM and reactivate OP-
inhibited AChE in the CNS. However synthesis of
this prodrug is complicated now due to rapid
autoxidation [144].

(IV)A meta-analysis results of six clinical trials on OP
poisoning demonstrate a high relative risk for death
among oxime-exposed [2,17]. It also showed the
necessary to have ventilation of patients who
received oxime was 1.53 more than others. And the
incidence of IMS for patients who received oxime
was 1.57 higher than patients treated without
oxime . The authors of this paper concluded that
oximes are not only effective in the management of
OP poisoning, but also they can be dangerous and
worsen the patient's clinical situation [145].

(V)When cholinesterase attached to NAs gets to be
aged, it will become resistant to reactivation by
oxime or water [107,139]. This reaction limits the
efficacy of oxime in fast aging NAs as soman
[105,107].

Efficacy of different types of oximes against NAs are
not equal (Table 2) [4].
Boskovic had evaluated efficacy of HI-6, HGG-12, and

paralidoxime (2-PAM) in conjunction with atropine and
diazepam on soman and tabun intoxicated dogs. He
reported that HI-6, HGG-12, and 2-PAM had showed
the best protective effect in soman-poisoned dogs. How-
ever none of them had shown significant protection
against tabun [146]. In another in vitro study, both H
oximes (HLO-7, HI-6) and BI-6 were found to be more
effective in reactivation of sarin and VX-inhibited AChE
than 2-PAM and obidoxime. However, HLO-7 was less
effective than HI-6. The HLO-7, HI-6 and BI-6 could
not reactive tabun-inhibited AChE efficiently [147,148].
Reactivating potency of AChE inhibited by soman, sarin,
cyclosarin, and VX is decreased in the order of
HLO7>HI-6>obidoxime>2-PAM [1]. Therapy of intoxi-
cated rat with GV demonstrated best antidotal effect of
combination of benactyzine, atropine and HI-6 [149].
It is estimated that both newly developed K oximes

(K074, K075) have higher efficacy in antidotal effect on
acute tabun poisoning [150,151]. Some studies on tabun
intoxicated mice and rats have been shown that K074 is
more potent reverser tabun-inhibited brain AChE in rat
than the other commonly used oximes [152,153]. Also
K074 and K075 were effective in reversing tabun-
inhibited blood AChE of rat almost as much as obidox-
ime [152,153]. Both of them have presented much more
therapeutic efficacy in tabun intoxicated mice than obi-
doxime and HI-6 [150]. In rats intoxicated with tabun,
reactivation of inhibited AChE in brain tissue was
increased in the order HI-6 < K048 < obidoxime. This
reactivation was prominent in frontal part and HI-6 was
not a good reactivator against of tabun intoxication
[154]. In another report, oxime effectiveness against
tabun poisoning decreased in order Trimedoxime (TM
B4)> 2-PAM > K127> K117 [102,155].
HI-6 is more effective in treatment cyclosarin toxicity

of mice and reversing rat cyclosarin -inhibited AChE of
blood and brain than other oximes such as obidoxime
and K oximes [150,153]. Based on other studies, HI-6
and HLo7 have been extremely effective against
cyclosarin, although obidoxime was fairly effective
and the least effective agents were pyrimidoxime and
PAM-2Cl [4].
In soman-intoxicated guinea pigs, HI-6 is slightly more

effective than HLO-7 [156]. If efficient doses of HI-6 is
administrated it can achieve efficient concentration in
bran to reactivate inhibited AChE [1]. The signs of
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soman poisoning have positive correlation to AChE in-
hibition and negative correlation to the level of unbound
HI-6 in the brain [157]. Also, brain uptake of HI-6 is sig-
nificantly reduced by soman intoxication [157]. The K
oximes (K074, K075) and obidoxime had no effect on re-
versing rat soman-inhibited AChE of blood and brain,
however, HI-6 was very effective [153].
HLO-7 may reactivate phosphorylated muscular AChE

by sarin, cyclosarin, soman, and tabun in decreasing
order [158]. HLo-7 is extremely effective in tabun
intoxicated guinea pigs in compare of HI-6 and
pyrimidoxime [156].
Pro-2-PAM is a pro-drug dihydropyridine derivative of

the 2-PAM. The pro-2-PAM has showed reactivation of
sarin or VX-inhibited AChE of brain tissues and periph-
eral, in a dose-dependent manner, although it has been
greater efficient in peripheral tissues compared to brain
[159]. Pro-2-PAM has blocked sarin- or VX-induced sei-
zures as well [159]. Though, Pro-2-PAM had no reacti-
vation of cyclosarin-inhibited AChE in brain or muscle
tissues [159]. This oxime also had no effect against
cyclosarin-induced seizures [159].
The results reinforce the theory that therapeutic re-

sponse of oximes depends on NA type [150]. Although,
other factors such as cost and availability of the oxime
and its side effects influence the selection of the oxime
[1]. For example, toxicity of obidoxime (especially with
high doses) is higher than 2-PAM and HI-6. However
HI-6 is not as commercially available as obidoxime or 2-
PAM in several countries [4]. While, the majority of our
knowledge about side effects of oximes are limited to
animal studies, the human experiences are limited to
apply 2-PAM and obidoxime either in pesticides or war/
terrorism [1]. In the United Kingdom the methanesulfo-
nate salt of 2-PAM is the standard oxime, whereas, in
other European countries TMB4 and obidoxim are
used. Pralidoxime iodide is used in Japan. 2-PAM was
chosen for use in the United States. HI-6 is used in
Canada [102].
Administration of 2-PAM should be started at a dose

of 30 mg/kg (up to 2 grams) intravenously over 30 min-
utes and followed by continues infusion of 8–10 mg/kg/
hr (up to 650 mg/h) in dextrose 5% solution. It could be
continued till the full healing or atropine is required
[1,4,160]. Animal studies showed that a plasma level
about 4 μg/mL could reverse sarin-induced neuromus-
cular block. Administration of 2-PAM with the Combo-
Pen or MARK 1 auto-injector (600 mg) intramuscularly
could produce a plasma concentration about 6.5 μg/mL
in an average soldier (8.9 mg/kg in a 70-kg male) [102].
The oximes should be initially administered after or at
the same time of atropine [102,108,129].
In humans, 2-PAM adverse effects are minimal at

therapeutic doses [102,160]. Transient dizziness, blurred
vision, diplopia and elevations in diastolic blood pressure
may be depended to the administration rate. Some of
other reported adverse effects include: headache, drowsi-
ness, tachycardia, increased systolic blood pressure,
hyperventilation, decreased renal function, muscular
weakness, nausea, vomiting and pain at the injection site
[102,129,160]. Administration of 45 mg/kg 2-PAM can
elevate systolic and diastolic blood pressure up to
90 mm Hg and 30 mm Hg, respectively [102]. The
elevations may persist for several hours. Hypertensive ef-
fect could be minimized by giving the oxime more
slowly (over 30–40 min) and reversed by phentolamine
5 mg, intravenously [102,160]. Rapid intravenous admin-
istration of 2-PAM has produced sudden cardiac and
respiratory arrest due to laryngospasm and muscle rigid-
ity [161-163]. Due to side effects administration of
more than 2.5 g of oxime through 1 to 1.5 hours is
forbidden [102].
More than 80% of 2-PAM is excreted unchanged

through the kidneys within 3–12 hours [164,165]. The
main suggested mechanism of 2-PAM kidney excretion
is active tubular excretory mechanism [102,164,165].
Heat, exercise, renal failure and thiamine could decrease
clearance and excretion of 2-PAM [102,164,165].
Initially and daily doses of obidoxime is not recom-

mended more than 500 mg and 750 mg/day, respect-
ively, due to its hepatotoxicity. During obidoxime
therapy regular control of Liver function tests should
be done [1]. Also liver enzymes concentrations must
be observed in patients that receive doses of 1200 to
1800 mg through auto-injector contain 2-PAM. Enzymes
concentrations return to normal within 2 weeks [160].

Convulsion and Diazepam
The results of a study about efficacy of diazepam in
treatment of NAs have shown that it would be an excel-
lent adjunct therapy [1]. Convulsions should be con-
trolled by utilizing diazepam (0.2 to 0.5 mg/kg in
children and 5 to 10 mg in adults) [110,130].
It has not only symptomatic anticonvulsant effect but

also has more specific effect on cholinergic and
GABAergic systems [1]. In severe cases of NA exposure,
convulsion (or what are described as “convulsive jerks”
or “spasms”) starts within seconds after losing con-
sciousness and collapsing the casualty. It will persist for
several minutes until the victim becomes flaccid and
apneic [102]. It is not reported that the convulsion has
recurred after atropine and oxime therapy and ventila-
tion support. In these cases, specific anticonvulsive ther-
apy is not required [102].
In animal models, diazepam has been revealed to con-

trol NA–induced seizures/convulsions [138,166,167]. It
also reduces brain lesion induced by NAs [138,168].
Also, food and drug administration (FDA) have
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approved diazepam for treatment of status epilepticus
seizures via intramuscular route [102]. Thus, auto-
injector of diazepam (contain 10 mg) as Convulsive
Antidote Nerve Agent (CANA), is given to US military
personal for immediate anticonvulsant treatment of NAs
casualties in the field [102]. CANA is not considered for
self-use, it rather uses in a soldier exhibits severe effects
from a NA by others [102,169]. However, it is recom-
mended to self-injection following the third Mark I or
ATNAA, if soldier needs to receive all three kits [102].
Other anticonvulsant benzodiazepines e.g. lorazepam

and midazolam, are effective in stopping NA–induced
seizure [102,138,167,168,170]. Midazolam, however, is
more potent and more rapid than diazepam in stopping
NA-induced seizure [171]. It is recommended that mida-
zolam replace diazepam as the urgent anticonvulsant
treatment for NA-induced seizures. Barbiturates, pheny-
toin, and other anticonvulsants are not effective against
NA-induced seizure [110].
Some anticholinergic drugs like atropine, benactyzine,

aprophen, azaprophen, trihexyphenidyl, procyclidine,
biperiden and scopolamine, had been tested for their
ability to terminate soman induced seizure, in compare
of diazepam, in guinea pigs. When drugs had been given
5 min after seizure onset, all these anticholinergic com-
pounds except atropine, were able to terminate seizures
at lower doses than diazepam. Seizures were rapidly ter-
minated by procyclidine, Benactyzine, and aprophen. At
40 min after seizure onset, the most potent compound
was diazepam that was followed by scopolamine, benac-
tyzine and biperiden [138].
Anti-NMDA and anti-glutamate drugs
Glutamate, as an excitatory amino acid plays a role in
the continuance of OP-induced seizures through
Table 3 New recommended treatments for organophosphoro

Category Drug Benefit

Anti-NMDA and anti-
glutamate drugs

Gacyclidine Early administration

Tezampanel It reduced the leng
protection of neuro

Ketamine Could stop seizure
agent poisoning o

Huperzine A Useful effects on se

Magnesium Sulphate: Administration in t
patients

Antioxidants: Vitamin E Therapeutic effects

Bioscavengers: BChE purified from human
plasma (HuBChE)

Therapeutic blood
administration

Fetal bovine serum AChE
(FBSAChE)

Protected against m

Fresh frozen plasma (FFP) No significant effec
overactivation of the N-methyl-D-aspartate (NMDA)
[172,173]. Some of them are listed in Table 3.
Gacyclidine is a novel anti-NMDA compound which

was approved for human use in neurotraumatology
[174,175]. In an animal study, soman intoxicated pri-
mates were pretreated with pyridostigmine and treated
by atropine, 2-PAM, and diazepam. Another group
received additional gacyclidine. Only gacyclidine was
able to ensure complete recovery of NA poisoning for
rapid normalization of EEG activity, clinical recovery
and neuroprotection [175]. Early administration of gacy-
clidine added classical emergency medication could pre-
vent the mortality [1]. In an animal study, it could
prevent the neuropathology three weeks after soman ex-
posure, however, it has not high CNS penetration [4].
Administration of gacyclidine at zero to thirty minutes
after intoxication obtained optimal neuropathological
protection [175].
Tezampanel, a glutamate receptor antagonist, which is

specific for kainate sub-type receptors, had been useful
against soman-induced seizures when administered one
hr after exposure. It reduced the length of status epilep-
ticus recorded by electroencephalographic in a 24 hours
period after soman exposure. It also showed useful
effects in protection of neuropathy induced by soman, as
well [176].
Ketamine is a noncompetitive NMDA receptor antag-

onist. In one study, the effects of ketamine/atropine sul-
fate combinations were evaluated as delayed therapy in
soman-poisoned guinea pigs. Ketamine could stop seiz-
ure effectively and highly reduced seizure-related brain
damage when treated one hour post-challenge. Co-
administration of ketamine and benzodiazepines
increased its efficacy [177]. These effects of ketamine
have been proved by another animal study on mice
[178]. Ketamine plus atropine combinations have been
us nerve agents

could prevent the mortality

th of status epilepticus induced by soman exposure. Useful in
pathy induced by soman

and reduced seizure-related brain damage, protection against OP nerve
f peripheral and CNS AChE

izures and status epilepticus prevention in post-exposure,

he first day decreases hospitalization period and improve outcomes in

in OPs induced oxidative stress

concentration of BChE can be kept for at least 4 days after a single dose
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revealed suppression of neutrophil granulocyte infiltra-
tion and partially suppression of glial activity as import-
ant neuroprotective effects. It could also reduce related
pro-inflammatory proteins and mRNA excess and
aroused by the soman poisoning [178].
As CNS toxic effects result from increased expiatory

release of glutamate, neuroprotection can be implemen-
ted via anticholinergic effects [4]. Huperzine A is a nat-
urally alkaloid found in the Firmoss Huperzia serrata
[179,180]. It is a reversible AChE inhibitor, like donepe-
zil, rivastigmine or galantamine [179-181] and NMDA
receptor antagonist [182]. Huperzine A is able to cross
the blood–brain barrier [183]. Huperzine A has revealed
useful effects on seizures and status epilepticus preven-
tion in post-exposure by blocking NMDA-induced exci-
tation [4]. These properties make it useful in protection
against OP nerve agent poisoning of peripheral and CNS
AChE [184].

Blood alkalinization by sodium bicarbonate:
Effects of sodium bicarbonate in OPs poisoning were
assessed in moderate to severe intoxicated patients
[1,4,118]. The aim was to achieve and maintain the ar-
terial blood pH between 7.45 and 7.55 [1,4,118]. After
correction arterial acidosis with intravenous sodium bi-
carbonate solution, it is administered 3–5 mg/kg/24hr as
continuous infusion until recovery or until atropine dis-
continued [1,4,118]. Dose adjustment is done based on
regular arterial blood gas analysis.
Esteratic portion of OP molecules are hydrolysed in al-

kaline pH. Increasing one unit of pH is accompanied
with 10 fold increasing in OP hydrolysis [185]. The ar-
terial pH of higher than 7.50 makes the OP hydrolysis
faster through hydrolysis acceleration [186].
Alkalinization of blood in pH more than 7.50 results

in increasing urinary pH. It stimulates extraction of
weak acids. The most of NAs and their metabolites are
weak acids [187]. Administration of sodium bicarbonate
helps to control the cardio toxicity through augmenta-
tion sodium pump channel [188]. It is also estimated
that alkalinization facilitates recovery from OP poisoning
thorough preventing the cardio-respiratory arrest, in-
creasing the bio-availability of oximes, augmentation
therapeutic activity of atropine and direct effect of so-
dium bicarbonate on neuromuscular functions [185].

Ventilation
Ventilatory support is a main part of treatment of a cas-
ualty with severe respiratory compromise [102,105]. In
animal studies, giving antidote intramuscularly at the
onset of signs had been sufficient to reverse the effects
of NAs, however, additional ventilation promotes the ef-
fectiveness of antidotes [102,105]. Although, some
authors believe antidote therapy and intensive care
management can reduce morbidity and mortality rate,
the risk of respiratory failure or incapacitation do not
avoid with the available antidotes (atropine, oximes) [1].
When NA vapor exposure is minimum and victim has

mild to moderate dyspnea, it may be reversed by the ad-
ministration of atropine [102]. Because of reversing
bronchoconstriction caused by atropine, intubation of
conscious patient with respiratory distress could be
delayed [1]. Atropine could not reverse central respira-
tory arrest. If casualty suffers from respiratory distress
and is elderly or has cardiac or pulmonary underling dis-
ease, he/she needs supplementary inhalation oxygen in
addition to the antidotes. Patient with losing conscious-
ness, generalized muscular twitching or convulsive jerks
has apnotic or impaired respiration. Thus, they require
appropriate respiratory support and should be intubated
with assisted ventilation as soon as possible [1,102].
Increasing bronchial secretion is one reason of respira-

tory problem in NAs exposed victims. These secretions
incline toward thickening, mucoid, and “ropy,” and
could plug up the airways. Frequent suctioning and pos-
tural drainage of the airways can be helpful [102]. A
large amount of secretions and broncho-constriction
usually cause high airway resistance of 50–70 cm water
[102,105]. Very high airway resistance results in causing
some mechanical ventilators to malfunction [1]. After at-
ropine administration, resistance decreases to 40 cm
H2O or less, and the secretions reduce. Thus, ventilation
is set up and respiratory support should be adjusted after
starting atropine [102]. The NAs need to respiratory
support much short than that applied for severe OP in-
secticide poisoning, because of higher fat solubility of
OP pesticides that they tend to store more than NAs
[15,102,168]. Unlike other CWAs such as sulfur mus-
tard, chlorine and phosgene which induce pulmonary
edema, intoxication with NAs may only require ventila-
tor support for 20 min – 3 hours [102].

Therapy for Cardiac Arrhythmias
NA intoxication could promote transient arrhythmias,
however, it may happen after atropine administration in
a normal subject [102]. High doses (5–20 LD50) of NAs
( sarin , soman, tabun and VX) intoxication in guinea
pigs had caused an obvious sinus bradycardia and a con-
sequent complete atrioventricular block within 1–2 min-
utes, followed by idioventricular rhythm, while, no
ventricular tachyarrhythmias had been observed in these
animals just before death. In this animal model, atropine
and atropine plus oxime reversed right away sinus
rhythm in animals which had sufficient respiration [72].
In contrast, treatment in animals without sufficient re-
spiratory support, especially in tabun and soman
(10LD50) poisoning, converted sinus rhythm to deleteri-
ous ventricular tachycardia through one minute after
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treatment [72]. However, this kind of arrhythmia has not
been reported in humans [102]. Balali-Mood, based on
his experience on Iranian soldiers intoxicated in Iran-
Iraq war and patients with OP pesticides poisoning, pro-
hibits physicians from administrating atropine to
patients with tissue hypoxia e.g. cyanosis of lip and fin-
gers. He advised to correct hypoxia, by clearing the air-
ways and giving oxygen, before inducing atropinisation
[1,4]. Valero has reported that propranolol could control
cardiac tachycardia and ST depression secondary to
large dose of atropine in a young woman who ingested
organophosphate pesticide accidentally [189].

Hemoperfusion
Evaluation of Effects of hemoperfusion (HP) via coated
resin adsorbent synachrome E-5 in intoxicated dogs had
been shown that HP in VX and sarin intoxication is only
partially effective [190].
Yokoyama reported a 45 year old woman who intoxi-

cated by sarin during Tokyo subway attack. She suffered
serious NA poisoning with deep coma, pupil size less
than one millimeter and respiratory problem. She had
been treated with atropine, 2-PAM and respiratory sup-
port. She underwent hemofiltration and hemoperfusion
because of insufficient response to treatment. Then she
regained consciousness, her pupils were dilated and cho-
linesterase activity raised [191].
Following new achievement of intravenous lipid emul-

sion in treatment of intoxicated patient with lipophilic
drugs [192], some authors express a hypothesis that the
combination of intravenous lipid emulsions and charcoal
hemoperfusion can apply to treatment severe OP poi-
soning [193]. However, some animal studies showed no
significant effect of intravenous lipid emulsion against
OP toxicity [194].

Magnesium Sulphate
It has been reported that IV administration of magne-
sium sulfate (4 g) in the first day after admission would
decrease hospitalization period and improve outcomes
in patients with OP pesticides poisoning [195]. Mag-
nesium sulfate reduces ACh release through blocking
calcium channels [196]. It also reduces CNS overstimu-
lation consequential from NMDA receptor activation
and reversed the neuroelectrophysiological defects
resulted in OP toxicity [197]. In addition, magnesium
sulfate has the bronchodilating effect that is evaluated
through widely trials in mild to severe asthmatic patients
and it could relieve bronchoconstriction in a dose-
dependent manner [198]. However, applying magnesium
sulfate in NA casualties needs more research. Iranian
experiences in treatment of acute OP pesticides poison-
ing, disclosed that alkalinization of blood with sodium
bicarbonate and also administration of magnesium
sulfate may be efficient in recovery of moderate to se-
vere intoxication (Table 3) [1,118].

Antioxidants
OP compounds generate nitric oxide and reactive oxy-
gen radicals, decrease total antioxidant capacity, increase
thiobarbituric reactive substances and lipid peroxidation
in acute, subchronic or chronic exposure [4,9]. Vitamin
E has shown therapeutic effects in OP induced oxidative
stress in rat erythrocytes (Table 3) [4].

Bioscavengers
There are three categories of the bioscavengers for the
detoxification of OP compounds. (I) Those that stoichio-
metrically bind to OP compounds. Every organophos-
phate mole is neutralized by one mole of enzyme and
both of them will be inactive. Cholinesterase, carboxyles-
terase, and other related enzymes are belonging to this
category. (II) Some compounds that known as “pseudo
catalytic” like those combining AChE and an oxime.
Thus, in the presence of an oxime, the catalytic activity
of OP-inhibited AChE happens fast and constantly. (III)
Natural catalytic hydrolyze OP substances that make
them nontoxic like paraoxonase, OP hydrolase and OP
anhydrase (Table 3) [199].
Nowadays, researchers try to investigate proteins with

biological scavengers’ activity on OP compounds which
are acceptable to the FDA, and have ability to be stable
in circulation for a long time. Through inactivating OPs
before they able to inhibit AChE in CNS, could avoid
the current antidotes side effects and will reduce the ne-
cessity of rapid administration of antidotes [199]. The
criteria of an enzyme for applying as an effective in vivo
treatment for OP toxicity include: (I) It should be able
to react with all kind of OP NAs quickly, specifically,
and irreversibly; (II) It should have a constant circulatory
half-life (11–15 days) to be effective as a long acting
scavenger; (III) The sufficient quantities of this substance
should be easily available. (IV) It should not have im-
munogenic property [199].
Evaluation of BChE purified from human plasma

(HuBChE) in animal models proposes that the thera-
peutic blood concentration of BChE can be kept for at
least 4 days after a single dose administration. Its thera-
peutic index is about 30 and it is safe for human use and
has not any tissue toxicity [199]. HuBChE could be
stable in lyophilized form at temperatures 4°C to 25°C
for 2 years. Immunological response to this enzyme had
no interaction with second time pharmacokinetic profile
based on animal models [199]. Fetal bovine serum AChE
(FBSAChE) protected mice against multiple LD50s of
OP NAs [1,4].
Fresh frozen plasma (FFP) and albumin has been re-

cently evaluated for OP toxicity as bioscavenger. In one
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clinical trial on 56 OP poisoned patients, efficacy of four
packs of FFP at the beginning of treatment was evalu-
ated. The authors reported no significant differences be-
tween the two groups on the atropine and 2-PAM
dosage, hospitalization length, mortality and clinical
course [200]. In another study, administration of FFP,
however, increased in pseudocholinesterase level, it
made no favorable trends in clinical outcomes [201].

Other new treatments
This interaction between soman and sarin plus beta-
cyclodextrin, suggests that it could be a probable
antidote against NAs [202,203]. The evaluation of beta-
cyclodextrin ability to detoxify various NAs in vitro
models, revealed its efficacy in decreasing order of
cyclosarin>sarin>tabun>>VX. It could not detoxify VX.
A biphasic detoxification reaction was revealed for
Sarin; the primary phase, fast reduction of inhibitory
potential and the second is a slower phase [204].
Cell migration resulted by cytokine therapy and stem

cells engrafting into injured brain tissue of soman-
intoxicated mice showed that cell differentiation into
functional neurons [205]. However, this method does
not ameliorate memory performance in these animals
[206]. Cytokine treatment has also enhanced neuronal
regeneration in the hippocampus [206].
Encapsulation of drugs or enzymes, as BChE in

nanocarriers has been proposed to enhance the blood
brain barrier crossing. It is thus hoped that more ef-
fective treatments will soon be available for severe
neurotoxic effects of human OP pesticides and the
NA poisonings [207].
Galantamine is a ChE inhibitor that acts centrally. It

also is a nicotinic allosteric potentiating ligand and ap-
plied for treat Alzheimer's disease therapy. Galantamine
is a safe and effective antidote against intoxication with
NAs, including soman. In one study, it was compared
with donepezil, rivastigmine, and (±)huperzine A, when
administered 1–3 hours after soman administration to
guinea pigs. Only galantamine could increase survival of
the animals [208].

Drug interactions
Medications including morphine, theophylline, amino-
phylline, reserpine, and phenothiazine-type tranquilizers
may have interaction with OP NAs and thus should be
avoided. Prescription of drug like procaine and suxa-
methonium (succinyl choline) that are hydrolyzed by the
enzyme ChE should also be avoid [1].

Treatment of High-risk groups
Pregnant women and fetal toxicity
Fetal intoxication may happen because organophosphate
NAs cross the placenta [4]. The sensitivity of fetus to
OP compounds and atropine are higher than their
mothers [4]. Clinical experience about pregnant women
in Sardasht and Halabjah who exposed to sarin in the
Iran-Iraq war, and pregnant women poisoned with OPs
pesticides, discovered that mortality rate is higher in
fetus than in the mothers [1,4]. Fetuses of survived sarin
poisoned pregnant women have died within a few hours
to a few days [4]. However pregnant women in the sec-
ond and third trimesters of pregnancy intoxicated with
commercial OP compounds have been successfully trea-
ted with atropine and 2-PAM and have delivered healthy
newborns [209].
In pregnant women administration of atropine and

oximes should be with caution and at lower doses. 2-
PAM is a pregnancy category C and should be used
as clinically necessary [160]. Obstetric consultation is
necessary. Removing of dead fetus should be
performed immediately after improving the mother
clinical condition [4].

Children
As casualties were seen during the Hallabjah massacre,
children are more susceptible to organophosphate NAs
and suffered higher mortality than adults [4]. Some rea-
sons for this fact include: (I) children have lesser mass
and more surface/volume ratio, (II) they have more im-
mature respiratory system, (III) in young children the
stratum corneum in the skin is immature that facilitates
dermal absorption and (IV) their neurotransmitter sys-
tems are immature that makes children more susceptible
to an epileptogenic stimulus [102,104].
The clinical manifestation of NAs in children may be

quite different from adults. Miosis in OP poisonings of
children is not so common as in adults, and also chil-
dren may have lesser obvious convulsions/seizures [102].
Sensitivity of children to atropine and oximes is higher

[104]. Atropine must be administered at least 0.05 mg/
kg intramuscular or intravenously, and higher adminis-
tration dose is up to 0.1 mg/kg in an obvious cholinergic
crisis [102]. Atropine administration should be with
monitoring of vital signs, especially the pulse rate. Atro-
pine must be adjusted based on heart rate between 140–
160 beat/min [1,104]. However, it is showed that young
children generally well tolerated atropine overdose [104].
Loading dose of 2-PAM in children should be at 25 mg/
kg, that is infused over 15–30 min. It may be followed
by 10–20 mg/kg/hr to achieve a plasma concentration of
>4 mg/L [4,132]. As half-life of 2-PAM in children is
about twice of adults, in small children the initial dose
might not be necessary to repeat as frequent as adult
dose repetition [102].
In May 2003, the Program for Pediatric Preparedness

of the National Center for Disaster Preparedness
(NCDP) issued the first recommendations and treatment
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guidelines of pediatric disaster and terrorism awareness
that is nationally accepted [210]. They recommended
the Mark 1 Auto-injector kits that should be applied as
first treatment of children with severe and critical NA
poisoning, especially when intravenous therapy is impos-
sible or unavailable [104,210]. When an accurate weight-
based dosing of antidotes is not possible, symptomatic
children less than one year old should be given atropine,
while older children should be given atropine and 2-
PAM from the Mark 1 kit [104].

Elderly
Another high risk groups are the elderly. The elderly
mortality and morbidity related to sarin poisoning
in Halabjah and Sardasht during the Iran-Iraq war
were higher than the others. In the elderly victims,
complications and multiple system failure were more
common than the other adults. Drug administration,
such as diazepam, oxime and atropine also needs more
caution [1].

Experience in management of NA poisoning
during the Iraq-Iran war
Majority of exposed people in Majnoon Island died
within 30 minutes following respiratory failure, hyperse-
cretion, convulsions, apnea and coma. Advance manage-
ment of moderate to severe intoxicated patients had
been done in medical centers in big cities followed ap-
plying first aid therapy and decontamination in the field
hospital. Recorded clinical manifestations included
hypersecretions, miosis, hypotension, diarrhea, abdom-
inal cramps, nausea, vomiting, pulmonary edema, cyan-
osis, respiratory depression, muscle twitching, loss of
consciousness, and convulsions. Hypotension and brady-
cardia were more recorded before atropine therapy while
hypertension and tachycardia accompany with tongue
dryness and mydriasis were more observed after atropi-
nisation. Patients with cyanosis and extreme respiratory
distress, who received high doses of atropine, had higher
morbidity and mortality rate. In contrast OP pesticide
poisoning, intermediate syndrome has not been reported
with the NA intoxication.
There is not an exact statistical record of the NAs

exposed individuals. It has been expected that in March
1984 more than 2000 patients with NAs intoxication
(later on diagnosed as tabun) were managed. Mixed poi-
soning by tabun and sulfur mustard happened because
the Iraqi army had used combination of them. Iraqi
army also had used sarin accompanied with sulfur mus-
tard in Halabjah massacre [1].

Return to duty
There are various factors that influence deciding about
returning a casualty of NAs to his/her duty. The most
important criteria for person exposed in factory or la-
boratory is level of RBC-ChE activity. They should not
return when activity of their RBC-ChE is less than 90%
of their base line and are not symptoms free [13,102].
Deciding in military services is more complicated. Fol-

lowing considerations is important:

1) If exposure to NA is repeated, will the soldier be in
higher risk due to the previous contact?

2) How much can the function of man be well?
3) What is the platoon necessary to the fighter? [102]

When measurements of blood AChE is not available,
prediction about increasing danger from second NAs ex-
posure of a soldier is difficult. However, the level of
RBC-ChE activity is not a very useful criterion in field
because

a) Most of the time it is not available in field.
b)A man with relatively mild effects (rhinorrhea and
miosis ) may obviously have AChE inhibition.

c) The enzyme activity may be restored to near normal
if soldier uses oxime (MARK I or ATNAA) and
agent is susceptible to oxime [102].
Prophylaxis
The first approach for prophylaxis against NAs, is keep-
ing AChE intact (protection of cholinesterases) [211]. It
is possible by simple chemical components like revers-
ible inhibitors (if possible carbamates) that reversibly in-
hibit AChE [211]. Résistance of AChE to NAs inhibition
will be higher after it inhibited by carbamates [96].
When AChE is restored spontaneously, it will act
normally [96,211].
Pyridostigmine is a carbamates that binds to the AChE

for a few hours [105]. Therefore, pyridostigmine is used
as a “pretreatment” for NAs exposure [105]. It is admini-
strated 30 mg every 8 hours [96,212]. It does not pass
the blood–brain barrier and thus causes no CNS toxicity
[1]. However, usage of higher doses present some of the
same clinical manifestations of NAs, and the recom-
mended doses caused irritating adverse effects in half of
the man in a war zone [1]. The efficacy of pyridostig-
mine for prophylaxis in soman exposure has been
approved. It could show no additional benefit in sarin or
VX poisoning [1,105]. If standard therapy is not admi-
nistered after the NAs exposure pretreatment will be in-
effective [1]. Also, usage of carbamates should be
discontinued after NAs exposure; otherwise, they will
worsen, rather than protect against poisoning [1]. Physo-
stigmine also has this ability, however, it is not the
choice drug for pretreatment due to its toxicity at the
amounts required [1,213].
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The second approach for prophylaxis against NAs is
"scavenger" effect. The scavengers are exogenous pro-
teins (enzymes) that NAs bound to them and reduce the
level NA in the organism [211,214]. However, this opin-
ion can be considered as a "treatment in advance" [211].
Recombinant DNA-derived AChE is a bioscavenger

which is potentially candidate for pre-exposure therapy
for OPs toxicity [1]. FBSAChE protected mice from mul-
tiple LD50 of NAs [1,207]. HuBuChE was also useful in
animal models as a prophylactic antidote against the
fatal effects of NAs [207,214,215]. HuBuChE as a pre-
treatment has been demonstrated to enhance survival of
intoxicated patients.
The third approach is applying antidotes used for NAs

treatment [211]. Pretreatment with benactyzine + HI-6
was investigated in rats. It can restore soman induced
circulatory and respiratory changes [1]. Due to the limi-
tation of prophylactic effect of Pyridostigmine against
most kind of NAs, Czech Army investigated pretreatment
with a combination of drug (trihexyphenidyl, pyridostig-
mine and benactyzine,), have designated as PANPAL tab-
let, for soman or tabun poisoning [1,102,135,211]. Czech
Armed Forces also have designed another prophylactic
patch named TRANSANT that is transdermal patch con-
taining HI-6 [216,217].
Prophylactic efficacy of Huperzine A in soman toxicity

was compared with physostigmine in mice. The result
showed a greater protective ratio for Huperzine A (2 times
for Huperzine A and 1.5 for physostigmine) which was
more long lasting (6 hour for Huperzine A and 90 min for
physostigmine). The protective effect of Huperzine A had
been followed a single injection, with no necessary for any
post-challenge drug administration [183].

Conclusion
NAs are deadliest CWA that need immediate interven-
tion. Applying first aid kits like MARKI is important to
reduce toxicity. However atropine and oximes are the
main part of treatment. There are several adjuvant and
additional therapies such as magnesium sulfate, sodium
bicarbonate, gacyclidine, benactyzine, tezampanel, hemo-
perfusion, antioxidants and bioscavengers that have re-
cently been used for OP NAs poisoning.
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