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Abstract

Lysinibacillus sphaericus CBAMS5, was isolated from subsurface soil of oil well explorations in the Easter Planes of
Colombia. This strain has potential in bioremediation of heavy-metal polluted environments and biological control
of Culex quinquefasciatus. According to the phylogenetic analysis of 165 rRNA gene sequences, the strain CBAM5
was assigned to the Lysinibacillus sphaericus taxonomic group 1 that comprises mosquito pathogenic strains. After
a combination assembly-integration, alignment and gap-filling steps, we propose a 4,610,292 bp chromosomal
scaffold. The whole genome (consisting of 5,146,656 bp long, 60 contigs and 5,209 predicted-coding sequences)
revealed strong functional and syntenial similarities to the L. sphaericus C3-41 genome. Mosquitocidal (Mtx), binary
(Bin) toxins, cereolysin O, and heavy metal resistance clusters from nik, ars, czc, mnt, ter, cop, cad, and znu operons

were identified.
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Introduction
Lysinibacillus sphaericus is one of the bacteria used as a
bio-insecticide as part of vector control programs against
tropical diseases, such as malaria, filariasis, yellow fever,
dengue fever and West Nile virus [1]. L. sphaericus iso-
lates may be classified according to their larvicidal activity
into high and low toxicity strains. High- and low-toxicity
strains synthesize mosquitocidal toxins (Mtx) in vegetative
growth cells [2]. Highly toxic strains produce a binary
toxin coded by binA and binB genes in sporulating stages
[3]. In addition, L. sphaericus larvicidal toxicity may be ex-
plained due to expression of Cry48/Cry49 toxin [4] and
the S-layer protein [5]. Vegetative and sporulated cells of
L. sphaericus CBAMS5 are pathogenic towards Culex quin-
quefasciatus larvae [6]. LC50 (50% lethal concentration)
toward C. quinquefasciatus larvae of strain CBAMS5 is
1400 cells/mL from sporulated cultures, being this isolate
assigned as a high-toxicity strain [6].

The biotechnological application of L. sphaericus is not
limited to biological control. L. sphaericus biomass has
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been applied in the bioremediation of heavy metals, such as
cobalt, copper, chromium and lead [7] with specific metal
binding in the cell surface [8]. Native Colombian isolates L.
sphaericus OT4b.31 and IV(4)10 showed heavy metal bio-
sorption in living and dead biomass, both strains expressing
the S-layer proteins [9]. L. sphaericus strain CBAMS5, along
with other 24 native isolates, shown effective growth in ar-
senate, hexavalent chromium and/or lead [6,10].

Considering that Lysinibacillus sphaericus CBAMS5 is a
relevant native strain, not only by its highly toxic larvi-
cidal activity but also by its heavy metal tolerance, we
have chosen this strain to analyze its genomic sequence.
In this report, we present a summary classification, and
set of general features for Lysinibacillus sphaericus strain
CBAMS5 including previously unreported aspects of its
phenotype, together with the description of its genome
sequence and annotation.

Organism information

Lysinibacillus sphaericus is an aerobic, mesophilic, spore-
forming and Gram-positive bacterium, commonly isolated
from soil and water [11]. Formerly known as Bacillus
sphaericus, the species was later reassigned to the genus
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Lysinibacillus because of its distinctive peptidoglycan mem-
brane composition, and physiological features [12,13]. Lysi-
nibacillus sphaericus strains have been classified into five
DNA homology groups, where mosquito larvicidal strains
were placed into DNA subgroup IIA [14] while the sub-
group IIB was reclassified as Lysinibacillus fusiformis [15].
Later, according to 16S rDNA and lipid profile compari-
sons, Lysinibacillus sphaericus strains were classified into
seven similarity subgroups, of which only four retained the
previous description by Krych et al. [15]. Groups VI and
VII were later reclassified as new species [16]. Because of
the phenotypic and genetic diversity summarized above,
most of the groups remain designated as Lysinibacillus
sphaericus sensu lato.

Partial 16S rRNA gene sequences (1,421 bp) were
aligned to establish the phylogenetic neighborhood of Lysi-
nibacillus sphaericus CBAM5 (Figure 1). The phylogenetic
tree was constructed by using the Maximum Likelihood
method on the Tamura-Nei model [17]. Initial tree for the
heuristic search was obtained by applying the Neighbor-
Joining method to a matrix of pairwise distances estimated
using the Maximum Composite Likelihood (MCL) ap-
proach. Evolutionary analyses were conducted in MEGA6
[18]. The stability of relationships was assessed by boot-
strap analysis based on 1,000 resamplings for the tree
topology. L. sphaericus CBAM5 was assigned to the DNA
similarity group 1 (formerly known as DNA homology
group IIA), in line with a previous classification of
mosquito pathogenic native strains [6].

Lysinibacillus sphaericus CBAM5 was isolated from
drilling mineral base oil samples (CBAM by its acronym in
Spanish), collected in the Eastern Planes region in
Colombia. The strain was described as an aerobic, motile,
catalase positive, Gram variable rod [10]. L. sphaericus
CBAMS5 is able to grow in acetate as sole carbon source,
but not in glucose (Table 1, Additional file 1: Table S1).
Spherical terminal spores within swollen sporangia were ob-
served under light microscopy (Additional file 2: Figure S1).
By scanning electron microscopy, L. sphaericus CBAMS5 is
estimated to measure 0.52 to 0.60 pm in width and 2.12 to
3.11 pm long (Additional file 3: Figure S2). Cultures grow at
15 to 40°C over a pH range of 6.0 to 9.0. Antibiotic resist-
ance was evaluated separately by adding filter sterilized anti-
biotic solutions in Luria-Bertani broths and checking
turbidity after 15 hours of growth. L. sphaericus CBAMS5 is
sensitive to kanamycin (12.5 pg/mL), chloramphenicol
(30 pg/mL), erythromycin (25 pg/mL), and gentamicin
(15 pg/mL), while it showed resistance to trimethoprim/
sulfamethoxazol up to 50 pg/mL/250 pg/mL.

Genome sequencing information

Genome project history

The genome sequencing of Lysinibacillus sphaericus
CBAMS5 was supported by the CIMIC (Centro de
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Investigaciones Microbioldgicas) laboratory at the Univer-
sity of Los Andes within the Grant (1204-452-21129) of
the Instituto Colombiano para el Fomento de la Investiga-
cién Francisco José de Caldas. Whole genomic DNA ex-
traction and bioinformatics analysis was performed at
CIMIC laboratory, whereas libraries construction and
whole shotgun sequencing at the Beijing Genome Institute
(BGI) Americas Laboratory (Tai Po, Hong Kong). The ap-
plied pipeline included quality check of reads, de novo as-
sembly, a gap-filling step and mapping against a reference
genome. This whole genome shotgun project has been
deposited at DDBJ/EMBL/GenBank under the accession
AYKQO00000000. The version described in this paper is
the first version, AYKQ01000000. A summary of the pro-
ject information is shown in Table 2.

Growth conditions and DNA isolation

Lysinibacillus sphaericus strain CBAM5 was grown in
nutrient broth for 16 hours at 30°C and 150 rev/min.
High molecular weight DNA was isolated using the
EasyDNA® Kit (Carlsbad, CA, USA. Invitrogen) as indi-
cated by the manufacturer. DNA purity and concentra-
tion were determined in a NanoDrop spectrophotometer
(Wilmington, DE, USA. Thermo Scientific).

Genome sequencing and assembly

After DNA extraction, samples were sent to the Beijing
Genome Institute (BGI) Americas Laboratory (Tai Po,
Hong Kong). Purified DNA sample was first sheared into
smaller fragments with a desired size by a Covaris E210
ultrasonicator. Then the overhangs resulting from frag-
mentation were converted into blunt ends by using T4
DNA polymerase, Klenow Fragment and T4 polynucleo-
tide kinase. After adding an “A” base to the 3’ end of the
blunt phosphorylated DNA fragments, adapters were li-
gated to the ends of the DNA fragments. The desired
fragments were purified though gel-electrophoresis, then
selectively enriched and amplified by PCR. The index
tag was introduced into the adapter at the PCR stage as
appropriate, and a library quality test was performed.
Lastly, qualified, short, paired-ends of 90:90 bp length
with 500 bp insert libraries were used to cluster prepar-
ation and to conduct whole-shotgun sequencing in Illu-
mina Hi-Seq 2000 sequencers.

Using the FASTX-Toolkit version 0.6.1 [31] and
clean_reads version 0.2.3 from the ngs_backbone pipe-
line [32] reads were trimmed and quality filtered. Four
preliminary assemblies were obtained by using: SOAP-
denovo version 2.04 [33], Velvet version 1.2.10 [34],
AByYSS version 1.3.7 [35], and CLC Assembly Cell ver-
sion 4.0.10 [36]. Those assemblies were integrated in
the CISA pipeline resulting in a consensus assembly
[37]. SOAPdenovo and CLC Assembly Cell packages
included automatic scaffolding and k-mer/overlapping
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Figure 1 Phylogenetic tree highlighting the position of Lysinibacillus sphaericus CBAM5. Phylogenetic analyses included available type
strains and other non-assigned species within the families Alicyclobacillaceae and Bacillaceae. Right brackets encompass each homology group
(1-7) according to Nakamura's benchmarks [15]. Nucleotide sequences obtained from GenBank and used in the phylogenetic analyses were

as follows: Alicyclobacillus cycloheptanicus 1457 (X51928), Geobacillus stearothermophilus 10 (X57309), Bacillus subtilis 168" (X60646), Bacillus
licheniformis DSM 13" (X68416), Bacillus megaterium 1AM 13418" (D16273), Bacillus sp. BD-87 (AF169520), Bacillus sp. BD-99 (AF169525), Bacillus sp.
NRS-1691 (AF169531), Bacillus sp. NRS-1693 (AF169533), Solibacillus silvestris StLB046 (NR_074954), Lysinibacillus massiliensis 4400831 (NR_043092),
Bacillus sp. B-1876 (AF169494), Bacillus sp. NRS-1198 (AF169528), Bacillus sp. B-4297 (AF169507), Bacillus sp. NRS-111 (AF169526), Lysinibacillus
sphaericus OT4b.31 (JQ744623), Lysinibacillus sphaericus B-23268" (AF169495), Bacillus sp. B-183 (AF169493), Lysinibacillus sphaericus JG-A12
(AM292655), Bacillus sp. B-14905 (AF169491), Bacillus sp. B-14865 (AF169490), Lysinibacillus fusiformis NRS-350 (AJ310083), Lysinibacillus sphaericus
(C3-41 (CP000817:16818-18361), Bacillus sp. B-14957 (AF169492), Lysinibacillus sphaericus 2362 (L14011), Bacillus sp. B-23269 (AF169496), Lysinibacillus
sphaericus CBAMS5 (KK037167:893906-895445). The tree with the highest log likelihood (=6732.2703) is shown. The percentage of trees in which the
associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site. Lineages with type strain genome sequencing projects registered in GOLD [57] are labeled with one asterisk, those also listed as

Alicyclobacillus cycloheptanicus

optimization steps. To obtain structural insight of a
chromosomal scaffold, we used CONTIGuator.2 [38],
using the Lysinibacillus sphaericus strain C3-41 chromo-
some (accession number: CP000817.1) as reference. Some
gaps were successfully filled by using GapFiller [39]. Gap-
filling steps were applied over each one of the preliminary
assemblies and over the final consensus assembly. Quality
assessment of the assembly was performed with iCORN

[40]. The error rate of the final assembly is less than 1
in 1,000,000 bp. We compared the chromosomal assem-
bly of L. sphaericus CBAM5 with the chromosome
sequences of L. sphaericus C3-41 and L. sphaericus
OT4b.31 by maximal unique matching of translated se-
quences with PROmer [41], and a read mapping single
nucleotide polymorphism (SNP) effect analysis with SnpEff
package [42].
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Table 1 Classification and general features of
Lysinibacillus sphaericus CBAM5 according to the MIGS
recommendations [19]

MIGS ID Property Term Evidence
code?
Current classification  Domain Bacteria TAS [20]
Phylum Firmicutes TAS [21-23]
Class Bacilli TAS [24,25]
Order Bacillales TAS [26,27]
Family Bacillaceae TAS [26,28]
Genus Lysinibacillus TAS [13,29]
Species Lysinibacillus TAS [11,13]
sphaericus
Strain CBAMS TAS [10]
Gram stain Positive in vegetative IDA
cells, variable in
sporulating stages
Cell shape Straight rods IDA
Motility Motile IDA
Sporulation Sporulating IDA
Temperature range 15 - 40°C IDA
Optimum 30°C IDA
temperature
Carbon source Complex carbohydrates ~ TAS [10]
Energy metabolism Heterotroph TAS [10]
MIGS-6  Habitat Subsurface soil TAS [10]
MIGS-6.3  Salinity Growth in Luria-Bertani  IDA
broth (5% NaCl)
MIGS-22  Oxygen requirement  Aerobic TAS [10]
MIGS-15  Biotic relationship Free living TAS [10]
MIGS-14  Pathogenicity Pathogenic toward Culex TAS [6]
quinquefasciatus larvae
MIGS-4  Geographic location  Eastern Planes oil basins, TAS [10]
Colombia
MIGS-5  Sample collection January 2005 TAS [10]
time
MIGS-4.1  Latitude 5.0121944 TAS [10]
MIGS-4.2  Longitude —72.7109167 TAS [10]
MIGS-4.3  Depth 20m TAS [10]
MIGS-44  Altitude 350 m above sea level TAS [10]

“Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author State-
ment (i.e,, a direct report exists in the literature); NAS: Non-traceable

Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [30].

Genome annotation

The Glimmer 3 gene finder was used to identify and ex-
tract sequences for potential coding regions. To achieve
the functional annotation steps, the RAST server [43]
and Blast2GO pipelines [44] were used. Blast2GO per-
formed the blasting, GO-mapping and annotation steps;
which included a description according to the ProDom,
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Table 2 Genome sequencing project information
MIGS ID

Property Term

MIGS-31 Finishing quality Improved high-quality draft
MIGS-28 Libraries used One paired end tags 90:90 bp
with 500 bp insert
MIGS-29 Sequencing platforms  lllumina Hi-Seq 2000
MIGS-31.2  Fold coverage 100x
MIGS-30 Assemblers CISA version 1.3, SOAPdenovo
version 2.04, Velvet version 1.2.10,
ABySS version 1.3.7, CLC Assembly
Cell version 4.0.10
MIGS-32 Gene calling method  Glimmer3, tRNAscan-SE, RNAmmer
Genbank ID AYKQ00000000
Genbank Date of February 1, 2014
Release
GOLD ID Gi0057485

Project relevance Biotechnology, metabolic pathway

FingerPRINTScan, PIR-PSD, Pfam, TIRGfam, PROSITE,
ProDom, SMART, SuperFamily, Pattern, Gene3D, PAN-
THER, SignallP and TM-HMM databases. The results
were summarized with InterPro [45]. Additionally, a GO-
EnzymeCode mapping step was used to retrieve KEGG
pathway-maps. tRNA genes were identified by using
tRNAscan-SE [46] and rRNA genes by using RNAmmer
[47]. The possible orthologs of the genome were identified
based on the COG database and classified accordingly
[48]. Prophage region prediction was also conducted by
using the PHAST tool [49].

Genome properties

The genome summary and statistics are provided in
Tables 3 and 4, and Figure 2. The genome consists of 60
scaffolds in 5,146,656 bp total size with a GC content of
37.19%. A total of 19 scaffolds were successfully aligned
to a reference sequence, comprising 4,610,292 bp of se-
quence and are represented by the red and blue bars
within the outer ring of Figure 2. Of the 5,620 genes pre-
dicted, 5,209 were protein-coding genes and 207 RNAs
were identified. Genes assigned a putative function
comprised 57.37% of the protein-coding genes while the
remaining ones were annotated as hypothetical proteins.
The distribution of genes into COGs functional categor-
ies is presented in Table 5.

Table 3 Summary of genome

Label Size (bp) Topology INSDC identifier
Chromosomal scaffold 4,610,292  Circular KK037167.1
Extrachromosomal 536,364 Linear KK037168.1-KK037224.1
elements
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Table 4 Nucleotide content and gene count levels of the
genome

Attribute Value % of total®
Genome size (bp) 5,146,656 100.00
DNA GC content (bp) 1,913,947 37.19
DNA coding region (bp) 4,311,603 83.77
Number of replicons 1

Total genes 5,620 100
RNA genes 207 3.68
tRNA genes 180 3.20
Protein-coding genes 5,209 92.69
Genes in paralog clusters 151 269
Genes assigned to COGs 3701 65.85
1 or more conserved domains 2,520 4484
2 or more conserved domains 834 14.84
3 or more conserved domains 361 642
Genes with function prediction 3,224 5737
Genes assigned Pfam domains 3,995 71.09
Genes with signal peptides 459 8.17
Genes with transmembrane helices 1,140 20.28

CRISPR repeats 1

*The total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome.
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Insights into the genome

We propose a 19-supercontig chromosomal scaffold of
Lysinibacillus sphaericus CBAMS5 with 4.61 Mbp in length,
corresponding to a 99.4% of the reference chromosomal se-
quence. The remaining non-mapped or non-integrated
contigs were aligned to plasmid reference sequences, lead-
ing to no significant coverage levels (data not shown).
Then, we assigned those contigs as a set of potential extra-
chromosomal elements. Chromosomal comparison from
the PROmer analysis between L. sphaericus strains CBAM5
and C3-41 showed that most of the two chromosomes
mapped onto each other, revealing large segments of high
similarity (Figure 3). In contrast, the comparison between
the native strains L. sphaericus CBAM5 and OT4b.31 re-
vealed scattered regions across the dot-plot, corresponding
to low coverage levels and different synthenial arrange-
ments. Only variants with a phred-scaled quality and depth
coverage scores greater than 100 were considered valid for
the SNV analysis. We found 378 variants corresponding to
4531 effects being classified as follows: 170 insertions, 280
deletions, 2020 downstream effects, 182 frame shifts, 211
intergenic effects, 2 start losts, 2 stop losts and 2114 up-
stream effects. In addition, no transitions, transversions,
missense or silent effects were identified. As per most of
the variant effects, in comparison to the C3-41 strain, are
allocated upstream and downstream of the gene operons,
we suggest that L. sphaericus CBAM5 may enclose different
regulatory elements or non-coding sequences.
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Figure 2 Graphical map of the genome. From outside to the center: Ordered and oriented scaffolds assigned to chromosome in blue and red,
extrachromosomal scaffolds in orange and black, Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG
categories), RNA genes (tRNAs green, rRNAs gray), GC content and GC skew.
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Table 5 Number of genes associated with the 25 general
COG functional categories

Code Value % age® Description
J 190 365  Translation
A 1 0.02 RNA processing and modification
K 337 6.47 Transcription
L 193 371 Replication, recombination and repair
B 2 0.04  Chromatin structure and dynamics
D 39 0.75 Cell cycle control, mitosis and meiosis
\Y 66 1.27 Defense mechanisms
T 191 367 Signal transduction mechanisms
M 153 294 Cell wall/membrane biogénesis
N 79 1.52 Cell motility
u 23 044 Intracellular trafficking and secretion
(0] 116 223 Posttranslational modification, protein

turnover, chaperones
C 162 311 Energy production and conversién
G 154 296  Carbohydrate transport and metabolism
E 396 7.60 Amino acid transport and metabolism
F 111 213 Nucleotide transport and metabolism
H 167 321 Coenzyme transport and metabolism
| 141 2.71 Lipid transport and metabolism
P 222 4.26 Inorganic ion transport and metabolism
Q 37 0.71 Secondary metabolites biosynthesis,
transport and catabolism

R 480 9.21 General function prediction only
S 441 847 Function unknown
- 1508 2895 Not in COGs

*The total is based on the total number of protein coding genes in the
annotated genome.

Chromosome structure

The origin of replication of the chromosome of L. sphaeri-
cus CBAMS5 was estimated by similarities to several fea-
tures of the corresponding regions in L. sphaericus C3-41,
Bacillus sp. B-14905 and other close related bacteria, in-
cluding colocalization of the genes: dnaA, dnaN, dnaX,
recR and recF; and GC nucleotide skew [(G-C)/(G + C)]
analysis. In the contig 19 (EWH31640:EWH31645) we
found a typical cluster consisting of dnaA, dnaN, recE gyrA
and gyrB boxes. The predicted genes dnaB, dnal, dnaG,
dnaE, holA, holB, priAB, polA and recA were also found
spread in the chromosomal and extrachosmomal se-
quences. The replication termination site of the chromo-
somal scaffold is believed to be localized near 2.92 Mbp in
the contig 14. According to GC skew analysis, the coding
bias for the two strands of the chromosome is for the ma-
jority of CDSs to be on the outer strand from 0 to ~2.92
Mbp, and on the inner strand from ~2.92 Mbp to the end
of the chromosomal scaffold (contig 19, Figure 2). This
was also confirmed by the presence of parC (EWH32537)
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and parE (EWH32538), which encode the subunits of the
chromosome-partitioning enzyme topoisomerase IV. Simi-
lar to previous reports [50,51], we did not find the homo-
log of rtp (replication terminator protein-encoding gene) in
the chromosomal assembly of CBAMS5.

Mobile elements

Lysinibacillus sphaericus CBAMS5 displays 28 CDSs an-
notated as transposases, including three allocated in the
extrachromosomal sequences. The most frequent fam-
ilies are 1S1182, IS3 and IS4. In addition, four incom-
plete prophage regions were identified as follows:
Thermus phage @OH2 (contig 12), Burkholderia phage
ST79 (contig 14), and two regions comprising the Clos-
tridium phage ¢SM101 (contigs 14 and 28). Prophage
regions OH2 and ST79 included putative encoding se-
quences for tail, lysis and baseplate proteins. None of
the reported phages has been described in the Colom-
bian strain L. sphaericus OT4b.31 [50].

Larvicidal toxins

The genome of L. sphaericus CBAMS5 shows a wide reper-
toire of potential encoding sequences in terms of mosquito-
cidal toxins. In the contig 11, we found Mtx1 (EWH35097)
and Mtx2 (EWH35034) CDSs located in an identical cluster
as Hu et al. [51] described in the genome of L. sphaericus
C3-41. This cluster includes two insertion sequences, one
of them consisting of a disrupted transposase between the
mtxl and mitx2, as well. One Mtx3 CDSs (EWH32377) was
found in contig 14. Upstream of this sequence, we could
identify some IS3 family mobile elements and putative
DeoR family transcriptional regulators. In addition, we
found one hypothetical toxin from the family Mtx2 (PFam
PF03318) in contig 11 (EWH35106) and a putative cereo-
lysin O CDS (EWH31995) being described to be active
against the German cockroach Blattela germanica [52] in
contig 15.

The binary toxin genes binA (EWH32662) and binB
(EWH32663) of L. sphaericus CBAMS5, which are the
main source of its larvicidal activity [51], were found in
the contig 14 following a similar arrangement as the 35-
kb duplicate cluster of L. sphaericus C3-41 (Figure 4).
Nearby the binA and binB genes, we found a putative
Mtx2/3 toxin (EWH32665), two CDSs for phage inte-
grases in the 5’ start of the 35-kb fragment. L. sphaericus
CBAMS5 also share a germination gene cluster equivalent
to the B. anthracis plasmid pXO1l and the BinA/BinB
cluster of L. sphaericus C3-41, having a GerXB-KA-XC
gene cluster upstream of a transposase [51,53]. Comparing
the region comprised between the germination operon
and the binA-binB genes across the sequences of L.
sphaericus CBAM5, C3-41 and 2297, we found an equiva-
lent homology of putative transposases with different
length and disruption points. The strain CBAMS5 has two
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Lysinibacillus sphaericus CBAMS contigs

Lysinibacillus sphaericus C3-41 Lysinibacillus sphaericus OT4b.31

Figure 3 Dot-plots of amino-acid-based alignments of L. sphaericus CBAM5, C3-41 and OT4b.31. Dot-plot of amino-acid-based alignment
of a 461 Mbp chromosomal scaffold of L. sphaericus CBAMS5 (y-axis) to the chromosome of L. sphaericus C3-41 (left) and L. sphaericus OT4b.31
(right). Aligned segments are represented as dots or lines. Forward matches are plotted in green, reverse matches in red. Figure generated by
PROmer [41].

mobile elements of 459 and 312 bp in length, which is  additional BinA-B CDS sequences in the genome of L.
similar to strains 2297 and CBAMS5 showing a probable  sphaericus CBAMS5, we suggest further research to con-
transposase pseudogene with 1,110 bp and 591 bp in firm the participation of phage infections on the evolution
length, respectively (Figure 4). As a final remark, in the 3  of larvicidal toxins in the strain CBAMS5.

end of the 35-kb fragment we found an incomplete encod-

ing sequence for -carotene 15,15-monooxygenase prob-  Surface (S) layer proteins and toxic metal resistances

ably disrupted by a mobile element (depicted with a red L. sphaericus CBAMS5 exhibits 21 CDSs described as sur-
box in Figure 4). Hu et al. [51] hypothesized that the con-  face (S) layer proteins or S-layer homologs in its genome.
served 35-kb sequence, including the BinA, BinB, and the = The fragment covered from EWH35069 to EWH35072 in-
two phage integrase family proteins, are probably unique cludes four CDSs encoding for a variable protein, a puta-
to the taxonomic L. sphaericus group 1 (formerly known  tive S-layer associated protein, a P60 invasion-associated
as group IIA) being the remnant of a potential phage protein and a N-acetylmuramoyl-L-alanine amidase. Prob-
infection. Even though we cannot confirm the presence of  ably the genes located in this fragment may participate in
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Figure 4 Mosquitocidal binary toxin gene clusters of L. sphaericus strains CBAM5, C3-41 and 2297. Binary toxin BinA and BinB, Mtx2/3
homolog, CDSs for a phage integrase family protein, the GerXB-KA-XC operon, a ribonuclease, a putative peptide synthase, and a chitin-binding
protein, hypothetical proteins (blue arrows) and transposases (gray arrows) are indicated. A 1554 bp insertion is located between the GerXB-KA-XC
operon and BinA-B coding sequences. A disrupted CDS (red box) includes a mobile element and a hypothetical protein.
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the larvicidal activity of the strain CBAMS5, given that the
same genes have been described as differentially expressed
in virulent infections of Lysteria monocytogenes [54]. A
total of 14 CDSs show three SLHs motifs near to the N
terminal region, similarly to the slpC gene previously de-
scribed in native strains [5]. In addition, we found two S-
layer surface array proteins in the chromosomal scaffold
and another in extracromosomal sequences.

A total of 64 CDSs corresponded to encoding sequences
involved in responses against toxic metal(oid)s. Among
those coding sequences, we found the following operons:
arsRBCDA, arsRBC, cadCA, mntABCD, nikABCDE, terD-
terD-terD, zurR-znuBC, and czrA-czcD-csoR-copZA. We
could identify various genes probably involved in metal
(loid) resistances spread across the genome (Additional
file 4: Table S2). The chrA gene seems to be the only
representative of the chr operon in the genome of L.
sphaericus CBAMS5. Previous reports have shown that
microorganisms bearing c¢srA homologues display highly
variable resistance levels against Cr(VI) [55]. However,
two superoxide dismutase putative proteins (EWH33050,
EWH30224) and several CDS ascribed as flavin reductases
(EC 1.5.1.29), nitroreductases (EC 1.5.1.34) and quinone
reductases (EC 1.1.5.4) could cooperate in the Cr(VI) re-
sistance, in agreement with previous reports [55,56].

Given the heavy metal resistance of L. sphaericus
CBAMS5 in polluted environments, and supported by the
identification of genes in Additional file 4: Table S2, we
could expect the assistance of efflux pump systems and
heavy-metal resistance proteins specific to As, Sb, Ni,
Zn, Cu, Cd, Te, Cr, Mn and Co. By the evaluation of co-
alescent models, Villegas-Torres et al. [10] proposed that
L. sphaericus CBAM5 may have acquired the arsC gene
through recent events of horizontal gene transfer as a
possible adaptation to polluted environments. However,
we found highly similar homologues of heavy metal
resistance proteins of the CBAMS5 strain in microorgan-
isms isolated from non-polluted environments (i.e. czrA-
czeD-csoR-copZA, cadCA, and arsRBC in L sphaericus
OT4B.31 [50]). Further analysis on plasmids, prophage
content, or conjugation factors may clarify the origin of
resistance (as well as larvicidal) genes. Finally, based in
the KEGG analysis, some predicted proteins might partici-
pate in peripheral pathways for the degradation of geraniol,
chlorocyclohexane, chlorobenzene, benzoate, bisphenol,
fluorobenzoate, toluene, chloroalkane, chloroalkene, naph-
thalene, aminobenzoate, styrene, atrazine, limonene and
pinene.

Conclusions

Lysinibacillus sphaericus CBAM5 was isolated from dril-
ling mineral base oil samples at the subsurface soil level.
By comparing the chromosomal sequences between L.
sphaericus strains CBAM5 and C3-41, we identified
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distinctive similarities of the DNA homology group IIA.
The evidence of the binary toxins allocated in a con-
served cluster delimited by mobile elements, resembles a
probable phage invasion in the DNA subgroup IIA of
the Lysinibacillus sphaericus species. Along with the bio-
logical control potential given by the Mtx, Bin and cero-
lysin toxins, L. sphaericus CBAMS5 displays encoding
sequences for S-layer proteins and heavy-metal efflux
pumps, which may confer resistance to As, Sb, Ni, Zn,
Cu, Cd, Te, Cr, Mn and Co in polluted environments.

Additional files

Additional file 1: Table S1. Associated record according to the MIGS
recommendations.

Additional file 2: Figure S1. Light microscopy of Lysinibacillus
sphaericus CBAMS5 growth in acetate broth. (A) Gram staining of
vegetative cells after 6 hours of growth. (B) Schaeffer-Fulton staining of
sporulating culture after 24 hours of growth.

Additional file 3: Figure S2. Scanning electron micrograph of
Lysinibacillus sphaericus CBAMS. The micrograph was obtained on a JEOL
JSM-5800LV (Japan) scanning electron microscope at an operating
voltage of 20 kV and 10000x magnifications.

Additional file 4: Table S2. Genes possibly involved in metal(loid)

resistances identified in the genome sequence of Lysinibacillus sphaericus
CBAMS.
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