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Abstract

Background: Cis-acting elements are essential genomic sequences that control gene expression. In higher
eukaryotes, a series of cis-elements function cooperatively. However, further studies are required to examine the
co-regulation of multiple cis-elements on a promoter. The aim of this study was to propose a model of cis-element
networks that cooperatively regulate gene expression in rice under iron (Fe) deficiency.

Results: We developed a novel clustering-free method, microarray-associated motif analyzer (MAMA), to predict
novel cis-acting elements based on weighted sequence similarities and gene expression profiles in microarray
analyses. Simulation of gene expression was performed using a support vector machine and based on the presence
of predicted motifs and motif pairs. The accuracy of simulated gene expression was used to evaluate the quality of
prediction and to optimize the parameters used in this method. Based on sequences of Oryza sativa genes
upregulated by Fe deficiency, MAMA returned experimentally identified cis-elements responsible for Fe deficiency
in O. sativa. When this method was applied to O. sativa subjected to zinc deficiency and Arabidopsis thaliana
subjected to salt stress, several novel candidate cis-acting elements that overlap with known cis-acting elements,
such as ZDRE, ABRE, and DRE, were identified. After optimization, MAMA accurately simulated more than 87% of
gene expression. Predicted motifs strongly co-localized in the upstream regions of regulated genes and sequences
around transcription start sites. Furthermore, in many cases, the separation (in bp) between co-localized motifs was
conserved, suggesting that predicted motifs and the separation between them were important in the co-regulation
of gene expression.

Conclusions: Our results are suggestive of a typical sequence model for Fe deficiency-responsive promoters and

Keywords: Cis-element; Iron deficiency; Transcription

some strong candidate cis-elements that function cooperatively with known cis-elements.

Background

Gene expression is regulated by various factors, includ-
ing transcription factors (TFs), cis-acting elements, co-
factors, and chromatin structure, and by processes such
as methylation and acetylation. Many cis-acting elements
essential for the regulation of gene expression have been
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identified, mostly upstream of transcribed sequences.
Many reports have described transcription factors regu-
lating gene expression by functionally coordinating with
cis-elements (Raff and Kaufman 1991; Wilkins 1991;
Gerhart and Kirschner 1997; Carroll et al. 2001) and
binding to specific sites (Levine and Tjian 2003).

For more than 10 years, during which time a variety of
genomes have been fully sequenced, much effort has
been devoted to the development of in silico methods
for predicting novel cis-acting sequences or motifs in pro-
karyotes and eukaryotes. These methods are categorized
into two general groups (Hudson and Quail 2003; van
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Hijum et al. 2009): alignment (probabilistic) methods, such
as MEME (Bailey and Elkan 1994), DMBP (Huang et al.
2005), AlignACE (Hughes et al. 2000), and Motif Sampler
(Thijs et al. 2001), and enumerative methods (Hudson and
Quail 2003; van Hijum et al. 2009). In prokaryotes,
noncoding regions are typically short, and cis-elements are
highly accumulated (Gama-Castro et al. 2008). Thus,
existing methods can often correctly predict cis-elements in
prokaryotes. In contrast, in eukaryotic genomes (especially
higher eukaryotes such as humans and rice) the noncoding
regions are much longer, which is believed to be one main
reason as to why prediction in higher eukaryotes is more
difficult. Additionally, many cis-elements co-localize in the
long upstream sequences and cooperate in the regulation
of gene transcription (Carrera and Treisman 2008).
Vandenbon et al. (2012) reported that some cis-elements
co-localize significantly in the fly genome; of these identi-
fied, they experimentally validated the co-regulation of a
pair of binding sites within NF-kB and C/EBP. Therefore,
predicting a series of cis-elements that function coopera-
tively has become increasingly important to understand
transcriptional regulation in higher eukaryotes.

Alignment methods are designed to find commonal-
ities in a group of upstream sequences, primarily by
aligning similar sequences and creating a probabilistic
model, such as a position—weight matrix. Alignment
methods are often impaired by “false predictions” caused
by the ubiquitously present short sequences throughout
the genome. For example, A/T-repeats (e.g., AAAAAA)
are often predicted. Such A/T-repeat sequences are
known to be common in intergenic regions, although
they are not known to be included in transcription.
In enumerative methods, numbers of all the small se-
quences in a group of upstream sequences are counted
and compared with those in a background group. They
usually do not evaluate sequence similarity, although
many cis-acting sequences are reportedly quite fuzzy
(Collado-Vides et al. 1991). Clustering (i.e., grouping of
similarly expressed genes) plays a key role in the predic-
tion of cis-motif elements in both alignment and enu-
merative methods. However, clustering genes is difficult.
For example, clustered genes do not always share the
same cis-elements, and selection of the best thresholds
in clustering is a difficult issue (Kundaje et al. 2007).
Some clustering-free methods are available: REDUCE
(Bussemaker et al. 2007) and a method by S.-Y. Kim and
Kim (2006) use genome-wide gene expression as input
without clustering. However, REDUCE is not applicable
to plants, and the method by Kim and Kim (2006) is not
designed to predict novel cis-motif elements.

The regulatory mechanisms of iron (Fe) deficiency-
inducible genes were explored using molecular bio-
logical and plant physiological approaches in rice. We
reported that Fe deficiency-responsive element 1
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(IDE1: ATCAAGCATGCTTCTTGC) and IDE2 (TTG
AACGGCAAGTTTCACGCTGTCACT) were critical
cis-elements for several genes upregulated by Fe defi-
ciency (Kobayashi et al. 2003). We also identified the
transcription factors that associate with IDE1 and
IDE2 (IDEF1, IDEF2; Kobayashi et al. 2007; Ogo et al.
2008). Furthermore, one of the Fe deficiency-inducible
transcription factors, OsIRO2, was analyzed, and its
binding sequence was investigated (Ogo et al. 2007).
The TF-binding sequences (TFBSs) of these TFs are found
in only 20-60% of genes regulated under Fe deficiency
(Kobayashi et al. 2009), suggesting that novel cis-elements
remain to be discovered. IDEF1 function as a master regu-
lator in rice under iron deficiency. Therefore to find the
other cis-elements function cooperatively with IDEF1-
binding sequence is especially important.

To identify novel cis-acting motifs in Fe deficiency-
induced genes in rice, we applied existing motif
prediction methods, that is, MEME (Bailey and Elkan
1994), Motif Sampler (Thijs et al. 2001), and SIFT
(Hudson and Quail 2003), to some different number of
genes upregulated by Fe deficiency (results with the top
50 genes are shown in Additional file 1 online). How-
ever, transcription factor-binding sequences (i.e., IDEF1,
IDEF2, and OsIRO2) were predicted after dozens of
sequences were predicted as “more likely to be cis-
elements” (according to their Higher Highest II, lower
E-value, and P-values). These methods are designed to
identify commonly shared cis-motifs from clustered
genes. Under iron-deficient condition, OsIRO2 is regu-
lated by IDEF1 (Kobayashi et al. 2009) and OsIRO2
regulates the expression of some other TFs (Ogo et al.
2007). Therefore, it was expected that this regulatory
cascade of TFs makes it difficult to make a cluster of
genes sharing common cis-elements. Iron-deficiency regu-
lated genes may not have highly common cis-elements but
they should have one of the binding sequences of IDEF1,
IDEF2, OsIRO2 and other TFs regulated by OsIRO2.
This failure motivated us to develop a novel prediction
method able to extract functional cis-acting elements
without clustering.

To effectively predict cis-motifs in eukaryotes, we de-
veloped a novel in silico method, which we named
microarray-associated motif analyzer (MAMA). This
method generates an ab initio prediction of cis-elements,
which are independent from the predictions by existing
methods. We attempted to evaluate the frequency of se-
quences that specifically exist in upregulated genes, the
degree of mismatch and identity, and degree of gene
expression without clustering using a MAMA score
(Additional file 2). MAMA was applied to the micro-
array data in rice subjected to Fe deficiency, and the
accumulation of motif pairs was also evaluated using
this method. We found that the distribution and co-
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localization of predicted motifs are often conserved in  similar to each other are aligned and grouped into mo-
the promoter region of treatment-regulated genes. tifs. Subsequently, the presence of predicted motifs is in-
MAMA was also applied to other microarray data of rice  vestigated on sequences of all genes, and their presence
subjected to Zn-deficiency treatment and Arabidopsis and absence is used for gene expression simulation, in

thaliana subjected to NaCl. which all gene expression and sequence data are ran-

domly divided into two. One is used for the construction
Results and discussion of a model used to simulate transcription regulation
Development of the MAMA method and its application to  based on the presence of motifs and motif pairs, while
O. sativa the other is used to evaluate the accuracy of the model.

The main flowchart of this MAMA method is shown in  The accuracy of the simulation model was used to
Figure 1. This method predicts cis-acting motifs based optimize the parameters used in MAMA (Figure 1,
on a MAMA score calculated from similarities in se- Methods). Initially, the 500 bp immediately upstream
quence and gene expression profiles in microarray ana-  of transcription start sites (TSSs) was used for ana-
lyses (Methods, Additional file 2). Since most TFBSs lyses. TFBS, IDEF1, and similar sequences are com-
reported are less than 8 bp in length, this method ini- monly found 500 bp immediately upstream of the TSS
tially lists every 8-bp sequence upstream of regulated (Kobayashi et al. 2009).

genes as candidate sequences. Subsequently, all candi- We applied MAMA to microarray data of rice roots
date sequences are compared with each upstream se- under Fe-deficient and -sufficient conditions to predict cis-
quence of all genes to identify the most similar sequence  elements responsive to Fe deficiency. The top 30 high-
in each upstream sequence. These similarities are calcu-  scoring motifs are shown in Table 1. The CATGCATG
lated as /_scores. The enrichment of similar sequences  motif, which contains an IDEF1-binding sequence
in treatment-regulated genes was evaluated as MAMA  (CATGC), was predicted with the fourth highest
scores of the candidate sequences. If part of the candi- MAMA score (Table 1). We named this motif IDEF1-
date sequence is frequently observed in highly regulated  binding sequence-containing motif (IDEF1BS). Grouped
genes, the MAMA score will increase. Overrepresented  sequences included in IDEF1BS were aligned and
candidate sequences that attained a high score and are converted into a logo (Figure 2A). IDEFIBS was
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Table 1 Motifs predicted by MAMA using microarray data
from iron-deficient and -sufficient rice roots

Motif name Score P-value* Annotations
ACGTACGT 1.881 3.03E-34 FAM1 motif
AGCTAGCT 1.880 2.73E-51 DCEp1 motif
CTATATAT 1.872 <1.0E-300 TATA-box motif
CATGCATG 1.867 <1.0E-300 IDEF1BS motif
CTAGCAGA 1.865 845E-13

CGCCACGT 1.862 6.57E-23 0OsIRO2BS motif
AGTCAACT 1.860 7.54E-19

TGATCAAC 1.854 1.20E-13

ACTACGTA 1.853 1.21E-09

GCATGCTG 1.850 2.80E-10 Motif containing

IDEF1 binding sequence

CAAGAATC 1.848 1.63E-09 IDEF2BS motif
CGCCTATA 1.845 1.34E-09 BRE'-TATA motif 1
TAGCTGCA 1.845 2.10E-06

TGGCGACA 1.843 1.88E-17

GCGCGCTA 1.843 4.18E-12

TAGCAAGT 1.842 8.53E-14

ACTGTAGC 1.838 2.22E-07

GTAGTACG 1.837 1.08E-04

ATGGCCAT 1.837 143E-13

CCTGAAGA 1.837 4.04E-04

GAACGTGT 1.836 1.06E-07

CATCAGCA 1.835 8.28E-12

TCGACGTG 1.834 2.34E-04

ATTAAGCG 1.833 343E-06

CTGGCACT 1.833 3.33E-04

TACTAGTA 1.831 3.89E-05

GCATATGC 1.83 3.16E-05

GTGACGTC 1.829 2.36E-03

AATACTCT 1.828 1.18E-07

* P-values were calculated using a binominal test. Using 500 bp of upstream
sequence from the TSS, the number of motifs in regulated genes and the
number of every 8-bp sequence in regulated genes were compared from the
number of motifs in all genes and the number of every 8-bp sequence in all
genes. This P-value was not used to predict cis-acting motifs. These numbers
used to calculate P-values and annotations using PLACE and TRANSFAC are
shown in Additional file 3.

included in 45% of upstream sequences of genes whose
expressions were increased over fivefold by Fe defi-
ciency. This consists with a previous report that the
binding sequence of IDEF1 exists about 20-60% of iron-
regulated genes (Kobayashi et al. 2009). In contrast, it
was included in only 35% of upstream sequences of
genes whose expression did not change (>0.66—1.5-fold;
Figure 2B). Furthermore, IDEF1BS was found most fre-
quently 500 bp upstream from the TSSs of genes that
were induced more than twofold by Fe deficiency,
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whereas IDEFIBS was not common within 500 bp up-
stream of the TSSs of all genes (Figure 2C). The
CGCCACGT motif, which contains the OsIRO2-binding
sequence (CACGTGG) and was named OsIRO2-binding
sequence-containing motif (OsIRO2BS), attained the sixth
highest MAMA score. The CAAGAATC motif, which con-
tains the IDEF2-binding sequence (CA[A/C]G[T/C][T/C/
A][T/C/A]) and was named IDEF2-binding sequence-
containing motif (IDEF2BS), had the eleventh highest
MAMA score (Table 1, Additional file 3 online). OsSIRO2BS
and IDEF2BS were also specifically overrepresented in genes
upregulated by Fe deficiency, and they were observed fre-
quently within 500 bp upstream of TSSs (Additional file 4
online).

The CTATATAT motif recorded the third highest
MAMA score (Table 1, Figure 2D) and was named the
TATA-box motif. The TATA-box motif existed most
frequently within 50 bp upstream of TSSs of genes
that were induced more than twofold by Fe deficiency
(Figure 2E, F). The TATA-box motif was also common
upstream of genes whose expression was decreased less
than 0.5-fold (Figure 2E). Several novel motifs that
have not been reported to be related to Fe-deficiency re-
sponses were found to have high MAMA scores
(Table 1). In particular, the ACGTACGT motif was pre-
dicted with the highest MAMA score (Table 1). We
named this motif Fe deficiency-associated motif 1
(FAM1). FAM1 was frequently found within 500 bp up-
stream of TSSs of genes upregulated by Fe deficiency
(Additional file 4 I online).

Motifs immediately downstream of TSSs

Among the predicted motifs (Table 1), AGCTAGCT was
strongly conserved immediately downstream of TSSs
(Figure 2G-I). To accurately predict cis-motifs, MAMA
was also applied to this region from 50 bp upstream to
150 bp downstream of the TSSs to identify common mo-
tifs. The TATA-box motif recorded the highest MAMA
score, but it was overrepresented only upstream of TSSs
(Table 2, Additional file 5 online). The AGCTAGCT
motif recorded the second highest MAMA score
(Table 2). We named this motif putative downstream
core element 1 (DCEpl). We found that the sequences
CGCC and GCC were often attached to a TATA-box se-
quence upstream of Fe deficiency-upregulated genes.
The CGCCTATA (Table 1) and GCCTATAA (Table 2)
motifs recorded the thirteenth and sixth highest MAMA
scores, respectively. TFIIB-recognition elements (BREs)
are known to attach to the TATA box in yeast (Deng
and Roberts 2006). One of these, upstream BRE (BREY;
C[C/G][C/G]GCC), was similar to the CGCC and GCC
attached to TATA-box sequences. We named these
motifs BREV-TATA motif 1 and BREV-TATA motif 2,
respectively (Tables 1, 2).
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Figure 2 Characterization of motifs predicted using data from rice roots subjected to iron (Fe) deficiency. A, Logo represents aligned
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Cover ratio (CR) of the IDEF1BS motif in the 500-bp upstream regions. C, Distribution of the IDEF1BS motif. Numbers of IDEF1BS motifs were
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upregulated (N(UP) =895) or all genes (N=31,348); next, the frequency was normalized by the average frequency of all genes from 3,000 bp
upstream to 2,000 bp downstream of the TSS. D, Logo of the CTATATAT motif (TATA-box moitif). E, Cover ratio of the TATA-box motif. F,
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Co-localization of predicted motifs in upregulated genes

Some combinations of MAMA-predicted motifs displayed
strong co-localization in a region 500 bp upstream to
150 bp downstream of TSSs (Additional file 6) and showed
unique patterns of separation (in bp). Among the rice genes
upregulated by Fe deficiency, 52% of sequences containing
DCEp1 motifs also contained an IDEF1BS motif, although
only 43% of sequences without a DCEpl contained an
IDEF1BS (Figure 3A). In genes not upregulated by Fe
deficiency, 42% and 33% of sequences with and without
a DCEpl motif, respectively, contained an IDEF1BS.
Upregulated genes that contained a DCEp1 motif possessed
IDEF1BS significantly more often than non-upregulated
genes (x> test; P<0.01). In genes upregulated by Fe defi-
ciency with a DCEpl motif, IDEF1BS motifs occurred at a
high frequency upstream of the DCEpl motif (Figure 3B).
Moreover, they were most commonly noted at approxi-
mately +50 bp relative to the DCEpl motif, 150 and 250
upstream of the DCEpl motif (Figure 3B). The BRE'-
TATA motif 1 also significantly co-localized with the
IDEF1BS (P <0.01; Figure 3C) and the DCEpl (P<0.01;
Figure 3E) motifs in upregulated genes. IDEF1BS motifs

were specifically overrepresented at around 50, 200, and
350 bp upstream of the BREY-TATA motif 1 in upregulated
genes (Figure 3D). Elsewhere, DCEpl motifs were most
commonly observed approximately 80 bp downstream of
BREV-TATA motif 1 (Figure 3F). TATA-box motifs and
DCEp1 co-localized in 52% of sequences around the TSS of
genes upregulated more than twofold (Figure 3G), but in
only 27% of genes whose induction was less than 1.5-fold.
DCEp1 motifs were specifically overrepresented at approxi-
mately 80, 220, and 400 bp upstream of the TATA-box
motif 1 in upregulated genes (Figure 3H).

MAMA successfully returned known cis-elements from
rice roots subjected to zinc deficiency

To investigate whether MAMA can predict cis-elements
in other microarray data, we applied it to microarray
data from rice root subjected to zinc (Zn) deficiency
(Suzuki et al. 2012). The motif contained the last 8 bp of a
Zn-deficiency response element (ZDRE; ATGTCGACA);
a cis-element responsive for Zn deficiency (Assuncdo
et al. 2010) yielded the thirteenth highest MAMA score
(Figure 4A, Additional file 7 online). Motifs including
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Table 2 Motifs predicted from a region 50 bp upstream
to 150 bp downstream of TSS

Motif name Sscore P -value* Annotations
CTATATAT 2.08 1.03E-69 TATA-box motif
AGCTAGCT 2.05 1.71E-86 DCEp1 motif
TATAAGTA 2.00 3.56E-05
CTTAATTA 1.99 3.68E-25
TGATCATG 1.99 257E-12
GCCTATAA 1.97 9.44E-08 BREY-TATA motif 2
TATACACA 1.96 347E-15
TATAAAAG 1.95 1.19E-05
TAACTAGT 1.95 4.19E-10
GTCCTGTA 1.95 2.09E-08
CAACTATA 1.95 2.56E-07
CACTTAGT 1.94 6.14E-06
ACTGAAGT 1.93 6.06E-05
CATCAAGC 1.93 222E-08
GTACTACG 1.93 1.74E-07
ACATACCA 1.93 7.81E-09
AGTTGCAG 193 1.93E-11
GTACGTTC 1.93 7.25E-10
GCTATAGC 1.92 3.32E-08
CTAAGCTA 1.92 2.17E-09

* P-values were calculated using a binominal test. Using 500 bp of upstream
sequence from the TSS, the number of motifs in regulated genes and the
number of every 8-bp sequence in regulated genes were compared from the
number of motifs in all genes and the number of every 8-bp sequence in all
genes. This P-value was not used to predict cis-acting motifs. These numbers
used to calculate P-values and annotations using PLACE and TRANSFAC are
shown in Additional file 5.

ZDRE were found at particularly high frequencies within
500 bp upstream of the TSSs of more than fivefold
upregulated genes (Figure 4D, Q).

MAMA successfully returned known cis-elements in

A. thaliana

To investigate whether MAMA can predict cis-elements
in other plants, we also applied it to A. thaliana
microarrays. In microarray data generated from A.
thaliana subjected to NaCl stress (Dinneny et al. 2008),
the motif containing an abscisic acid (ABA)-responsive
element (ABRE; ACGTG[G/T]C), which is a cis-element
responsive for ABA, dehydration, low temperature, and
high salinity (Narusaka et al. 2003), yielded the highest
MAMA score (Figure 4B, Additional file 8 online).
The motif containing a dehydration-responsive element
(DRE; [A/G]CCGAC), which is involved in dehydration-
and high salinity-responsive gene expression (Narusaka
et al. 2003), recorded the sixth highest MAMA score
(Additional file 8 online). Motifs including ZDRE, ABRE,
and DRE consensus sequences were found at particularly
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high frequencies within 500 bp upstream of the TSSs of
over twofold upregulated genes (Figure 4E, F, H, I).

Accuracy of the MAMA method

To evaluate how strongly these predicted motifs “ex-
plain” the regulation of transcription, we applied a
machine-learning algorithm to simulate gene expression
(Zou et al. 2011). This algorithm builds an expression-
simulation model and classifies genes as putatively
inducible and non-inducible based on the presence of cis-
elements. Putative inducible genes were compared with
genes upregulated more than twofold on a microarray to
check their accuracy. Motifs predicted by MAMA, Motif
Sampler, MEME, and SIFT from the top 50 genes
upregulated by Fe deficiency using default settings, and the
binding sequences of IDEF1, IDEF2, and OsIRO2 were
used as putative and known cis-elements, respectively. The
ratio of putative inducible to upregulated genes was
assigned the “true positive rate,” and the ratio of non-
upregulated to putative inducible genes was the “false posi-
tive rate” in a receiver operating characteristic (ROC) curve
(Figure 5A). The area under the curve ROC (AUC-ROC)
was used to check the accuracy of the model and
optimization parameters (Methods).

A transcription-simulation model built on the motifs
predicted by MAMA showed the best performance
(Figure 5A). Additionally, the best simulation model was
improved when motifs predicted from sequences 50 bp
upstream and 150 bp downstream of TSSs (near TSS) by
MAMA were added to the motifs predicted in sequences
500 bp upstream of TSSs (upstream; Figure 5B). Further-
more, the best simulation model improved further when
motif pairs predicted from sequences upstream and near
the TSS that were enriched upstream and near the TSS
of regulated genes were added (Figure 5B). When ran-
domly selected gene sets were applied to this algorithm
10 times, the AUC-ROC of MAMA was significantly
higher than that of the other methods (Figure 5C). The
AUC-ROC improved significantly when the model was
built on motifs predicted from both the upstream se-
quence and sequences around TSSs (Figure 5D; + near
TSS). When the presence of several motif pairs was
added, the AUC-ROC tended to improve (Figure 5D; ++
pairs). When 100 motif pairs were added, the AUC-ROC
was significantly impaired (Additional file 9).

After optimization, the number of genes accurately
categorized was 87.9% from microarray data on O. sativa
subjected to Fe deficiency (13,779.4 genes were accurate
on an average of five tests; the number of genes used in
test data was 15,676), 97.2% from microarray data on O.
sativa subjected to Zn deficiency (14,357.2; 14,769), and
93.3% from microarray data on A. thaliana subjected to
NacCl stress (9,691.6; 10,385).
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Figure 3 Separations (in bp) between motifs extracted by MAMA. A, Cover ratio of the IDEF1BS motif with (CRIDEF1BS|DCEp1|UP), CR
(IDEF1BS|DCEp1|!UP)) and without the DCEp1 motif (CRIDEF1BS|'DCEp1|UP), CRIDEF1BS|'DCEp1[!UP)). B, Separations between the IDEF1BS and
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MAMA successfully predicted the functional cis-motifs

Motifs predicted by MAMA from microarray data of O.
sativa subjected to Fe deficiency explained more than
87% of the transcription regulation accurately. Of the top
11 motifs extracted, four overlapped with cis-elements
that were experimentally identified previously, such as
IDEF1BS, OsIRO2BS, and IDEF2BS (Kobayashi et al.
2007; Ogo et al. 2007, 2008). The IDEF1BS motif was
found at a high frequency in Fe deficiency-upregulated
genes (Figure 2B). Moreover, it frequently occurred
between 50 and 400 bp upstream of the TSSs of Fe
deficiency-inducible genes but not in the gene population
as a whole (Figure 2C). OsIRO2BS and IDEF2BS were also
predicted with high MAMA scores (Table 1). These motifs

were specifically overrepresented between 50 and 500 bp
upstream of the TSSs of regulated genes (Additional file 6
online). These data demonstrate that MAMA successfully
predicted functional cis-elements. Furthermore, MAMA
successfully predicted ZDRE, ABRE, and DRE using O.
sativa and A. thaliana microarray data (Additional file 7
and 8 online; Figure 5). These results suggest that MAMA
can predict functional cis-elements involved in various
kinds of stress responses not only in rice but also in
other plants.

In addition to known cis-elements, MAMA predicted
some novel motifs as strong candidate cis-elements that
have not been reported before. Using the microarray
data of rice under Fe-deficiency stress, FAM1 was
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Figure 4 Predicted motifs from other microarrays. A, The TGGCGACA motif (containing a ZDRE) attained the highest MAMA score when
microarray data generated from rice roots subjected to zinc deficiency were analyzed. B, The CACGTGTC motif (containing the ABRE consensus)
attained the highest MAMA score when microarray data generated from Arabidopsis roots subjected to NaCl stress were analyzed. C, The
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subjected to NaCl stress were analyzed. D, Cover ratios of the TGGCGACA motif. E, Cover ratios of the CACGTGTC motif. F, Cover ratios of the
CGACCGAC motif. G, Distribution of the TGGCGACA motif (upregulated genes, 223; all genes, 29,535). H, Distribution of the ACACGTGT motif

(upregulated genes, 335; all genes, 20,767). 1, Distribution of the CGACCGAC motif.

returned with the highest MAMA score (Table 1).
FAMI1 was specifically overrepresented between 50 and
500 bp upstream of the TSSs of regulated genes, as is
the case with other known cis-elements (Additional
file 4 online; Table 1). Therefore, FAM1 is likely a functional
cis-element of rice under Fe-deficiency stress. Generally,
deletion of an essential cis-element resulted in an almost
complete absence of response, whereas deletion of other
parts of promoters merely lowered promoter activity
(Guiltinan et al. 1990; Tong et al. 2006; Kobayashi et al.
2007). This is suggestive of the existence of important
cis-elements, other than those reported to be essential,
within promoters. Novel cis-elements predicted by MAMA
may coordinate with known cis-elements to improve
transcription.

MAMA predicted cis-motifs involved in the basal
transcriptional machinery

The TATA-box motif recorded the third highest MAMA
score (Table 1, Figure 2D) and was the most common

motif within 50 bp upstream of TSSs. This is consistent
with the characteristics of the TATA box (Burley and
Roeder 1996). This localization was more common in
genes upregulated by Fe deficiency than in the overall
gene population (Figure 2F). TATA-box motifs also
frequently exist upstream of genes downregulated by Fe
deficiency (Figure 4E). A genome-wide analysis in yeast
revealed that stress-response genes typically possess a
TATA box in their promoters, whereas housekeeping
gene promoters often lack this motif (Basehoar et al
2004). Similar accumulation of the TATA box has been
observed in plants (Yamamoto et al. 2011). A TATA box
is a core element of the basal transcriptional machinery
that regulates genes in conjunction with other cis-elements
(Sadhale et al. 2007). Consistent with these reports,
our data demonstrated that TATA-box motifs affect
the response to Fe deficiency in rice by collaborating
with Fe deficiency-specific transcription factors.
Downstream core elements (DCEs) were reported in
yeast and mammalians downstream of TSSs, and are
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Figure 5 Performance of transcription-prediction models built for predicted motifs. A, Models generated by motifs predicted by MAMA,
existing methods, or known cis-elements of the upregulation of transcription in rice roots under iron deficiency. The best model of each method
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known to collaborate with the TATA box (Sadhale et al.
2007). Some TATA box-binding protein (TBP)-associ-
ated factors (TAFs) bind to DCEs (Sadhale et al. 2007).
Our results showed that the DCEpl (Figure 2H) motif
was commonly found immediately downstream of TSSs
of Fe deficiency-inducible genes. Also, the DCEpl motif
was highly co-localized with the TATA-box motif of
genes upregulated by Fe deficiency (Figure 3G, H). Thus,
we suggest that a unit of the basic transcription machin-
ery, including a TATA-box motif and DCEpl motifs,
functions in the transcriptional regulation of rice under
Fe-deficiency stress.

Co-localization of cis-motifs predicted by MAMA

Notably, the TATA-box, BREV-TATA motif 1, DCEpl,
and IDEF1BS motifs strongly co-localized in regions
upstream of Fe deficiency-inducible genes, and the
separation (in bp) between them was conserved
(Figure 3). IDEF1BS motifs and BREV-TATA motif 1
were frequently co-localized with a separation of 50 bp

(Figure 3D), suggesting that the transcription factors
binding to IDEF1BS and BREY-TATA motif 1 may
interact. Additionally, when the separation (in bp)
of motif pairs was plotted with the frequency (i.e.,
Figure 3B, D, F, H), the frequency often showed several
peaks, and the separation (in bp) between these peaks was
commonly around 150, 300, and 450 bp (Figure 3D, H).
Peaks with a separation of 150 bp have been observed
in many other co-localized motifs predicted from rice
microarrays under Zn deficiency and from salt-stressed
A. thaliana microarrays (Additional file 10 online).
Nucleosome core particles contain approximately 150 bp
of DNA (Davey et al. 2002). Moyle-Heyrman et al. (2011)
reported collaborative competition between transcrip-
tion factors and the nucleosome. Therefore, these 150-
and 300-bp separations of co-localized motifs may
indicate either collaborative or competitive binding
of transcription factors and histone. Transcription
factors may bind to the interspace of DNA coiled
by histone.
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Motif pairs improved the AUC-ROC in transcription
simulation, but the difference from that without motif
pairs was not significant. The motif pairs with lower
P-values tended to improve, and those with higher P-
values tended to impair the AUC-ROC (Additional file 9).
Of the motif pairs with lower P-values, some improved
while others impaired the AUC-ROC. Therefore, we
suggest the Nmp (number of motif pairs used) with the
highest AoAR (average of AUC-ROC) as a number of
highly possible candidates of motif pairs that co-regulate
transcription. In addition, we suggest that Nmp does not
impair the AoAR as a number of possible candidates of
motif pairs that co-regulate transcription.

Parameter optimization

In parameters power v (controls the sensitivity for se-
quence similarity), power T (controls the sensitivity for
gene expression ratio), and number of motif pairs N,
the change in v was affected the most (Methods:
Comparison of the effect of parameters), whereas T was
affected second and N,,, was affected last. Therefore,
using this method, the parameters were adjusted in this
order (Methods: Optimization of parameters). We also
evaluated the effect of highest_r_score, the highest limit
for the r_score (5, 10, 50, 100), and the threshold (1.5, 2,
3), to classify upregulated and non-upregulated genes.
However, the degrees of their effects were largely
different and depended on which microarray data were
used. Therefore, these heuristic parameters remained
unoptimized (default values; highest_r_score = 10, thresh-
old=2). The parameter “highest r_score” may reduce
noise caused by signal ratios that were too high, which
was frequently observed when the gene signal was low.

Conclusions

A model of transcriptional regulation under Fe deficiency
Based on our predictions, we propose the following
model of transcriptional regulation in rice under Fe-
deficiency stress (Figure 6). The Fe-deficiency signal
initially activates transcription factors involved in Fe-
deficiency responses such as IDEF1. The IDEF1 binds to
IDEFBS. Then, these recruit general transcription fac-
tors: TBP binds to the TATA-box motif, and TAFs to
DCEpl. TFIIB may bind to BREY-TATA-box motifs.
TFIIB reportedly interacts with BREY via the helix-turn
-helix (HTH) domain, although this domain is not con-
served in yeasts and plants (Lagrange et al. 1998; Tsai
and Sigler 2000). Notably, IDEF2BS and the novel motif
FAM1 were co-localized with the majority of motifs in
this model; however, OsIRO2BS was not (Network graph
in Additional file 6), which suggested that OsIRO2 regu-
lates genes in another model. Kobayashi et al. (2009)
suggested a model that IDEF1 regulates OsIRO2 and
some genes, and under the control of IDEF1, OsIRO2
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regulates the other genes. Taking all these into account,
we propose that OsIRO2 is regulated by IDEF1, but their
targets are independent each other.

Performance of MAMA

We compared the motifs generated by MAMA, MEME,
MotifSampler and SIFT from the top 50 rice genes
upregulated by Fe deficiency (Table 1, 2, Additional file 1).
Motifs predicted by MAMA contributed significantly more
to build transcriptional simulation model compared
to those predicted using other clustering-dependent
methods when motif quality was checked using the
AUC-ROC of the transcription simulation model
(Figure 6). Plant researchers can use MAMA to predict
cis-motifs from microarray data on a single treatment.
For example, MAMA can be applied to a microarray
data under some kind of stress. MAMA optimizes pa-
rameters automatically to maximize the accuracy of
simulation of gene expression. Therefore, MAMA does
not require most users to determine complicated pa-
rameters. We prepared a template file for A. thaliana
microarray ATHI1. Users can run MAMA after pasting
the signal ratio from the microarray data to the
template file. All the calculations of MAMA were
performed using Desktop PC (Dell Vostro 470 with
Quadro 2000, 8GB RAM, Windows 7) and the calcula-
tion of a data set took from 11 to 54 hours. We
developed the main software using GPGPU (CUDA;
supported by NVIDIA GeForce (8 or higher), Tesla
or Quadro series). Using the CUDA environment,
optimization can be completed within 3 days. However
if you do not have CUDA environment, some parame-
ters optimization using CPU (core i7 3770) in MAMA
requires several weeks.

Future development

We expect MAMA to increase our understanding of the
complex regulation of gene expression in higher eukary-
otes from the co-localizations and the separation (in bp)
between them. A method developed by Huttenhower
et al. (2009) generates regulatory modules: co-regulated
genes, the conditions under which they are co-regulated
and sequence-level regulatory motifs. Using COALESCE,
the genes upregulated under iron deficiency may be sep-
arated into a subcluster regulated by a model including
IDEF1BS and another cluster regulated by another
model including OsIRO2BS, and we may analyze more
specifically about the regulation occurred in each sub-
group. It is necessary to prepare microarray data similar
to the one under iron deficiency to perform COALESCE
effectively. MAMA and all the programs used in this
study are available for download at http://park.itc.u-
tokyo.ac.jp/pbt/ MAMA.
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Iron-deficiency-stress signal

iron-deficiency stress.

Figure 6 Model of predicted motifs and factors incorporated into the regulation of gene expression in rice under

Methods

Definitions

N is the number of genes from the microarray data, N
(A) is the number of genes containing motif A, N(!A) is
the number of genes that do not contain motif A, N
(UP) is the number of genes upregulated more than
twofold, CR(A) is the cover ratio of motif A, and CR
(A) =N(A)/N.

Preparation of sequences and microarray data

The rice genome sequence (IRGSP1.0) was downloaded
from the RAP-DB Web site (http://rapdb.dna.affrc.go.jp/).
Genes possessing identical promoters were treated as a
single gene (ID). In these cases, the geometric mean of their
gene expression ratios was used. Ratios of expression in Fe-
deficient and -sufficient plants, obtained using microarrays
(Ogo et al. 2008) (cv. Tsukinohikari), were used in
subsequent studies. Microarray data on rice root under Zn-
deficient and -sufficient plants were obtained from a
published paper (Suzuki et al. 2012) (cv. Nipponbare). The
genome sequence of A. thaliana and gene annotation data
(TAIR10) were retrieved from TAIR (www.arabidopsis.org).
Microarray data generated using A. thaliana subjected to
NaCl stress were obtained from a previous report (Dinneny
et al. 2008). Random sequences were generated using a
random sequence generator with probabilities of A:C:G:T
as 0.25:0.25:0.25:0.25 (http://tandem.bu.edu/rsg.html).

Calculation of MAMA scores

MAMA was developed to identify motifs that were fre-
quently present in upstream regions of regulated genes.
This method initially lists every 8-bp sequence upstream
of regulated genes as candidate sequences. Candidate
sequences were extracted from the 50 most highly
upregulated genes from the microarray analyses. First,
MAMA assigned each gene a number (1n). MAMA
assigned each candidate sequence a MAMA score, which

was designed to reflect the enrichment of the frequency
and similarity of the candidate sequence in highly
upregulated genes in microarray analyses (Additional file 2).
The lengths (in bp) of sequences showing identity to
part or all of the candidate sequence, as well as the
separation (in bp) between the two identical sequences,
were used in the calculations. The length of the x™
identical part was defined as /hx. The separation (in bp)
between two identical sequences (x™ and y™) was defined
as d,,. The MAMA score for each candidate motif was
calculated using the following formula:

N

Z(h_score(n) X r_score(n))
MAMA score = "= . (1)

N
Z h_score(n)
n=1

The /h_score is calculated according to the following
procedure:

h_score = {(h1)! + (h2)! + ...
+hlsxh2/(@*dis+1

)
+hlxh3/(@xdip+1)/(@*daz+1)+...
+hlxhx/(@xdip+1)/.../(@*du1).+1)

+ h2xh3/(G*dys + 1)

+(h2) x h4/ (@ dyz+ 1)/ (@ xdsza+1) + ...+
+h2xhx/ (@ doz+1)/../(@*dpay.+1) + ...
+ h(x=1) % hx/ (@ * dx-1). + 1) 1V

+ (hx)!

(2)

The /1_score was designed to calculate the similarity of
a promoter to a candidate sequence. In the present
study, both DNA strands ware used to calculate
h_scores. Every part of a promoter with the same length
as a candidate sequence was compared with candidate
sequences, and the highest /i_score in a promoter was se-
lected as the /_score(n) of a gene(n). Uninterrupted
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identity to the candidate sequence and short separations
between identical sequences yielded higher /_scores. To
control the effect of the separation between them, pen-
alty 4 was set. To control the sensitivity for sequence
similarity on the MAMA score, the result is raised to
the power v. For each gene, the r_score(n) represents the
microarray gene expression ratio. To control the influ-
ence of expression ratio on the MAMA score, a thresh-
old highest_r_score was set. In cases in which the gene
expression ratio exceeded this threshold, the r_score was
set to the threshold. The threshold highest_r_score was
set to 10.0 (default). When calculating correlations be-
tween sequence and upregulation, MAMA offers the op-
tion of removing downregulated genes from the analysis
or setting the r_score to 1.0 or 1/expression ratio.
r_scores for downregulated genes were set to 1.0 (de-
fault). To control the sensitivity for gene expression ra-
tios on the MAMA score, the r_scores were raised to the
power T.

Grouping of similar sequences

High-scoring candidate sequences were identified after
MAMA score calculation. For the 5% highest-scoring
candidate sequences, similar and lower-scoring candi-
date sequences were grouped into the same motif group
as the higher-scoring one. In the present study, two
mismatched bases were permitted (i.e., 26 bp identity to
the higher-scoring candidate motif).

Evaluation of predicted motifs using a transcription-
prediction algorithm

To evaluate the correlation of the presence of predicted
motifs with upregulation of genes, we used a classifica-
tion algorithm by Support Vector Machine (SVM;
Joachims 1999). All SVM runs were performed by
LIBSVM3.1 (Fan et al. 2005). The problem “how pre-
dicted motifs may be used to simulate upregulation of
transcription” was formalized as a machine-learning
classification problem (Zou et al. 2011). We were inter-
ested in assigning genes into two classes, namely, indu-
cible (1) and non-inducible (-1) based on a feature
vector describing the presence (1) and absence (0) of
motifs and motif pairs in a gene. For training of the
models, genes upregulated more than twofold by treat-
ment were used as positive examples. Genes that were
not upregulated more than twofold were used as nega-
tive examples. For each SVM run, genes were randomly
separated into training and test sets. Because the num-
ber of positive examples was much smaller than that of
negative examples, random undersampling of negative
examples was applied to improve the performance of the
highly imbalanced data (Tang et al. 2009). Ru (propor-
tion of negative samples) was set to 1/16 of negative
samples. For each training set, the optimal parameters
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for C (trade-off between training error and margin) and
Y (gamma in the kernel function) were examined by grid
search. The performance of the classifier was measured
by the AUC-ROC during the optimization, and optimal
parameters that resulted in the highest AUC-ROC were
applied to test sets.

Evaluation of motif co-localization

The P-values for the co-localization of motifs were
calculated using Pearson’s chi-square test using the fol-
lowing formula:

(Oi-Ei)*

X2 =
Z E

(3)

A region from 500 bp upstream to 150 bp downstream
of TSSs was used to evaluate the co-localization of motif
pairs (e.g., motif A and B). In the above equation, Oi
represents the observed number of N(A|B|UP), N('A|B|
UP), N(A|'B|UP), N('A|'B|UP)...while Ei represents the
expected number, N(UP)N(A|B|'UP)/N(!UP), N(UP)N
('A|B|!UP)/N('UP), N(UP)N(A|'B|!UP)/N(!UP), N(UP)
N('A|'B|'UP)/N('UP); two enrichments of motif A were
simultaneously evaluated as ENI and EN2. ENI was
defined as N(A|B|UP)/N(B|UP) divided by N(A|!'B|UP)/N
('B|UP). EN2 was defined as N(A|B|UP)/N(B|UP) divided
by N(A|B|!UP)/N(B|'UP). Enriched motif pairs were
defined as motif pairs of which ENI and EN2 were
greater than 1. When the number of motif pairs used
in MAMA was set to N,,,, motif pairs with the top N,,,,
lowest P-value were used for the simulation of gene
expression. If motif A and motif B contained identical
sequences, co-localization was not evaluated.

Optimization of MAMA parameters

Parameters power v (controls the sensitivity for sequence
similarity), power t (controls the sensitivity for the gene
expression ratio), and number of motif pairs N,,, applied
for the SVM were optimized one by one in this order.
These parameters started from 1, 1, and 0, respectively,
and increased by 1 after a set of simulations. During
the optimization of power v, power 1=1, 2, 3, 4, and 5
were tested five times each, and the average AUC-ROC
(= AoARy,)) was calculated from these 25 simulations.
After simulation with increased power v, if AoAR,) <
A0AR(,_1), then the optimized power v was set tov — 1;
otherwise, power v was increased further. An increase
in power T reached a plateau of the AUC-ROC value.
During the optimization of power 1, power T = power T,
power T+ 1, power T+ 2, power T+ 3, and power T + 4
was tested five times each, and the slope of the AUC-
ROC (SoAR(y)) was calculated using power T and the
AUC-ROC from these 25 simulations. If SoAR, was not
defined or bigger than the defined maximum value of
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S0ARy) (MaxSoAR()), then MaxSoARy) was set to
S0AR(y. After the increase in power T, if S0ARq) <
(MaxSoAR)/2), then the optimized power T was set
to 1; otherwise, power v was increased further. If T was
more than five, the integral 5/t was added to 1. During
the optimization of N,,,, 1, 2, 3, 5, 10, 20, 30, 50, 100,
and 200 were tested five times each. The average AUC-
ROC A0AR(nyp) was calculated for each N,,,, value (10
tests each), and the N,,, with the highest AoAR ()
was set to optimized N,,,,.

Comparison of the effect of parameters to AUC-ROC
Initially, we tested parameters v (1, 2, 3,4, 5), 1 (1, 2, 3,
4,5,6,7,8,9, 10, 11, 12, 13, 14, 15), and Nmp (1, 2, 3,
5, 10, 20, 30, 50, 100, 200) using microarray data from
rice subjected to Fe deficiency and Zn deficiency, and A.
thaliana subjected to NaCl stress. For each v, the aver-
age AUC-ROC calculated using all the tested power t
and Nmp was compared (AoAR(v, X1, XNmp)). The
difference between the highest AoAR(v, X1, XNmp) and
lowest AoAR(v, X1, YXNmp) was evaluated as the effect
of v. Similarly, the difference between the highest AoAR
(Xv, 1, XNmp) and lowest AoAR(Xv, 1, YXNmp) was evalu-
ated as the effect of t. The difference between the
highest AoAR(Xv, X1, Nmp) and lowest AoAR(Xv, X,
Nmp) was evaluated as the effect of Nmp.

Prediction of cis-elements with existing methods

MEME (Bailey and Elkan 1994), Motif Sampler (Thijs
et al. 2001), and SIFT (Hudson and Quail 2003) were
used to compare the result of predicted cis-elements.
Also, 500-bp upstream sequences from the TSS of the
top 50 the most upregulated genes in microarray data
on rice subjected to Fe deficiency were used as input.
Background data were generated from 500-bp upstream
sequences from the TSSs of rice genes, of which the
gene expression ratio was between 0.8 and 1.2. Most pa-
rameters remained as default values. If word size was re-
quired, the word size was set to 8. The number of
outputs was set to 1,250, and 1,250 motifs each were
used to simulate gene expression by SVM.

Additional files

Additional file 1: Motifs predicted by MotifSampler, MEME and SIFT.

Additional file 2: About MAMA score, how to calculate MAMA
score and examples.

Additional file 3: Enrichment and Annotation of predicted by
MAMA using microarray data from iron-deficient.

Additional file 4: Characterization of motifs predicted using
microarray data from rice roots subjected to Fe deficiency.

Additional file 5: Enrichment and Annotation of predicted from a
region 50 bp upstream to 150 bp downstream of TSS.

Additional file 6: Enrichment of motif pairs.
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Additional file 7: Motifs predicted using microarray data from rice
roots subjected to Zn deficiency.

Additional file 8: Motifs predicted using microarray data of A.
thaliana subjected to NaCl stress.

Additional file 9: Number of motif pairs used (Nmp) and the value
of AUC-ROC.

Additional file 10: Separations (in bp) between motifs predicted
from microarray data of O. sativa subjected to zinc deficiency and
A. thaliana subjected to NaCl stress.
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