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AAbbssttrraacctt

Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and
immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and
response to treatment have yet been recognised. We herein review the interdisciplinary information achieved
by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also
includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations
which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas.
Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found
in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed
to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as
Comparative Genomic Hybridization (CGH) are yet at an initial stage of application and should be
implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss
of Heterozygosity (LOH) studies. An LOH region was shown by a systematic study on a consistent number of
chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite
the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped
to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of
the Tuberous Sclerosis Complex (TSC) genes has been proved, but the extent of involvement of TSC1 and
TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics
and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy,
should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and
biomolecular studies should enhance the molecular taxonomy of chordoma which might have a prognostic
significance and better orient the therapeutic options. 
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EEppiiddeemmiioollooggyy

Chordomas are rare, low-to-intermediate grade
malignant tumours which occur along the length of
the craniospinal axis. They are attributed to neoplastic
transformation of embryonic remnants of the primitive
notochord [1]. Incidence is around 0.05/100,000/year

[2]. They account for <1% of the central nervous
system tumours [3] and <5% of all primary malignant
bone tumours [4]. The most common locations are the
sacrococcygeal region (45-49%), the base of the skull
(36-39%), and the spinal axis (8-15%) [5]. In the
cranio-cervical region seven points of origin have been
indicated: dorsum sellae, Blumenbach’s clivus,
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retropharyngeal notochord vestiges, remnants in the
apical ligament of the dens, nuclei pulposi of the
cervical vertebrae, vestiges in the squama occipitalis,
and ectopic localizations [6]. Nose and paranasal
sinuses primitive chordoma have been suggested not
to be real ectopic localizations as more properly
chordoma arose from remnants [7]. 

No racial predilection for chordomas has been
reported, male-to-female ratio is generally 2: 1 [3, 8].
Every age can be involved with predominance for the
third and fourth decades for intracranial localization,
while spinal chordomas are generally observed at older
ages because of late signs and symptoms [3, 8].
Chordoma has no known association with irradiation
or any other environmental factors. A small percentage
of cases have a familial pattern of inheritance [9-13]. 

CClliinniiccaall  pprreesseennttaattiioonn,,  tthheerraappyy  
aanndd  pprrooggnnoossiiss

Chordomas develop in the bone, so they initially
grow extradurally with bone destruction and secondary
extension into adjacent soft tissues [14]; they have
common characteristics of a malignant tumour, with
local invasiveness, tendency for recurrence, and the
potential to metastasize. Distant metastases of
chordomas have been described with prevalence up
to 43% [15]; almost all cases were observed in
sacrococcygeal localizations; the low rate of systemic
spread for skull base neoplasms, which ranges from
0% to 10%, is probably related to the fact that the
patients die of the local effect of their tumours before
metastases develop [16, 17]. 

Clinically they are slow-growing tumours characterized
by local spread. Symptoms manifest late, even after years,
and therefore the local extent of disease is often huge at
diagnosis. Pain and neurological symptoms from local
compression are the main subjective complaints of the
patient. They obviously depend on tumour location.
Symptoms like (from the earliest to the latest) low back
pain, anaesthesia and paraesthesia, intestinal obstruction,
are caused by sacral chordoma. Symptoms and signs of
compression of nerve roots and/or spinal chord are
related to vertebral chordoma. 

Headache and diplopia are the most common
symptoms related to chordoma of the clivus and base
of the skull [18]. 

The V cranial nerves are also frequently involved, due
the progressive growth with invasion of other
neighbouring structures such as the cavernous sinus. Signs
and symptoms include also visual loss and limitation of
visual field. Extraocular complaint can be dysphagia,
dyspnea, dysphonia, facial pain, facial paresis, hearing

loss, tinnitus, dizziness and ataxia, after brain stem
compression. Anterior extension to the pharynx can
explain pharyngolaryngeal and otological symptoms,
whereas extension to nose and paranasal sinuses can
cause nasal obstruction, ipo-anosmia, hyponasal speech,
mucopurulent discharge, and, rarely, epistaxis [5, 8]. 

Distant metastases may occur late across the natural
history of the disease, mainly to the lungs, but also to
bone, liver, distant soft tissues and skin. 

Given the natural history and histological
characteristics of the disease, treatment is based on
local modalities. Surgery is the treatment of choice.
The aggressiveness of local resection has been
correlated to the patient’s outcome, in terms of both
local control and survival. However, surgery is often
confronted by major sequelae, which may follow
adequate excision of several sacral presentation, with
loss of urogenital and rectal function in case of bilateral
section of S2, or below, nerve roots, as well as cranial
nerves impairments after resection of clival chordomas. 

Postoperative radiotherapy, both by linear
accelerator, or proton therapy, can provide better
control of the disease [17, 19, 20]. 

Prognosis of chordomas is related to the extent of
surgical removal: five-year survival of 35% is reported
with incomplete resection also if followed by conventional
radiation therapy [21]. Better results are reported with
aggressive surgical treatment and proton-beam
postoperative radiotherapy with a disease-free survival
rate from 50% [22] to 77% at 5 years [20] and from
45% to 69% at 10 years [19, 20]. 

If surgery is unfeasible, radiation therapy is the
second choice in order for eradicative intent.
Chordoma is a relative radioresistant tumour, with 60-
70 Gy of photon radiation therapy needed for best
responses. Progression-free survival rates in the 30%
range have been reported with radiation therapy alone. 

Chemotherapy has been resorted to, but only
anecdotal reports of activity of chemotherapeutic agents
or regimens are available. Drugs active in sarcomas,
including Doxorubicin and Ifosfamide, as well as in
carcinomas or other bone sarcomas, including Cisplatin
and Etoposide, have been administered. However,
chordomas are generally viewed as chemo-resistant,
low-grade tumours, for which standard cytotoxic
chemotherapy lacks an established role, even
a palliative one, in advanced chordoma. 

The prognosis of chordoma is affected by a variety of
clinical and pathologic characteristics. Important features
include tumour location, size and resectability, as well as
the age and the gender of the patient; larger tumours,
female gender, and age of over 40 years have been
associated with a poorer outcome [16, 17, 23, 24]. 
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MMaaccrroossccooppiicc//mmiiccrroossccooppiicc  ffeeaattuurreess  
aanndd  iimmmmuunnoohhiissttoocchheemmiissttrryy  

Chordomas are generally whitish soft multilobulated
mass with a fibrous pseudocapsule sometimes filled by
a mucoid substance (secondary to haemorrhage),
sometimes with haemorrhages, necrosis and/or
calcifications and fragments of bone [1]. Microscopically,
they are characterized by the vacuolated physaliphorous
cells, which are translucent cells of different sizes rich in
mucin and glycogen [1]. The mucin produced by the cells
tends to collect outside them creating large nests of
bubbly cells in a mucoid matrix. Other cells rest in chords
anastomosing in the mucoid matrix. The nuclei are small
and dark stained, indicating the minimally aggressive
biologic behaviour. A representative histological section
of a typical clival chordoma composed of nests and cords
of tumour cells is shown in Fig. 1A, while the hallmark
physaliphorous cells containing multiple clear cytoplasmic
vacuoles can be seen in Fig. 1B. 

Chordomas are of three overlapping and sometimes
coexisting histopathologic types: conventional, chondroid
and dedifferentiated. The chondroid chordoma, first
described by Heffelfinger in 1973 [25], is characterized
by a cartilaginous hyaline component and by
a supposed better prognosis [26]. Dedifferentiated or
sarcomatoid chordomas are high-grade neoplasms,
which account for only 5% of cases [27]. 

Differential diagnosis of chordomas includes primary
bone tumours, cartilagineous neoplasms such as
chondromas or chondrosarcomas, epithelial neoplasms
such as mucinous-forming adenocarcinoma or salivary
neoplasms, metastases, neurinoma, neurofibroma,
meningioma, neuroblastoma, haemangioma and
lymphoma. 

S-100 positivity, often seen in chordomas (Fig. 1C),
can differentiate from epithelial neoplasms [28, 29].
Cytokeratin antibodies and EMA (epithelial membrane
antigen) positivity of chordoma (Figs. 1D and 1E) is
used to distinguish it from cartilaginous neoplasms,
where the absence of these epithelial markers should
be the rule [30]. Some chordomas stain positive with
vimentin antisera (Fig. 1F), which reflects mesenchymal
differentiation [31]. 

EEmmbbrryyooggeenneettiicc  oorriiggiinn  

Chordoma is a disembryogenetic tumour attributed
to malignant transformation of intraosseous persistent
notochordal tissue [4]. In agreement with this view are
the close histological and immunohistochemical
similarities with the embryonic notochord and the
correlation of chordoma development to location and
incidence of notochordal vestiges [32]. 

It is known that in chick embryo the notochord
develops through four periods of activity which are related
to cytodifferentiation and functional maturation, with
cessation of mitosis, cell apoptosis and decrease in the
nucleolar volume in the fourth period [33]. It was also
found by canine/bovine notochord cell cultures that
a small number of notochordal cells persist in the nucleus
pulposus with the function of maintaining disk integrity
[34]. In human, the notochord forms from ectodermal
cells during the third gestational week [32], then inducing
chondrification and segmentation of the mesenchymal
elements of the vertebral bodies. It obliterates in the
second gestational month, leaving behind microscopic
foci of notochord tissue in the most cranial and caudal
of vertebral bodies. During the involution process the
notochord normally completely disappears from the
vertebrae to eventually form the nucleus pulposus of the
intervertebral disk which is progressively replaced by
fibrocartilage from the surrounding tissue by the age of
1-3 years. Macroscopic notochordal remnants, termed
ecchordosis physaliphora (EP) are found at the base of
the skull in up to 2% of adult autopsies and have been
considered as one of the precursor lesions of classic
chordomas [32, 35]. It has been pointed out that classic
vertebral chordomas occur in bone and do not develop
in the notochordal vestiges of the intervertebral disks [36].
In keeping with this prediction a few intraosseous benign
notochordal cell tumours have been described [37, 38]
and recently the first histologically confirmed case of
a classic chordoma in the coccyx arising in a precursor
benign notochordal lesion has been reported [39].
Intraosseous counterparts at the base of the skull have
been also documented in a large microscopic study on
vertebral columns from atlas to coccyx and pieces of the
clival portion of the skull base dissected from 100 autopsy
cases: a surprisingly high incidence (26 in 20 cases) of
intraosseous benign notochordal cell tumours with
anatomical distribution and immunohistochemical
reactivity identical to that of classic chordomas have been
identified [40]. The results showed that 11.5% of the
clivus, 5.0% of the cervical vertebrae, 0% of the thoracic
vertebrae, 2.0% of the lumbar vertebrae and 12% of the
sacrococcygeal vertebrae were affected. These results
support other evidence that classic chordomas develop
from intraosseous benign notochordal cell tumours. 

FFaammiilliiaall  cchhoorrddoommaa

Chordomas are usually sporadic. However
8 families with multiple affected members have been
reported (Table 1), suggesting genetic predisposition
to chordoma [9, 10, 12, 41-45]. Three families
showed a pattern of inheritance compatible with 
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an autosomal dominant trait [9, 10, 45]. Genomic
screen for linkage in the first of such families suggested
possible linkage of the disease locus to a region on
chromosome 1, 17 or 19, based both on parametric
and non-parametric results [45], but no further data
were released. Two complete linkage studies were
performed on the other two families with autosomal
dominant chordoma and putative susceptibility loci
were mapped to 1p36 and 7q33 [11, 12], but so far
the responsible genes have not been hunted from the
target genomic regions. The study by Miozzo et al [11]
concerned a male patient, who showed two
recurrences of a clival chordoma developed when he
was young, and his three daughters, two of whom
expressed in infancy an astrocytoma and a chordoma,
respectively. The eldest sibling was apparently healthy
at the time of the investigation. We had previously
reported a cytogenetic study on the chordoma
recurrences from the index case showing extensively
rearranged tumour karyotypes with chromosome 1p
involved in different unbalanced rearrangements
leading to 1p deletion [10]. This finding guided 
an LOH study coupled to segregation analysis of the
1p36 region, in this two-generation family; results were
consistent with the localization in 1p36 of a tumour
suppressor locus involved in chordoma predisposition
[11]. Subsequent LOH studies in a cohort of 35
sporadic chordomas confirmed involvement of 1p36
in the tumour development by LOH of region-specific
polymorphic markers in the great majority of the
tumours (31/35) [46 and unpublished observations],
consistent with previous cytogenetic [47] and CGH
[48] findings. Conversely, the linkage analysis is
currently subjected to validation following the

information that the eldest daughter, who was 17 years
old at the time of our first reports [10, 11],
subsequently developed a chordoma of the clivus. 
The patient was surgically treated elsewhere and we
could not carry out additional studies. The previous
segregation analysis evidenced sharing of the same
haplotype at several 1p36 loci among the father, the
second and the third daughters, while the eldest
daughter did not share it. We are currently
reinvestigating by means of all available polymorphic
markers the target region aiming at assessing whether
a very small 1p36 subregion segregating with genetic
predisposition to chordoma might be disclosed. 

The study performed by Kelley [12] in the family
reported by Stepanek et al [9] consisted in
a genomewide analysis for linkage which first yield
a 2.2 lod score at marker D7S2195 on chromosome
7q, based on only the 10 affected family members. 
To increase the power of the linkage analysis and to
narrow the candidate disease gene region, additional
members of this large family were examined together
with two small independent families, one with two
affected cousins, once removed, and another
representing a branch of a previously reported three-
generation family [43]. The combined analysis with 20
markers on 7q showed a maximum two-point lod score
of 4.05 at marker D7S500. Multipoint analysis based
only on the affected individuals and haplotyping of the
three families members pinpointed a minimal disease
region of 11.1 cM from D7S1804 to D7S684
consistent with mapping to 7q33 of a locus for familial
chordoma. No LOH was found at any of the markers
residing in the 7q critical region, precluding narrowing
of the candidate region [12]. 

TTaabbllee  11..  FFaammiilliieess  wwiitthh  mmuullttiippllee  ooccccuurrrreennccee  ooff  cchhoorrddoommaa

RReeffeerreennccee AAffffeecctteedd CChhoorrddoommaa  SSiittee OOnnsseett

Foot et al, 1957 brother and sister sacrococcygeal middle-age

Enim et al, 1963 two brothers nasopharyngeal youth

Kerr et al, 1975 3 in three generations nasopharyngeal not specified

Chetty et al, 1991 1 with family history clival 3 years

Korczak et al, 1997 9 in three generations clival, spinal not specified

Stepanek et al, 1998 4 in 2 generations sacral, clival nasopharyngeal 20, 39, 28, 31

Dalprà et al, 1999
father and two daughters* clival before 20

Miozzo et al, 2000

Kelley et al, 2001 two first cousins once removed° clival not specified

*third with astrocytoma
°one index case’s daughter with pilocystic astrocytoma
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So far, 7q33 emerges as a strong candidate region
for chordoma susceptibility based on the significant lod
score obtained by the combined analysis of three families,
one of which with a well suitable structure for linkage
analysis. Conversely 1p36 is a proven LOH region in
chordoma [11, 46], which might harbour a susceptibility
gene, should the linkage be reassessed in the family with
two members showing LOH in the tumours and/or in
additional families. Both 7q33 and 1p36 regions are
compatible with the suspected heterogeneity of
susceptibility loci for chordoma. Evidence for this is also
provided by the outcome of chordoma in the context of
Tuberous Sclerosis (MIM#191100), an autosomal
dominant syndrome, characterised among different
clinical signs, by hamartomas in multiple organs, which
is caused by germline mutations in either of two genes
TSC1 (MIM 605284) and TSC2 (MIM 191092) which
behave like tumour suppressors. TSC1 and TSC2
products, known as hamartin and tuberin, act as
a heterodimer; thus the inactivation of either gene impairs
the same pathway leading to the same clinical phenotype
[49-51]. The association between chordoma and TSC
has been highlighted by Lee-Jones et al [13] who
datamined the literature for the unusual occurrence of
chordoma in the context of tumour predisposition
syndromes and identified three reports of chordomas in
patients with Tuberous Sclerosis Complex (TSC) [52-54].
The same group demonstrated in two cases of
sacrococcygeal chordomas developed by a newborn with
germline TSC1 mutation and a 33-week aborted foetus
with a germline TSC2 mutation, somatic inactivation of
the corresponding wild type allele by LOH and
immunohistochemistry [13]. It should be noted that the
early onset characterises also the three reported TSC-
associated chordomas, which were discovered either
during the first days of life [52] or in childhood [53, 54]
consistent with genetic predisposition mediated via
germline mutation in a TSC gene. 

No other cases of chordomas found with any
coexisting tumours in the context of cancer predisposition
syndromes are known. 

GGeenneettiicc  aalltteerraattiioonnss  iinn  cchhoorrddoommaa::
ccyyttooggeenneettiiccss,,  FFIISSHH  aanndd  CCGGHH

The cytogenetic description by conventional
banding and FISH-based techniques is restricted to
less than 100 cases of chordoma worldwide. 
The percentage of tumours with normal karyotype was
estimated on a sample of 18 chordomas to be slightly
over 50% [55, 56], but this figure is likely dependent
on chordoma stage, anatomical site and type (primary
or recurrent). The first report of a chordoma, which by

cytogenetic analysis showed two unrelated near-diploid
clones with both numerical and structural abnormalities,
was published by Persons et al [57]. Twenty-nine cases
of conventional chordoma with aberrant karyotype are
recorded in the Mitelman Catalog of Chromosome
Aberrations in Cancer [CGAP] and six additional
tumours, recently published [58, 59], can be added to
this list. Out of 35 chordomas with aberrant karyotype,
18 are annotated as recurrences: two as metastases,
four as primary tumours, while no information is
available for the remaining 11 tumours. The high rate
of recurrent tumours among chordomas with aberrant
karyotype is in keeping with the suggestion that in
chordomas chromosome aberrations appear as late
events in tumour progression [47]. Chondroid
chordomas, i.e. chordomas containing foci of cartilage,
that are morphologically indistinguishable from
chondrosarcomas, are not considered here as it is
controversial whether they represent a variant of
conventional chordoma. Also dedifferentiated
chordoma, of which only one case has been
cytogenetically characterised and found to have
a polyploid complex karyotype with double minutes

FFiigg..  11..  CCllaassssiicc  CChhoorrddoommaa
AA::  E-E, X 5; chordoma composed of nests and cords of tumour cells; 
BB::  E-E, X 20; physaliphorous cells containing multiple clear cytoplasmic vacuoles; 
CC::  S-100, X 20; immunohistochemistry showing staining for S-100 protein; 
DD::  CK, X 20; immunohistochemistry showing staining for cytokeratin; 
EE::  EMA, X 20; immunohistochemistry showing staining for EMA; 
FF::  Vimentin, X 20; immunohistochemistry showing staining for Vimentin

AA BB

CC DD

EE FF
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FFiigg..  22..  HHiissttooggrraamm  sshhoowwiinngg  tthhee  aabbssoolluuttee  nnuummbbeerr  ooff  cchhoorrddoommaass  ((nn==  5577))  wwiitthh  tthhee  rreessppeeccttiivvee  ggaaiinn  oorr  lloossss  ooff  eennttiirree  cchhrroommoossoommeess  ppllootttteedd  ffoorr
tthhee  wwhhoollee  ggeennoommee..  TThhee  wwhhiittee  bbaarrss  rreeffeerr  ttoo  ccoonnvveennttiioonnaall  ccyyttooggeenneettiiccss  ddaattaa  [[CCGGAAPP  aanndd  5588]],,  wwhhiillee  tthhee  bbllaacckk  bbaarrss  rreeffeerr  ttoo  CCGGHH  ddaattaa  [[4488
aanndd  6655]]..  CChhrroommoossoommeess  aarree  aarrrraannggeedd  aalloonngg  tthhee  aabbsscciissssaa  ((11  ttoo  2222,,  XX  aanndd  YY))  
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GGAAIINNSS

LLOOSSSSEESS

[59] is not included, as its relation with simple
chordoma is unknown. Out of 35 karyotyped
conventional chordomas with aberrant karyotype, the
great majority are either hypo or quasi-diploid and
only two are hyperdiploid [47, 60]. Only a few cases
have simple karyotypes with one or more aberrations,
but no underlying breakpoint was shared among
chordomas characterised by a sole balanced
translocation or rearrangement [47, 61-64]. So far
there are no clues that specific translocations, resulting
in chimeric genes, play a pathogenetic role in
chordomas. Most tumours have both numerical and
structural chromosomal aberrations, and those with
a complex karyotype often display clonal heterogeneity.
As to numerical chromosome abnormalities, losses
involve in the order chromosomes 3, 13, 10, 22, 4,
18, 14, 9 and Y, while gains affect preferentially
chromosomes 7, 2 and 21 [CGAP]. Imbalances of
chromosome arms or subchromosomal regions were
also identified, most commonly loss of 3p, 3q or both
segments, loss of 1p and 9p, but in most cases these
were gross alterations, and their pattern appears to be
non specific [CGAP]. A large variety of rearrangements,
among which isochromosome 1q and loss of part or
all of 1p were identified as equivalent recurrent
changes associated with chordoma progression [10,
47]. Loss of 1pter-p34 has been detected in 14 cases
[CGAP, 58] suggesting that a tumour suppressor locus
might map in 1p36 [11]. Other recurrent structural
changes were add (21) (q22) and del (X) (p22), but
none of them appeared to be tumour specific. Sixteen
chordomas were surveyed by CGH and FISH [48] and
six additional ones were preliminary investigated by
the same approach [65]. Cumulative data obtained

on the imbalance of entire chromosomes are
combined to previous findings obtained by
conventional cytogenetics to depict the overall profile
of chromosomes gained and lost in an overall series
of 57 chordomas (Fig. 2). CGH analysis also
evidenced copy number changes restricted to
chromosome arms or smaller genomic regions, but
due to the limited number of tumour samples, only
a few generalities can be drawn. One, at apparent
discordance with karyotypic data, is that gains were
more common than losses. One third of the tumours
analysed by CGH combined to FISH were
hyperdiploid: a finding making the authors suggest
that hypo or near diploid cell populations have
a growth advantage in vitro [48]. Hypodiploidy is not
a feature of human solid tumours. DNA-flow cytometry
data also suggested that hypodiploidy is not a common
feature of chordoma either [66]. More precisely, the
investigation of 16 chordomas showed that there was
a median of six chromosomal imbalances per tumour,
on average, 3.2 losses and 4.2 gains. Most common
losses mapped on chromosomal arms 3p (50%) and
1p (44%) and most common gains involved 7q (69%),
20 (50%), 5q (38%) and 12q (38%) [48]. 
The consensus region for gains on chromosome 7q
was 7q36, where the homeobox gene HLXB9 and
sonic hedgehog gene SHH reside: interestingly both
genes are a plausible candidate as they are expressed
throughout the notochord during embryogenesis [67].
Another preliminary report on a panel of six cases
confirms gains of chromosomal areas of 7q, but also
discloses gains of 7p, 1q23-24 and 19p13 and, in
agreement with earlier cytogenetic and FISH data, loss
of 9p22-23 [65]. Use of high resolution FISH



HHeerreeddiittaarryy  CCaanncceerr  iinn  CClliinniiccaall  PPrraaccttiiccee 2005; 3(1) 35

Update on the Cytogenetics and Molecular Genetics of Chordoma

FFiigg..  33..  SSuummmmaarryy  ooff  ccooppyy  nnuummbbeerr  cchhaannggeess  ((eexxcceepptt  wwhhoollee  cchhrroommoossoommee  ggaaiinnss  aanndd  lloosssseess))  ddeetteecctteedd  bbyy  ccyyttooggeenneettiiccss  [[CCGGAAPP  aanndd  5588]]  aanndd
CCGGHH  [[4488  aanndd  6655]]  iinn  cchhoorrddoommaa..  VVeerrttiiccaall  lliinneess  oonn  tthhee  lleefftt  ssiiddee  ooff  tthhee  cchhrroommoossoommeess  iinnddiiccaattee  lloosssseess  aanndd  vveerrttiiccaall  lliinneess  oonn  tthhee  rriigghhtt  ccoorrrreessppoonndd
ttoo  ggaaiinnss..  BBoolldd  lliinneess  rreeffeerr  ttoo  CCGGHH  ddaattaa,,  aanndd  ddootttteedd  lliinneess  ttoo  ccyyttooggeenneettiiccss  ffiinnddiinnggss..  EEaacchh  lliinnee  ccoorrrreessppoonnddss  ttoo  aa ttuummoouurr::  wwhheenn  mmoorree  tthhaann
44 ttuummoouurrss  hhaavvee  tthhee  ssaammee  aabbeerrrraattiioonn,,  tthhee  nnuummbbeerr  iiss  ggiivveenn  aabboovvee  eeaacchh  lliinnee..  CChhrroommoossoommeess  1100,,  1155  aanndd  YY  aarree  nnoott  iinncclluuddeedd  aass  nnoo
ssuubbcchhrroommoossoommaall  ggaaiinnss  aanndd  lloosssseess  wweerree  ddeetteecctteedd
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techniques, such as COBRA did not pinpoint any
clustering of breakpoints, but confirmed loss of
chromosome arms 1p, 3p, 3q, 9p and chromosome
10 [58]. Figure 3 shows a synoptic view of all the gross
and subtle imbalances detected by conventional
cytogenetics and FISH, as well as by CGH in
chordomas. Gains and losses are indicated by lines
to the right and to the left of each chromosome
ideogram. The distribution of copy number changes is
here composed by two approaches, which should
complement each other as the first one, the
low-resolution banding karyotyping allows to disclose
in heterogeneous tumours even low frequency clonal
aberrations, which might be underscored by the high
resolution whole genome CGH approach. However,
the genomic imbalances evidenced by these matched
tools (loss of 1p, 3p, 4p, 6q, 18q and Xp and gain of
1q, 9q, and 21q) affect gross areas which should be
narrowed by other most powerful approaches, namely
CGH by means of full coverage BAC arrays and
region-specific LOH studies. In addition, the number
of chordomas analysed so far remains too small to
drive general insights. This constraint and the relatively
unspecific location of recurrent band imbalances and
breakpoints make their pathogenetic significance
elusive. The mapping of candidate genes in
chordomagenesis awaits the application of high
resolution targeted approaches. 

GGeenneettiicc  aalltteerraattiioonnss  iinn  cchhoorrddoommaa::  
LLOOHH  ssttuuddiieess

The first LOH study on chordomas concerned the
Rb locus (13q14) at which LOH was detected in two of
7 sphenooccipital/clivus tumours, and proposed by
correlation with the clinical behaviour as a marker of
aggressive tumours [68]. The finding is consistent with
the loss of chromosome 13 (most frequently occurring
after chromosome 3) ascertained by cytogenetics and
CGH [CGAP; 48]. Further LOH studies evidenced the
loss of 17p, 9p and 18q, where known oncosuppressor
genes are mapped [69]. It has been reported that the
combined loss of p53 function and RB1 protein leads
to genomic instability, a finding consistent with the
model of progressive accumulation of genetic changes
with increasing malignancy [68, 70]. 

A targeted study involved the 1p36.13 interval [46],
which is comprised within the commonly deleted
chromosome 1p in chordoma [10, 47, 58, 60]. 
The 1p36.13 band had been pinpointed by the recurrent
breakpoints identified in two tumour recurrences of the
founder of an Italian chordoma family [10] and the
haplotype and LOH information retrieved on this family

[11]. Typing of 31 region-specific microsatellites
evidenced LOH across 1p36.13 in 25 out of 27
sporadic chordomas which were tested [46], data
confirmed by further analyses on a wider tumour panel
(unpublished observations). A common deleted region,
with a genetic length of 3.9 cM, was shared by 23
chordomas, raising the option of hunting candidate
genes in this region. A few difficulties are represented
by the consistent physical length (3 Mb) of this
subtelomeric region, the high gene density and its
common loss in a wide spectrum of solid tumours,
mainly neurological [71, 72], suggesting a possible
non-specific role in chordoma. The first selection of
region-specific genes was based on genes with
functions related to development or regression of the
notochord such as Caspase 9 (CASP9) and Ephrin 2A
(EPH2A). CASP9 is a ubiquitously expressed protease
which triggers the apoptotic pathway by releasing
cytochrome c from mitochondria into the cytosol [73].
EPH2A is a tyrosine kinase receptor involved in tail
notochord formation during mouse embryo
development [74]. The murine orthologue is regulated
by members of the p53 gene family and plays 
an important role in apoptosis: it is found upregulated
during angiogenesis in tumours [75]. Additional
candidate genes come to the attention when a wider
LOH region, which is shared by a lower percentage
(40%) of chordomas is considered. They include the
paired box 7 (PAX7) gene encoding a transcriptional
factor expressed in the neural tube which is regulated
by notochord specific signals [76], the differentially
screening-selected gene aberrant in neuroblastoma
(DAN), involved in the negative regulation of cell
proliferation [77], the Dishevelled 1 gene (DVL1), a key
factor in Wnt signalling expressed in the neural tube
[78] and a few genes belonging to the tumour necrosis
factor receptor superfamily (TNFRSF-1B, -8, -9, -14),
the DNA fragmentation factor (DFF-A and- B) and
TP73 [UCSC], all acting in apoptotic pathways. 

Preliminary data on RT-PCR expression analysis of
eight chordomas evidenced the lack of CASP9, EPHA2
and DVL1 transcripts in 5, 1 and 4 tumours, respectively.
Interestingly, some of the non-expressing tumours did
not show 1p36 LOH suggesting a loss of function as
a result of point mutation or other mechanisms [46].
Because chordoma cells are unique, a control cell type
of similar origin is difficult to identify; the nucleus
pulposus is currently being used as suitable reference
for expression studies. 

No LOH has been detected in tumour specimens
from the affected family members at 7q33, a region
cosegregating with susceptibility to chordoma in the
family described by Kelley et al [12]. According to the
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authors, the absence of LOH may indicate that the
disease gene exerts its oncogenic effect in a dominant
way. No LOH at 7q33 was detected in the tumours
from the affected members of the Italian family
[unpublished observations]. 

As reported above, the somatic loss of the wild-type
TSC1 and TSC2 allele was found in the chordomas
developed by two patients with Tuberous Sclerosis,
carrying germline mutations of either TSC gene [13].
TSC1 and TSC2 are usually considered as a complex
with one function. Genetic studies in mammalian
systems [79] and Drosophila [80, 81] showed that the
TSC1/TSC2 complex inhibits cell growth in both mass
or size and cellular proliferation thus exerting a positive
control of apoptosis [82, 83]. It would be worthwhile
monitoring LOH at both TSC genes in a significant
sample of chordomas, especially sacrococcygeal
chordomas which are ascertained in children [84] and
might be on a hereditary basis, and proceed with the
mutation screening in the LOH-positive cases. The TSC
genes, whose pathogenetic role in chordoma
development has been disclosed, may provide through
their impaired function a link to other susceptibility
genes, yet to be detected. 

MMoolleeccuullaarr  mmaarrkkeerrss  iinn  rreellaattiioonnsshhiipp  
ttoo  cclliinniiccaall  ppaarraammeetteerrss

There is still a deep gap in our understanding of
the genetic basis and molecular biology of chordoma.
Two studies have examined the role of molecular
markers in chordoma in relationship to clinical
parameters [56, 69], but currently they have only 
an exploratory meaning, which cannot lead to advance
the care and management of this cancer. 

The first study showed that chordoma cells from five
patients had an increased telomere length compared
with leukocytes from age-matched controls, in marked
contrast to telomere length reduction which is observed
in most cancers. Telomerase activity was present in
chordoma cells from one of the two patients who were
studied, but to a lesser degree compared with Hela [56].
The second study showed that chordomas can be
added to the list of malignancies demonstrating
microsatellite instability (MIM) which was evidenced in
six out of 12 tumours tested, but pointed out that LOH
may prove to portend a worse prognosis than MIN [69]. 

Chordoma is unique among mesenchymal tumours
in the epithelioid features seen. Immunoreactivity for
cytokeratins (Fig. 1D), epithelial membrane antigen 
(Fig. 1E), S-100 protein (Fig. 1C), vimentin (Fig. 1F) and
neurofilaments helps diagnosis and discrimination from
other mucin-producing bone cancers, but does not

represent a prognostic feature. The complex
immunophenotype of chordoma has been related to its
origin from notochord, which undergoes conspicuous
changes in location and morphology during embryonic
development [85]. Detailed analyses were thus
conducted on chordoma and foetal notochord aiming
at studying the expression of each component of
cytokeratin [86]. Cytokeratins CK8 and CK9 were found
to be shared by both chordoma and notochord, as well
as galectin-3, an endogenous carbohydrate-binding
protein [87]. Recently galectin-3 has been demonstrated
to be an immunohistochemical marker most useful to
distinguish the pathologically overlapping entities of
chordomas and myxoid chondrosarcoma [88]. 

The expression of cell adhesion molecules (CAMs)
including E-cadherin, alpha-catenin, beta-catenin,
gamma-catenin and neural cell adhesion molecule
(NCAM) has been associated with formation and
maintenance of chordoma tissue architecture and
found of diagnostic value for discriminating chordoma
from chondrosarcoma, along with the cytokeratins [89,
90]. However no significant correlation was found
between the decreased expression of CAMs, observed
in most chordomas and the histological grade of
malignancy, cellular growth pattern or clinical
parameters. Further studies tested the hypothesis that
the expression of certain growth factors and/or
structural proteins might be correlated with the
biological behaviour of chordomas. Investigations on
steroid hormone receptors, which are involved in
tumour growth, evidenced that progesterone receptor
B and oestrogen receptor alpha were expressed in
chordoma and hence associated with tumour
progression [91]. High levels of transforming growth
factor alpha and basic fibroblast growth factor
expression were linked to higher rates of recurrence
and strong fibronectin expression was also associated
with poor prognosis, being thus considered 
an additional marker of aggressiveness [92]. 

CCoonncclluussiioonnss  aanndd  ffuuttuurree  ddiirreeccttiioonnss

Chordoma is a peculiar tumour, which constitutes
a nosological entity by its own. Due to its rare
occurrence the tumour specimens which could be
processed for conventional and FISH-based
chromosomal analyses are yet scarce. When the
karyotype was aberrant, a wide variety of both
numerical and structural aberrations had been
detailed, but no distinctive sequence of aneuploidy or
common tumour-specific chromosome rearrangements
could be identified. Only one study based on standard
CGH analysis has been applied and revealed a good
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matching with the previous cytogenetic findings [48].
Analysis of additional tumour specimens is warranted
to select common regions of imbalance for more
detailed studies using array-CGH by full coverage of
specific BACs and targeted LOH. Positional candidate
genes should thus emerge, besides those residing in
genomic intervals, such as 1p36 and 7q33 which are
thought to be relevant for chordoma genesis and/or
progression and are currently under intense
investigation. It is currently likely that a gene at 7q33
is involved in susceptibility to chordoma, according
to the consistent linkage results obtained in 3 out of
the 8 families with chordoma so far studied [12]. 
The lack of LOH at 7q33 markers, if corroborated by
further data, would classify the predisposition gene as
an oncogene, consistent with the common gain of 7q
detected by cytogenetics and molecular cytogenetics
[48]. It is also well proven that the 1p36 interval is
preferentially lost in chordoma [46] and might thus
harbour at least one oncosuppressor whose role in
early or late stages of chordomagenesis should be
pointed out. Whether or not germline mutation in this
latter potential candidate might also sustain genetic
susceptibility awaits confirmation. The role of TSC1
and TSC2 genes in congenital or early onset
chordomas has been established [13]. LOH test at
both TSC genes should be a useful adjunct in
chordomas to screen the positive cases for germline
mutations allowing to establish the epidemiological
contribution of these two cancer genes to chordoma
onset. Position-independent candidate genes might
also emerge by other approaches: the rationale
behind it is their involvement in apoptotic pathways,
as their constitutional or somatic deregulation might
lead to defective notochord regression, i.e. the
premise for subsequent neoplastic transformation.
Once the pathogenesis of chordoma is elucidated,
cytological markers of prognostic significance might
be used in clinical practice. Therapeutic strategies
could benefit from these discoveries. Recently imatinib
mesylate (Gleevec, Novartis Pharma AG, Basel,
Switzerland) [93], a highly selective inhibitor of the
protein tyrosine kinase family that comprises Abl, the
platelet-derived growth factor receptor (PDGF-R) α
and β [94] and the product of the c-kit
protooncogene, KIT, has been found to have
anti-tumour activity in patients with advanced
chordomas [95]. All the six patients who were treated
had tumours found positive for PDGFRβ which was
shown to be phosphorylated in four of them. Further
investigation on the role of PDGFRβ in chordomas
should substantiate these findings, allowing to
prospectively register all those patients who might
benefit from imatinib mesylate treatment. 
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