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Abstract

The article overviews the potential biomedical applications of nanoscale gold particles for predictive, preventive
and personalised nanomedicine in cardiology. The review demonstrates the wide opportunities for gold
nanoparticles due to their unique biological properties. The use of gold nanoparticles in cardiology is promising to
develop fundamentally new methods of diagnosis and treatment. The nanotheranostics in cardiovascular diseases
allows the non-invasive imaging associated with simultaneous therapeutic intervention and predicting treatment
outcomes. Imaging may reflect the effectiveness of treatment and has become a fundamental optimisation setting
for therapeutic protocol. Combining the application of biomolecular and cellular therapies with nanotechnologies
foresees the development of complex integrated nanodevices. Nanocardiology may challenge existing healthcare
system and economic benefits as cardiovascular diseases are the leading cause of morbidity and mortality at
present.
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Introduction
Predictive, preventive and personalised cardiovascular
nanomedicine
Heart diseases are one of the main causes of death
worldwide; heart failure is associated with a significantly
reduced physical and mental health, resulting in a de-
creased quality of life [1,2]. Although many patients with
cardiovascular diseases survive for many years, progres-
sive disease is associated with an overall annual mortal-
ity rate of 10% [3]; heart failure is the leading cause of
hospitalisation in people older than 65 years [4]. One of
the outstanding achievements at the end of the last cen-
tury are the studies on properties of biological and syn-
thetic materials in nanometre. The rapid development of
nanoscience has caused the formation of fundamentally
new directions for biotechnology research nano-objects,
which are characterised by peculiar, often unexpected
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properties that are different from the properties of both
macro- and microscale particles.
Advances in nanoscience, nanotechnology and nano-

medicine lead to the construction of new materials and
devices for various scientific and therapeutic purposes,
which are applicable in molecular diagnostics, nano-
diagnostics and improvements in the discovery, design
and delivery of drugs, including nanopharmaceuticals,
promising to enhance the ability of clinicians to address
some of the serious challenges responsible for cardiovas-
cular mortality, morbidity and numerous societal conse-
quences [5]. Nanotechnology and nanomaterials have to
find a wide application in cardiology and vascular therapy
in the treatment of patients with venous and arterial
thrombosis, the manufacture of intravascular and intracar-
diac implants, the creation of vascular tissue, etc. [1,5].
In developing the paradigm of predictive, preventive

and personalised medicine, a crucial point is to diagnose,
observe the process of tissue transformation treatment
and analyse early parameters (biomarkers) to assess/
predict the treatment outcome, driven by a decision
making process [6]. One of the goals of personalised
medicine is highly specific and sensitive drug targeting,
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i.e. giving the patients the right drug for their disease at
the right dose and the right time.
Nanobiotechnology will facilitate the integration of

diagnostics with therapeutics for personalised medicine,
i.e. prescribing specific therapeutics best suited for an in-
dividual. Many of the developments have already started,
and within a decade, a definite impact will be felt in the
practice of medicine [7].
It was reported in the EPMA Journal [8] that bio-

markers can also be categorised as pharmacodynamic,
prognostic or predictive. Pharmacodynamic biomarkers
indicate the outcome of the interaction between a drug
and a target, including both therapeutic and adverse ef-
fects [9]. The study on drug delivery by nanoparticles is
a highly perspective direction of personalised medicine
in the future [10].
Optoacoustic phenomena and other still hidden proper-

ties of nanomaterials open new views on personalised and
predictive approach and could be the basis of creating
pharmacodynamic biomarkers ideal for use in diagnostics
and prognostics, being able to suggest the likely outcome
of a disease irrespective of treatment. Nanobiotechnology
forms the basis of many new devices being developed for
medicine and surgery such as nanorobots [7]. The aim of
the article is to give an overview of the potential biomed-
ical applications of nanoscale gold particles in cardiology
for predictive, preventive and personalised nanomedicine.

Gold nanoparticles: the types and physical, chemical and
biological properties
Nanotechnology has a very broad definition based on
scale, and nanomedicines are likewise based not only on
the type of medicine or their function but also on the
nanosize range. While most nanotechnology is expected
to have an upper size limit of 100 nm, in the drug deliv-
ery field, this is more generally accepted as medicines in
the size range from a few nanometres to 1,000 nm in
diameter.
Nanoparticles (NPs), thanks to their structural fea-

tures, have unique physical, chemical and biological prop-
erties and functional activity [7,11]. This phenomenon to
a large extent depends on the nanoparticle size and shape,
which are connected with surface area and quantum ef-
fects. Reducing the size of the nanoparticles leads to the
fact that, compared with internal content, a significantly
greater proportion of atoms (the components of the
nanoparticles) is on the surface. Thus, it is reported that
for particles with a size of 30 nm, about 5% of the atoms is
on their surface, and for those with sizes of 10 and 3 nm,
about 20% and 50% of the atoms is on their surface, re-
spectively [11-14]. Thus, nanometre-size particles have a
much larger surface area per unit mass than those of lar-
ger size. This presents unique properties of nanomaterials
and leads to the search of new and more advanced
methods of controlled synthesis and the establishment of
mechanisms of nanoparticle property dependence on size
and shape.
Among the nanocarriers, colloidal gold particles are a

lead candidate in the field of nanotechnology, thanks to
its chemical, physical, pharmacological and optical prop-
erties, and have broad prospects for introduction in
medical and veterinary practice. Their unique physical
and chemical properties, such as inertia, stability, biocom-
patibility, low level of cytotoxicity and others, cause sig-
nificant medico-biological potential of gold nanoparticles
and determine the prospects of their wide use as vectors
for targeted delivery of drugs, for the creation of biosen-
sors to detect toxins, as well as contrast agents which are
more effective than the standard drugs base on iodine-
derived compounds [2-8]. In particular, promising is the
creation of nanoconstructions based on gold nanoparticles
(AuNPs) and cardiotropic drug delivery to increase the
clinical efficacy of treatment of patients with heart failure
because of their unique biological properties [11,12].
All plasmonic (noble metal) nanoparticles distinguish

themselves from other nanoplatforms such as semicon-
ductor quantum dots and magnetic and polymeric nano-
particle by their unique surface plasmon resonance
[13-15]. Nanogold (gold nanoparticle, colloidal gold) has
been actively investigated in a wide variety of biomedical
applications due to its biocompatibility and ease of con-
jugation to biomolecules [11,16] and thus offers multiple
modalities for biological and medical applications [17].
Today we know a few gold nanoparticles, the char-

acteristics of which are due to their shape and size:
spheres, rods, hexagonals, etc. [11]. Thanks to their
unique physical properties, combined nanoparticles,
in which gold is used for the synthesis of the kernel or
to cover the surface of nanoparticles (thecal struc-
ture), have been intensively investigated [11]. The
non-cytotoxicity, non-immunogenicity and biocom-
patibility of many AuNPs make us relatively optimistic
concerning their future essential applications in
nanomedicine [11,18,19].

Preparation of AuNPs
As is known so far, the synthesis of gold nanoparticles
can be conditionally divided into two groups: dispersion
and condensation. Dispersion methods of obtaining gold
nanoparticles are based on the destruction of the crystal
lattice of the gold metal under the action of high-voltage
electric current. Condensation methods are more com-
mon than dispersion and are distinguished as physical
and chemical. The formation of nanoparticles in these
methods is carried out through a number of intermedi-
ate states that give rise to the nuclei of the new phase,
with spontaneous growth and orientation of the physical
surface of the phase.
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The condensation methods for the restoration of gold
halides (for example, HAuCl4) are mostly used with
chemical restoration and/or ultrasonic, ultraviolet radi-
ation, pulsed or laser radiolysis. For chemical restoration,
aluminium and borohydride, tetraborate, hypophosphites,
sodium citrate, formaldehyde, acetone, hydrogen peroxide
and a lot of other organic and inorganic compounds are
used. Methods of chemical condensation allow sufficient
resistance against the aggregation of gold nanoparticles to
be obtained.
The preparation of gold nanoparticles commonly in-

volves the chemical reduction of gold salts in aqueous, or-
ganic, or mixed solvent systems. However, the gold
surface is extremely reactive, and under these conditions,
aggregation occurs. To circumvent this issue, gold
nanoparticles are regularly reduced in the presence of a
stabiliser, which binds to the surface and precludes aggre-
gation via favourable cross-linking and charge properties.
Citrate, thiol-containing organic groups, encapsulation

within microemulsions and polymeric coatings are used
as stabilisers to passivate the gold nanoparticle surface.
In particular, gold nanoparticles may be encrusted with
biomolecules, with exciting prospects in biological sens-
ing and imaging [20].
Several synthetic strategies exist, such as the two-

phase liquid-liquid method initially described to create
metal colloidal suspensions by Faraday in 1857 [21].
Faraday reduced an aqueous gold salt with phosphorous
in carbon disulfide to obtain a ruby-coloured aqueous
suspension of colloidal gold particles. According to the
Brust-Schiffrin method [22] and its modifications [22,23],
gold nanoparticles have been synthesised with numerous
biomolecular coatings.
Using one of the above methods allows the appropri-

ate type of gold nanoparticles with the set physical and
chemical characteristics to be obtained. The most widely
used in medicine known at the moment are spherical
nanoparticles of gold in the dimensional range of 2 to
100 nm; the most common method of achieving which
is chemical recovery of water halide solution by the gold
sodium citrate method proposed by Turkevich and
Frens. Unique physical and chemical properties, such as
inertia, stability, biocompatibility, the low level of cyto-
toxicity and others, cause significant medico-biological
potential of this type of nanoparticles, especially at the
level of cellular biochemical processes, and determine
the prospects of their use as vectors for the targeted de-
livery of drugs.
We consider achieving the gold nanoparticles in our

work to be described by the following reaction:

2HAuCl4 þ 5K2CO3→2KAuO2 þ 5CO2 þ 8KCl
þH2O ð1Þ
2KAuO2 þ 2СH3СOСH3 þ K2CO3→2Au0

þ 3СH3СOOKþ KНCO3 þН2 ð2Þ

The structure of gold nanoparticles synthesised by re-
action (1) may be represented by the formula:

m Au0
� �

nAuO2
− : n� xð ÞKþ� �−x

xKþ; ð3Þ

where m is the number of molecules Au0; n is the num-
ber of excess ions AuO2

−, firmly absorbed on the surface
of the unit (usually m > n), which are potential forming;
x is the number of ions within the diffusion layer; (n-x)
is the number of counterions К+ absorbed at the layer.
The number of potassium ions (n-x) less than the num-
ber of absorbed ions AuO2

− (n) results in the nanoparti-
cle having a negative charge (s). The method used to
obtain gold nanoparticles allows stable aqueous disper-
sions of nanoparticles of a certain size to be obtained.
A general view of synthesised AuNPs with discrete

sizes 10, 20, 30 and 45 nm is presented in Figure 1. Gold
nanoparticles are unique in terms of functionalisation
(modification) of the surface, which is determined by
their chemical properties: the ability to easily communi-
cate with various ligand modifiers in soft conditions.
The force of binding depends on the activity of donor-
acceptor interactions in a ligand molecule, which can be
carboxyl acids, amines, phosphines or thiols, and on the
number of electron-donor sites in the ligand molecule that
binds to the surface of the particle. Functionalisation of
(option) the characteristics of nanoparticles, such as their
size and surface, can significantly change the character of
their influence on the biochemical processes of biological
systems and the features of contact interaction with bio-
logical systems at the cellular level, microorganism levels
and at the in vivo kinetics in general. This leads to the ex-
istence of considerable attention to the study on proper-
ties of compounds as a modifier and those modified
(functionalised) with the use of gold nanoparticles: firstly
on the toxic effect on cells and extracellular, membrane-
related and intracellular biochemical processes, as well as
studies on systemic impact on the organism as a whole
(the response of the immune system and the state of bio-
chemical indices of the blood and internal organs).
Thus, Vallhov et al. point to the need for the absence of
lipopolysaccharides on the surface of gold nanoparticles
in the case of their application in medical practice [24].
The gold nanoparticles coated with alternately located
subnanometre anion (sulfonate) and hydrophobic (brom-
ide) in groups are able to successfully pass through the
plasma membrane without destruction of the double layer,
show high resistance to adsorption of the plasma protein
and can be used to target the delivery of drugs into the
cytoplasm, which opens up new prospects in approaches



Figure 1 General view of AuNPs of discrete sizes: 10, 20, 30 and 45 nm.
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to the modification (functionalisation) of nanoparticle sur-
face [25].
Thus, the physicochemical properties of gold nano-

particles, the key of which are the size, form, charge and
structural peculiarities of molecules on the modifier sur-
face, significantly influence the efficiency and biochem-
ical mechanisms of the interaction of gold nanoparticles
with biological systems at different levels of the organ-
isation - from prokaryotic cells to the microorganism,
especially at the level of cellular biochemical processes.

Peculiarities of the interaction of gold nanoparticles with
biological systems and their influence on molecular and
biochemical processes
The behaviour of nanoparticles in contact with biological
systems at different levels of the organisation, their sta-
bility and internal and extracellular distribution are not
similar and essentially depend on the size, composition
and morphology of nanoparticles. At the level of the
macrobiosystem, there is a dependence of the interaction
of nanoparticles with biosystems on the methods of their
introduction into the body (intravenously, subcutane-
ously and intramuscularly). In addition, the arrival of
gold nanoparticles at the target destination in contact
with biological systems is connected to crossing the
organism's number of protective barriers, mainly the cell
membrane and reticuloendothelial system.
Different routes of administration can result in various

effects on the biodistribution of drug carriers. Injected
intravenous gold nanoparticles get into the vascular sys-
tem and are distributed to organs and peripheral tissues
of the body. In the bloodstream, they come in contact
with blood cells, platelets and coagulation factors and
plasma proteins. Serum proteins can absorb or opsonise
nanoparticles. It should be noted that under the condi-
tions of intravenous injection, nanoparticles are fairly
quickly eliminated from the blood circulation, to a large
extent by macrophages of the liver (Kupffer cells) and
spleen (border zone and the red pulp). Data show that
the hydrodynamic diameter of the particles and their
physicochemical characteristics affect their clearance
from the blood and, consequently, the elimination half-
life of nanoparticles in the blood, and with the whole
body, the diameter of the particles is inversely
proportional to the speed of glomerular filtration and
directly connected with their half-life in the flesh and
blood.
The role of endothelial cell monolayer vessels, which

act as a dynamic, semipermeable barrier that regulates
the transport of liquids, molecules and particles between
intravascular and extravascular space, should be noted.
In the case of normal, intact endothelium, nanoparticles
with size less than 5 nm can quickly get to the extravas-
cular space [26]. In the opinion of the Moghimi et al.,
very small nanoparticles (1 to 20 nm), especially in the
conditions of long circulation, can slowly penetrate from
vessels in the fabric of space, from where they are
transported through the lymph vessels to the lymph
nodes [27].
The influence of nanoparticle size on the nature of

their interaction with biological systems is illustrated by
the work of Praetorius and Mandal, who noted that
nanoparticles less than 20 nm can freely penetrate the
wall of the blood vessels, and the small size allows these
nanoparticles to be delivered not only intravenously but
also locally intramuscularly or subcutaneously [28]
under imaging guidance, which inspires new directions
for imaging-guided drug delivery systems with applica-
tion of sonoporation. The electron microscopic images
of AuNPs of different sizes interacting with cell line
U937 are presented in Figures 2, 3, 4; accumulation of
30-nm gold nanoparticles in the culture of eukaryotic
cells is demonstrated in Figure 5.
Data on the molecular-biochemical effects of gold

nanoparticles of different sizes are quite limited and
fragmented. The size of the nanoparticles can be com-
pared with the size of biomolecules - components of
eukaryotic and prokaryotic cells. The dimensional range
of gold nanoparticles (1 to 100 nm) stipulates a number
with special chemical properties and unique character of
influence at the molecular-biochemical level. Thus, the
gold nanoparticle average size of 9 nm inhibits the activ-
ity of cytochrome P450 isoenzymes (SRM 450 1A2, SUR
450 2C9, SUR 450 2C19 and SUR 450 3A4). The mech-
anism of inhibiting the impact of nanoparticles on the
activity of the hemeprotein should be clarified; however,
it is connected with the physicochemical characteristics
of these nanoparticles and the hydrophobic environment



Figure 2 Electron microscopic images of cell line U937 (×3,600).
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heme molecule P450 that provides the possibility for
gold nanoparticle to compete with the enzyme substrate.
Gold nanoparticles of 2-nm size, functionalised by 2-

malonic acid (10-mercapto decanol), have chaperone-
like properties and are able to influence the folding of
proteins and fіbrіlogenesis. The chaperone-like proper-
ties of gold nanoparticles open up new prospects in the
creation of drugs, including those for the treatment of
brain diseases.
The conjugation of gold nanoparticles with plasmid and

DNA nucleotide sequences increases the level of their
penetration in eukaryotic cells. Conjugates, obtained in
physiologically acceptable conditions, are able to pass
through the membrane without damaging and destructing
it. This opens new perspectives both for fundamental re-
search in the field of molecular biology and genetics as
well as for application to problems in the development of
Figure 3 Electron microscopic image of intracellular localisation of go
(A) and 10 nm (B). The cell concentration is 106 cells/ml of aquatic macrop
nanoparticles (final concentration is 12.7 g/ml for metal).
diagnostic tools. The resulting gold nanoparticles have
biological applications, for instance, in the detection of
polynucleotides via hybridisation to oligonucleotides
appended on the nanoparticle surface [29].
The research on pharmacological, biochemical, physi-

cochemical and colloidal-chemical mechanisms of inter-
action of nanoparticles with biological objects (cells of
the macro- and microorganism) will allow not only the
establishment of their positive or negative effect on
biostructure and the surrounding world but also the
possibility of wide application in medicine as effective
drugs, as the media for targeted drug delivery and
physiologically active substances up to the pathological
process.
Oxidative stress is one of the main factors in cellular

ageing and other cellular disorders [30]. While thera-
peutic treatments cannot be based exclusively on the
abatement of oxidative stress, neutralising this cellular
disorder could minimise collateral damages associated
with the transformation of biomolecules in the cytosol.
Traditionally, reactive oxygen intermediates were consid-
ered to be toxic by-products of aerobic metabolism,
which were disposed of using antioxidants.
Superoxide radicals and hydrogen peroxide [31] balance,

together with sequestering of metal ions, is thought to be
important to prevent the formation of the highly toxic hy-
droxyl radical via the metal-dependent Haber-Weiss or
the Fenton reactions. Also, gold nanoparticles have been
used in a model of diabetes showing an antioxidant effect
[32]. Considering the ability of gold to trap carbon-
centred radicals as well as to decompose hydroperoxides
[33,34], Au/CeO2 has some antioxidant activity against
cellular oxidative stress.

Coactivity with cerium dioxide nanoparticles
A significant number of reports describe that cerium
oxide nanoparticles (CNPs), either pristine or surface-
ld nanoparticles in the vacuole cell line U937. Nanoparticle size: 20
hytes in frozen storage buffer (FSB) within 3 to 5 min with gold



Figure 4 Electron microscopic image of intracellular localisation of 30-nm AuNPs in cell line U937 lysosomes. The cells in the final
concentration of 106 cells/ml of aquatic macrophytes in the FSB buffer within 3 to 5 min with gold nanoparticles (final concentration is 12.7 g/ml
for metal).
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modified with PEG or biopolymers, are biocompatible and
that they exhibit properties as superoxide dismutase to de-
compose reactive oxygen species (ROS) generated under
oxidative stress in cells [35-38]. Alili et al. reported that
nanoceria downregulates both the expression of alpha-
smooth muscle actin-positive myofibroblastic cells and
the invasion of tumour cells. Furthermore, concentrations
of nanoceria being nontoxic for normal (stromal) cells
Figure 5 Confocal microscopy images. Scanning on the z-axis at interva
Accumulation of 30-nm gold nanoparticles in the culture of eukaryotic cell
show a cytotoxic effect on squamous tumour cells. Treat-
ment with redox-active CNP may form the basis of stro-
mal cell protection from the dominating influence of
tumour cells in tumour-stroma interaction, thus being a
promising strategy for chemoprevention of tumour inva-
sion [39]. The application of redox-active CNP may form
the basis of new paradigms in the treatment and preven-
tion of cancers [40].
ls of 1 mm. Incubation of cells for 3 min with the drug nanoparticles.
s.
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We found [41] that synthesised nanocrystalline cerium
has antibacterial activity in vitro against different groups
of opportunistic microorganisms: clinical strains of
Escherichia coli, Staphylococcus aureus and Candida
albicans [41]. Antiviral activity of nanosize cerium diox-
ide sols in animal cell culture has been studied [42]. The
inhibiting effect of the mentioned sols against the
reproduction of vesicular stomatitis test virus was dem-
onstrated for the first time in the case of a preliminary
24-h contact with cells lines L929 and EPT. The effect-
iveness of protective action depends on the initial pre-
cursor and the way of obtaining the water nanosize
nanosols. Ceria-supported gold nanoparticles exhibit
peroxidase activity and act as radical traps. The antioxi-
dant activity of Au/CeO2 against ROS is demonstrated
by studying the cellular behaviour of Hep3B and HeLa
in a model of cellular oxidative stress. It is determined
that Au/CeO2 exhibits higher antioxidant activity than
glutathione, the main cytosolic antioxidant compound,
and its CeO2 carrier.
Au/CeO2 is a highly active heterogeneous catalyst

for many oxidation and reduction reactions, and there
are abundant literature data describing its preparation
and characterisation [43]. Thus, using well-established
nanoparticulated gold catalysts has a large potential
with remarkable biocompatibility in cellular biology.
Menchón et al. [43] described the antioxidant activity

of Au/CeO2 that is about 20% higher than the conven-
tional glutathione antioxidant and is notably efficient for
high ROS concentration. The authors suggest a way to
use ceria nanoparticles as biocompatible carrier and Au/
CeO2 as biocatalyst in other processes. Further studies
are necessary to assess whether the decrease in ROS
concentration caused by Au/CeO2 does not produce
transformation of biomolecules in the cell [43].
Antiangiogenesis
However, the results of Tsai et al. suggest that nanogold
has therapeutic potential in ameliorating rheumatoid
arthritis and may be applicable to the modulation and
inhibition of various vascular endothelial growth factor-
dependent chronic inflammatory diseases [44]. Authors
have shown that intraarticular delivery of nanogold is an
effective treatment strategy for collagen-induced arthritis
since nanogold binds strongly to thiols and amines [17,45],
inhibits vascular endothelial growth factor (VEGF)165-in-
duced endothelial cell proliferation by interacting with
sulphur/amines present in its heparin-binding domain and
thereby inhibits VEGF165-induced signalling [46,47].
Thus, nanogold has antiangiogenic effects; it may be

beneficial for the treatment of arthritis. Moreover,
nanogold inhibits VEGF-induced permeability in models
of ear tumour and ovarian tumour in mice [46].
The clinical applications of gold nanoparticles
Diagnostics
Gold nanoparticles are used to detect biomarkers in the
diagnosis of heart diseases, cancers and infectious agents
(e.g., home pregnancy test) [47]. A pioneering work to-
ward an assay of Alzheimer diseases using AuNPs has
been firstly reported by Van Duyne's group [48,49].
Multivalent AuNPs were found to inhibit HIV fusion
[50]. Successfully prepared AuNP probe for hepatitis B
virus DNA could be potentially applied to multi-gene
detection chips [51]. A successful application of the
AuNP nanoprobe by Baptista et al. was the sensitive de-
tection in clinical samples of Mycobacterium tuberculosis
[52]. Diabetes was characterised as a multifactorial dis-
ease using the AuNP nanoprobe method mentioned
above which involved capturing the analyte with a mag-
netic particle featuring recognition elements followed by
binding of a AuNP with a second recognition agent and
marker DNA strands for cancer detection [53].
Therapeutic agent delivery
Nanotechnology will assume an essential place in drug
delivery and human therapeutics. A wide variety of
nanoparticles exist already, and diverse methods of syn-
thesis have been developed [20] and are applicable for
personalised medicine in the future [10]. Over the past
decade, several delivery vehicles have been designed
based on different nanomaterials, such as polymers [54],
liposomes [55], nanotubes [56] and nanorods [57].
Therapeutic agents can also be coated onto the surface

of gold nanoparticles. The large surface area/volume ra-
tio of gold nanoparticles enables their surface to be
coated with hundreds of molecules (including therapeu-
tics, targeting agents and anti-fouling polymers) [58].
Therapeutic vectors carry drugs, genes and imaging

agents into living cells and tissues [59]. The drug vectors
should also be stable in the circulatory system yet be-
come labile under appropriate conditions when the
targeted organ is reached. The drug vectors carry the
drug by encapsulation or, more or less, strong binding
(covalent, coordination or supramolecular bond) [11].
The pharmacokinetic parameters of these nanoparticles

may be altered according to size, shape and surface
functionalisation [11,20,47]. Careful design of nanoparticle
delivery agents will result in successful localisation and
drug delivery to specific biological targets coupled with
the efficient evasion of the reticuloendothelial system. Dif-
ferent routes of administration can result in various effects
on the biodistribution of drug carriers.
Moreover, nanoparticles can be used to alter the kinetic

profiles of drug release, leading to a more sustained release
of drugs with a reduced requirement for frequent dosing.
Particularly interesting applications of nanoparticles in
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drug delivery relate to the central nervous system and the
cardiovascular system.

The basic requirements for medicines for delivery
systems New methods of drug and medicine delivery
create a new niche in the pharmaceutical market. If in
2006, more than 30 companies engaged in the develop-
ment and production of nanoparticles for delivery of
medicines, in 2011 this amount had risen to more than
70 [60,61]. Despite a number of advantages, in the sys-
tem of medicine delivery, there are certain deficiencies
related to the difficulty in controlling the synthesis of
the media from batch to batch. Earlier, the problem on
the stability of the nanomaterials was also mentioned.
Special attention should also be given to the toxico-
logical aspects of using nanoparticles, which is still in-
sufficiently studied. Note that nanomedicines should not
be immunotoxic. It is known that the reaction of the im-
mune system to nanoparticles depends on their size
[11,47]. In particular, nanoparticles with a diameter of
200 nm more strongly activate the complement system
and are quickly eliminated from the circulatory system.
It is also believed that decreasing the diameter of

nanoparticles increases its toxicity by increasing the spe-
cific surface. This, in turn, leads to the activation of
oxide recovery processes, in which there is participation
of the atoms of nanoparticles and the formation of free
radicals. There is also the problem of uncontrolled self-
assembly and the need for control over the functions of
nanoparticles, which are used for drug delivery [60,62].
The following are the requirements for the nano-

materials [63]:

� The therapeutic effect being compared to that of a
similar product which is used in medical practice
must be pronounced.

� The product should cause fewer side effects than a
similar drug.

� It must be stable and maintain the chemical
structure in the course a certain time.

� It must not adversely affect the clinical
pharmacological properties of the preparations,
which are used in medical practice.

� The pharmacoeconomic indicators of nanomaterials
should be positive.

� The dosage form of nanomaterials should be
convenient for use.

� It is also preferable that the technology of
nanomaterial production be available and
environmentally clean.

Size-related tissue permeation of gold nanoparticles
The size of the AuNPs, which are currently being stud-
ied and applied in biology and medicine, varies from 1.0
to 2.0 nm (nanoparticles used as X-ray contrast agents)
to shell structures with the size of 50 to 500 nm [11]. In
practice, the useful size of nanomedicines more normally
falls within the range of 5 to 250 nm as this tend to have
a similar range of properties based on physiological and
anatomical consequences [64].
Different routes of administration can result in various

effects. Permeation of gold nanoparticles through the
skin and intestine was found to be size dependent [65].
In vivo distribution largely depends on the particle size
and surface properties such as surface charge and surface
hydrophobicity [66,67]. Sonavane et al. [65] established
organ-specific delivery relating to NP sizes. According to
their data, gold NPs of 15-nm size are not cumulated in
the pancreas; 50-nm-size gold NP cumulates in the liver,
lung and spleen tissues; 100-nm-size gold NP also showed
higher accumulation in the liver, lung and spleen; and
200-nm-size gold NPs accumulate in the liver followed by
the spleen, lung and kidney. Two hundred-nanometre
gold NPs show a very short presence in organs including
the blood, brain, stomach and pancreas and are more
quickly eliminated from the circulatory system [11,47].
The blood–brain barrier (BBB) is a formidable chal-

lenge for many therapeutic agents [65]; nanotechnology
may breach this barrier and establish a new frontier for
neuropharmacologic agents. Several hypotheses exist for
gold NP permeation through the BBB. Nearly 100% of
the surface area of the capillary basement membrane is
covered by the end-feet of processes originating from
brain astrocytes, and these astrocytic end-feet are sepa-
rated from the capillary endothelium by a distance of
only 20 nm. Gold NPs with sizes of 15 and 50 nm were
able to pass the blood–brain barrier, as evident from
gold concentration in the brain [68]. Hence, smaller-size
gold NP may transfer through these gaps, making pos-
sible the delivery of entrapped activities into the brain
parenchyma without inducing BBB permeability alter-
ation [69].
It has been shown qualitatively (by light microscopy)

and quantitatively in a series of works that persorption
of metallic iron particles with diameters ranging from 5
to 110 mm can enter the body by means of paracellular
uptake by the lymph, blood and other bodily fluids
[70-73]. Nanoparticles smaller than 20 nm can freely
penetrate the wall of blood vessels [28].

Sonoporation Vibration caused by ultrasonic waves can
change the structure of the cell membrane and enhance
its permeation. In the last decade, a new ultrasound-
aided method, sonoporation, has been proposed and
utilised to transmit target molecules (such as drugs and
DNA) into cells for therapy [11]. However, since
nanoparticles less than 20 nm can freely penetrate the
wall of blood vessels [29], sonocavitation has to extend
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the size of the delivered particles and increase the
amount of transported NPs to the cells and mitochon-
dria by creating pores in cellular and subcellular mem-
branes, providing simultaneous imaging. Yu-Hsin et al.
[63] have shown an approximately 60% improvement in
terms of fluorescence signals from the cellular uptake of
gold nanoparticles after sonoporation treatment. Our re-
cent results demonstrated that polyplex gene transfer by
ultrasound (US) exposure is effective and illustrated the
potential of ultrasound-triggered gene delivery technol-
ogy for gene therapy [74]. Therefore, we conclude that
controlled release is feasible and can further improve the
therapeutic effects of nanoparticles.

Optoacoustic imaging In the application of AuNPs in
diagnosis, optical signals are important not only. An in-
teresting study was conducted by Eghtedari et al. (2007)
[75]. The authors suggest optoacoustic method in the
diagnosis of cancer. The method is based on the ability
of AuNPs under the influence of near-infrared light to
allocate heat. It in turn can be passed around tissues and
turned into sound waves that may be registered by an
ultrasound receiver. Thus, researchers combine the high
selectivity of gold nanorods and antibody bioconjugates
and high-resolution ultrasound examination. An opti-
mal configuration for gold nanorod (GNR)-enhanced
optoacoustic imaging was experimentally determined,
demonstrating in particular its feasibility with a con-
ventional echographic device. The proposed approach
can be easily extended to the quantitative performance
evaluation of different contrast agents for optoacoustic
imaging [76].

Contrast media Numerous plasmonic NPs have been
recently developed and tested as potential contrast
agents (CAs) for optoacoustic imaging [77]. In most
cases, gold is the metal of choice due to its high stability,
facile chemistry and easy bioconjugation [78,79] as well as
its generally benign toxicity profile [80]. Various types of
gold NPs have been experimentally tested as optoacoustic
CAs, such as nanospheres [81-83], nanoshells [83] and
nanocages [84], but the class of NPs most significantly ex-
plored for optoacoustic imaging applications is repre-
sented by GNRs [85,84].

Treatment
Gold nanoparticles are being investigated as carriers for
drugs [11,54-59]. Kogan et al. utilised AuNPs in weak
microwave fields in order to dissolve amyloid aggregates
[85]. The utility of gold nanoparticles for diagnostics
[11] and cancer treatment [86] were reported. The
methodology of treatment in the application of AuNPs
is the phenomenon of surface plasmon resonance. As
noted above, nanoparticles can absorb light of certain
wavelengths and convert its energy into localised heat.
High catalytic activity is another gold property, which

appears at the nanoscale. It is associated with a large
number of gold surface atoms, which interact with the
substrate. Certain techniques use the catalytic activity of
AuNPs. Gold combined with cerium oxide catalyses the
oxidation of carbon monoxide to carbon [87].

Theranostics The application of nanoparticles allowing
the combination of therapy and diagnosis, known as
theranostic, has received increasing attention in bio-
medicine [88].

Photodynamic therapy Near-IR absorbing gold nano-
particles (including gold nanoshells and nanorods) pro-
duce heat when excited by light at wavelengths from 700
to 800 nm. This enables these nanoparticles to eradicate
targeted tumours [89,90]. When light is applied to a
tumour containing gold nanoparticles, the particles rap-
idly heat up, killing tumour cells in a treatment also
known as hyperthermia therapy.
Gold nanoparticles are used in a variety of sensors [91]

and probes. Gold nanoparticles also scatter light and can
produce an array of interesting colours under dark-field
microscopy. The scattered colours of gold nanoparticles
are currently used for biological imaging applications
[92] in transmission electron microscopy. For instance,
antibody-modified AuNPs displayed a million-fold
higher sensitivity to the detection of prostate-specific
antigen [93].

Perspectives for predictive, preventive and personalised
medicine
Thus, the applications of personalised nanomedicine in
novel disciplines that concern cancer (nano-oncology)
[87], neurological disorders (nanoneurology), cardiovas-
cular disorders (nanocardiology) [94,95], diseases of the
bones and joints (nano-orthopaedics), diseases of the
eye (nano-ophthalmology), nanoendocrinology [32],
nanoimmunology and infectious diseases [7] can be
distinguished.

Nanocardiology
The rapid development of nanomedicine has not
bypassed cardiovascular diseases. Although the publica-
tions in the sphere of nanomaterial use are still quite
few, there are already attempts to use nanoparticles as
vectors in targeted delivery of cardioprotective drugs.
Gold nanoparticles are known to activate metabolic pro-
cesses, reduce blood pressure, improve blood circulation
and have expressed bactericidal effect. Nanobiotechnology
approach has the potential to improve the results of cell
therapy for myocardial infarction, which is on clinical
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trials currently [5]. It was reported that targeted im-
aging and therapy applications with perfluorocarbon
nanoparticles are relevant to a broad spectrum of car-
diovascular diseases, ranging from asymptomatic ath-
erosclerotic disease to acute myocardial infarction or
stroke [5]. Perfluorocarbon nanoparticles provide an
opportunity for combining molecular imaging and local
drug delivery in cardiovascular disorders. Utilising
targeted perfluorocarbon nanoparticles has been dem-
onstrated for a variety of applications in animal models
including the diagnosis of ruptured plaque, the quantifica-
tion and antiangiogenic treatment of atherosclerotic
plaque and the localisation and delivery of antirestenotic
therapy following angioplasty.
Nanoscale particles can be synthetically designed to po-

tentially intervene in lipoprotein matrix retention and lipo-
protein uptake in cells - processes central to atherosclerosis.
Nanoengineered molecules called nanolipoblockers can be
used to attack atherosclerotic plaques due to raised levels of
low-density lipoproteins [96]. An experimental study in rats
using injectable self-assembling peptide nanofibre
bound to platelet-derived growth factor demonstrated
sustained delivery to the myocardium, resulting in de-
creased cardiomyocyte death and preserved systolic
function after myocardial infarction [97]. In studies on
rats, cell therapy with insulin-like growth factor 1 deliv-
ery by biotinylated nanofibres improved systolic func-
tion after experimental myocardial infarction [98]. As
various mechanisms enabling cardiac regeneration are
becoming elucidated, novel technologies using degrad-
able microspheres for controlled release systems and
self-assembling peptide nanofibres for cell and factor
delivery were reported [99].
Nanoimmunology Cardiovascular diseases are strongly
connected to immune response. Pathogenesis of cardio-
vascular diseases is associated with the dysfunction of
cytokine production. In most autoimmune diseases, a
stereotyped response is observed in the form of a large
subpopulation of activated Th1 lymphocytes [100] not
rarely observed, decrease in the number of T lympho-
cytes, impaired T helper/suppressor ratio downward
suppressor activity and weakening response to mitogens.
In patients with autoimmune disease, often increased
levels of proinflammatory cytokines (TNF-α, IL-1, IFN-γ)
may result in the aberrant activation of the innate im-
mune response [101]. During a persistent heart muscle
damage, exposure of the intracellular content to dead
cells activates the innate immune response, such as the
activation of Toll-like receptors (TLR). In the heart,
TLR2 and TLR4 are perhaps involved in the host re-
sponse to myocardial infarction [102]. The activation of
TLR initiates the imbalance of TLR-induced cytokines.
We hypothesise that AuNPs may affect the calcium
channels and impact the imbalance of cytokines.

Nanoneurology Kogan reported the use of local heat
delivered by metallic nanoparticles selectively attached
to their target as a molecular surgery to safely remove
toxic and clogging aggregates, particularly the amyloid
beta protein involved in Alzheimer's disease, a neurode-
generative disease [86]. We hypothesise that due to NP
bioeffects against cellular oxidative stress, targeted
theranostic treatment for neuromuscular diseases (my-
opathy, neuropathy, latent trigger points) may be applied
in the near future after approval by evidence-based stud-
ies [103]. Combination with targeted biological therapies
such as the growth factor of platelet-rich plasma [104]
gives new opportunities for neuromuscular disease
management.
Nanoneurosurgery is a conceptual leap necessary for

neuroscientists as well as neurosurgeons in developing
and applying nanotechniques to neurosurgery at the nano
level. According to Andrews et al. [105], nanoscaffolds
offer mechanical enhancement of neurorepair; carbon
nanotube electrode arrays can provide nanolevel electrical
and chemical enhancement. Even the traditional ‘cut-and-
sew’ surgery is being taken down to the micron, if not
nano, level for single axon repair, and the technology can
use capillaries to deliver therapeutics to virtually any por-
tion of the nervous system with greater-than-pinpoint
accuracy.
Future calls for upcoming PPPM-related studies with

particular applications of AuNPs for therapeutic drug
delivery properties for multifunctional nanomedical so-
lutions related with genetics and cell biology are re-
quired in the following fields:

� Nanohepatology
� Nanonephrology
� Nanoallergology
� Nanogastroenterology

Reliable cardiovascular animal models
As the cardioprotective properties of gold nanoparticles
are still not conclusively confirmed, particularly for heart
failure as well its role in drug delivery, that calls for
study in a reliable model. In cardiovascular research, ani-
mal models have allowed the study of cardiovascular dis-
ease in the early stages, as well as the investigation on
the mechanisms of the pathogenesis of cardiovascular
disease and the effects of drug intervention. Doggrell
et al. [106] suggest that an ideal animal model for any
cardiovascular disease in humans should follow five
characteristics: (1) mimic the human disease; (2) allow
studies in chronic, stable disease; (3) produce symptoms
which are predictable and controllable; (4) satisfy



Figure 6 Ultrasound survey of an immobilised rat (A) and
echocardiography (B). After [109].
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economical, technical and animal welfare considerations;
and (5) allow measurement of relevant cardiac, biochem-
ical and haemodynamic parameters. As cardiovascular
disease is uncommon in young humans but markedly in-
creases with age [107], age-related changes of an animal
should be considered.
However, existing models focus mostly on local heart

function assessed by echocardiography, and the dynamic
in vivo examination of systemic circulation of the ani-
mals was not sufficiently evaluated. Without the use of
visual navigation methods, injection methods are still
limited by introduction of agents orally, into the tail
vein, intraperitoneally and subtentorially. We did not
find any data regarding the use of precision injection
under US guidance for rat model of heart failure.
Recently, we performed a study describing the use of

general-use US equipment to study in vivo a novel medi-
cine testing in mice [108] and described and patented
the method of doxorubicin heart failure rat model using
general-use US equipment focusing on peripheral circula-
tion assessment (Figures 6, 7, 8). The suggested optimal
cardiotoxic dose of doxorubicin for extended and longitu-
dinal observation of rats has not been determined [109].

Assessment of nanomaterial risks
Particular attention in the context of medical use should
be given to the toxicity of nanogold. Nanotubes, because
of their surface properties and very small size, may bind
and transport toxic chemical compounds and be toxic
themselves by generating free radicals [102], inducing
oxidative stress, and this is a disadvantage for their ap-
plication in medicine [110]. Seaton et al. established po-
tential factors of nanoparticle toxicity [111], which
include length (greater than 15 μm - below it, the fibre
can be removed by pulmonary macrophages), diameter
(less than 3 μm - allows fibres to be inhaled into the
gas-exchanging part of the lung), insolubility, resistance
to dissolution in the lung environment and sufficient
dose of delivery to the target organ. A number of studies
indicate that AuNPs have low cytotoxicity [15] and high
biocompatibility. Despite this, there is insufficient re-
search on the toxicity of nanogold in vivo, which is a ne-
cessary step before clinical re-housing of drugs in
AuNPs [7,112,113]. The Au/CeO2 complex showed re-
markable biocompatibility as demonstrated by measur-
ing cellular viability, proliferation and lack of apoptosis
for two human cell lines (Hep3B and HeLa) [43].

Cytotoxicity
The long history of (almost legendary) gold colloid use
for therapeutic purposes suggests that AuNPs should be
biocompatible. The potential of AuNPs in nanomedicine,
especially for imaging, diagnostic and therapy, however,
requires their toxicity to be thoroughly examined with
maximum care and accuracy. The cytotoxicity of AuNPs
has been examined and reviewed by several research
groups [114]. Since everything is toxic at a high dose,
the important question is whether AuNPs are toxic at
the concentration at which they will be used, believed to
be in the range of 1 to 100 AuNPs per cell. Also, in vivo
conditions are different from in vitro results, and in par-
ticular, more in vivo studies are called for. Thus, no gen-
eral conclusion can be drawn at present. It has been
suggested, however, that it could be applicable to use
AuNPs as reference nanoparticles for low cytotoxicity in
the setup of a nanoparticle toxicity scale, given the
higher toxicity of carbon nanotubes and quantum dots
compared to non-cationic AuNPs. Finally, AuNPs are



Figure 7 Ultrasonogram of a rat with congestive heart failure. (A) The inferior vena cava expanded to 4.5 mm. (B) Dilated hepatic veins -
indirect signs of venous congestion in a large circulation. (C) Mild ascites in a rat. A strip of liquid is revealed near the liver - an indirect sign of
venous congestion in a large circulation [109].
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active redox and therefore reduce the production of re-
active oxygen and nitrite species [114].
For given physicochemical and biochemical parame-

ters, the most pronounced toxic effects on biological
systems are characterised by different amounts of 10-nm
gold nanoparticles. Gold nanoparticles with sizes of 30
and 45 nm have the most biocompatible biological na-
ture, indicating the prospects of their use as vectors in
targeted cardiotherapy.
Duffin et al. showed that the surface area metric drives

the overload response. The extent of inflammation was
demonstrated as being a function not of the mass dose in-
stilled but interestingly of the surface area dose instilled.
Since low-toxicity nanoparticles present a ‘special’ case of
high surface area, they are relatively inflammogenic [115].
Thus, to the toxicity survey, it appears that AuNPs usually
show rather little toxicity, if any, because many cytotox-
icity studies report negative cytotoxicity finding results.
Endnotes
Considering the data reviewed above, pharmacological,

pharmaceutical and toxicological aspects of the applica-
tion of gold nanoparticles in biomedical purposes still
remain poorly understood. Thus today, there is an actual
in-depth study on the mechanisms of action of new
drugs on the basis of nanoparticles and their side effects
and the development of pharmaceutical technologies,
obtaining adequate dosage forms to be successfully used
in medical practice. We consider the aim of upcoming
work (project) to develop fundamentally new science-
based approaches to design biosafe and biocompatible
nanoconstructions based on gold nanoparticles for
targeted delivery of cardiotropic agents.

The goals for the next study
The following are goals for the next study:

1. To develop new evidence-based approaches for the
synthesis of biologically safe and biocompatible gold
nanoparticles and the creation of nanoconstructions
based on gold nanoparticles and cardiotropic drugs to
improve their delivery for cardiovascular pathologies

2. Identify biosafety, biocompatibility and biological
effectiveness of nanoconstructions created from gold
nanoparticles and the cardiotropic drug Simdax
(‘AuNPs-Simdax’ conjugate)

3. Conduct preclinical trials of the developed AuNPs-
Simdax conjugate in experimental heart failure in
animals, assessing the suggested rat model for
application effects and comparing with Simdax - a
proven medication for congestive pleural effusion-
using general US equipment

4. To test sonoporation effect to increase nanoparticle
delivery into myocardial cell in rats

The stages for the implementation of the project are
as follows:

� Development of original protocols for colloid-
chemical synthesis of gold nanoparticles of different
sizes

� Determination of physicochemical and biological
characteristics of the synthesised gold nanoparticles



Figure 8 Ultrasound guided injection in a rat. Injecting into the
pleural cavity (A) and spreading to the pericardial cavity (B) through
the pore (thin arrow); the big arrow indicates fluid in the pericardial
cavity [109].
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in their interaction with biological systems at
different levels of the organisation

� Evaluation of the distribution of gold nanoparticles
in the bodies of the laboratory animals in case of
intravenous and imaging-guided administration

� Development of scientifically based approaches to
design conjugate based on biosafe gold nanoparticles

� Definition of features of gold nanoparticle and
model protein conjugates and study the aggregative
stability of gold nanoparticles in model systems of
blood

� Establishment of immunogenic properties of AuNPs
and AuNPs-Simdax conjugate in the experimental
model

� Determination of the targeted delivery of AuNPs
and AuNPs-Simdax conjugate to myofibrils of
cardiac muscle in experimental models

� Assessment of the impact of AuNPs and AuNPs-
Simdax on the myofibrils of the heart muscle

� Definition of hypoxic, infarction changes at the
morphological and ultrastructural level

� Definition of the biosafety of AuNPs and AuNPs-
Simdax conjugate

� Determination of the toxicity and effectiveness of
AuNPs and AuNPs-Simdax

� Determination of the impact of AuNPs and AuNPs-
Simdax on the immune resistance of organism

� Optimising the design of AuNPs and AuNPs-Simdax
in the context of clinical trials

� Conduction of preclinical trials of AuNPs and
AuNPs-Simdax

� Testing sonoporation effect to increase nanoparticle
delivery into myocardial cell in an animal model

Consolidation of the PPPM concept
Personalised medical approach
Imaging/sonoporation combined with direct visualisa-
tion of target tissues and optoacoustic phenomena to de-
tect nanoparticles in vivo and its potential to be a
contrast agent for US/MRI imaging is a significant op-
portunity for personalised theranostics.

Predictive medical approach
Optoacoustic phenomena are a relevant basis for con-
trast imaging with biomarker registration with high pre-
dictive value potential. Extensive application of sensor
based on AuNPs allows us to think about developing
novel technologies for minimally invasive diagnostic/
treatment procedures.

Preventive medical approach
Strong antioxidative effects combined with high bio-
safety are a crucial challenge in anti-ageing strategy. Fur-
ther studies are necessary to clarify the molecular
mechanisms of AuNP effects and its relevant dosage.

Future outlooks and recommendations
Further studies dedicated to the mechanism of the
cardioprotective effects of gold nanoparticles for deliver-
ing drugs and testing on different animal heart failure
models, especially with relation to the age of the animal,
are required. Molecular mechanisms are still not clear,
and further studies are required. Different approaches
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for drug delivery may be suggested and should be tested,
based on combination of expressions by different phys-
ical properties, e.g. sonoporation or colloid conjugation,
liposomes, etc.
Study on interactions with other nanomaterials (e.g.

cerium dioxide, carbon nanomaterials) and combination
with other biological (gene, regenerative) therapies are
recommended. After approval, agent safety development
medications with future clinical testing should be initi-
ated to implement theranostic approach for routine
practice.
With the concluding points, we can formulate the fol-

lowing proposals (expert recommendations):

1. For the European Union (EU): Create an
international project to study gold nanoparticles for
the development of nanoconstructions to treat
patients with heart failure. Extend studies to
nanoparticle application in neurodegenerative, heart,
liver and kidney diseases and muscle dystrophy,
combining with biological therapies to achieve
sustainable effects from theranostic approach.

2. For Ukraine: Participate in project with partners in
EU to follow up experimental and clinical trials and
involve related institutions and centres to the study.

Conclusions
The review demonstrates the wide potential of nanoscale
gold particles for biomedical applications because of
their unique biological properties. The use of gold
nanoparticles in cardiology is promising to develop fun-
damentally new methods of diagnosis and treatment.
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