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Super-peer overlay provides an efficient way to run applications by exploring the heterogeneity of nodes in a Peer-
to-Peer overlay network. Identifying nodes with high capacity as super-peers plays an important role in improving
the performance of P2P applications, such as live streaming. In this paper, we present a super-peer selection
algorithm (SPS) to select super-peers for quickly building a super-peer overlay. In the SPS, each peer periodically
builds its set of super-peer candidates through gossip communication with its neighbors, in order to select super-
peers and client peers. Simulation results demonstrate that the SPS is efficient in selecting super-peers, and in
quickly building a super-peer overlay. The proposed SPS also possesses good scalability and robustness to failure of

1. Introduction
Peer-to-Peer (P2P) overlay technologies have been
widely applied for constructing large-scale network ap-
plications and services (e.g., Skype [1], BitTorrent [2],
Gnutella [3], and PPLive [4]) because of their inherent
decentralization and redundant structures [5,6]. A lot of
efforts have been made on P2P overlay construction
(e.g, [7-12]). Super-peer overlay (e.g, Kazaa [13]) is an
important type of P2P overlay. In a super-peer overlay,
there are two types of peers: client peers and super-
peers. Each client peer should connect to a super-peer
in order to communicate with other peers in the overlay.
A super-peer acts as the centralized server for its client
peers and connects to other super-peers in the same way
as in the pure P2P network [14]. Client peers with low
capacity are shielded from massive query traffic by
super-peers, which improves the scalability of the sys-
tem and makes it feasible to connect e.g, mobile devices
to a P2P network. In the paper, the capacity of a peer
refers to the combination of its available computatio-
nal resource, network connections, and lifespan in the
network.

Super-peer overlay enables applications to run more
efficiently by exploring the heterogeneity of nodes in the
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overlay network. For example, in file sharing applications
(e.g, Gnutella [3]), Skype voice streaming, and live video
streaming applications [15], the performance of these
applications is improved through assigning nodes with
high network bandwidth, long on-line time, or high pro-
cessing capability as super-peers. Thus, super-peer se-
lection in a given overlay is an important issue when
building a super-peer overlay. On the other hand, par-
ticularly in dynamic network environment, it is common
that peers join or leave (e.g, a failure of a super-peer) a
super-peer overlay [9,16,17]. To achieve a robust overlay,
it should also be taken into account how to handle the
failure of peers in the super-peer overlay construction.
Therefore, efficient super-peer selection method in order
to quickly build a robust super-peer overlay is an im-
portant research issue.

Many studies have been undertaken on building a
super-peer overlay [7,8,10,12,14,18-22]. The principles
and guidance of designing a super-peer overlay were
addressed by Kirk [3] and Yang et al. [14], but no experi-
mental results were reported. Some efforts utilized net-
work proximity for building a super-peer overlay, e.g,
[8,12,18,21]. Client peers are connected with super-peers
based on their distances. However, these studies focused
on reducing communication latency between nodes by
exploring network proximity rather than the efficiency
of quickly building a super-peer overlay by exploring the
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capacity of nodes. Super-peer selection has to make a
trade-off between reducing communication latency and
selecting powerful super-peers. Other studies investi-
gated the semantic similarity of peers when building a
super-peer overlay, e.g, [7,10,23]. Client peers that share
the same interest are connected to same super-peers.
However, these studies aimed to improve the search effi-
ciency rather than the efficiency of quickly building a
robust super-peer overlay. In addition, some super-peers
could be overloaded because of popular content. The
connections between super-peers and client peers in a
super-peer overlay were also investigated [19,22,24,25].
However, these studies assumed that a super-peer over-
lay already exists and focused on managing an existing
overlay instead of building an initial super-peer overlay.
Wang et al. [15] presented a Labeled Tree to build a
super-peer overlay. However, they aimed to achieve reli-
able high speed transmission in live stream rather than
the efficiency of quickly building a super-peer overlay. In
their study, super-peers are selected only based on the
online-time, which did not take account of other infor-
mation of nodes, e.g, processing capacity, bandwidth.
Montresor [11] proposed a gossip based algorithm SG-1
for the efficiency of quickly building a super-peer over-
lay. In SG-1, peers decide whether they should take a
role of a super-peer by comparing their capacities with a
randomly sampled neighbor peer, which is simple but
takes long time to select needed super-peers. A super-peer
searches and adds client peers only among its one-hop
neighbors. All the peers in the overlay take the role of a
super-peer in the beginning of the overlay construction.

In this paper, we focus on studying the efficiency of
quickly building a robust super-peer overlay by taking
account of capacity of nodes. Only peers that have high
capacity (compared to neighbor peers) are selected as
super-peers. The reason for this is that peers with a high
capacity can contribute more to applications and enable
applications to run more efficiently [3,15]. To this end,
we present an efficient super-peer selection algorithm
(SPS) to select peers with high capacity as super-peers
for quickly building a robust super-peer overlay.

In the SPS algorithm, each peer maintains a set of super-
peer candidates. Peers disseminate the information of
super-peer candidates through a gossip method Newscast
[26], which is efficient in information dissemination and
enables peers to capture the dynamicity of a P2P overlay
as well. Each peer periodically rebuilds its set of super-peer
candidates and decides whether it takes the role of a
super-peer based on its set of super-peer candidates, which
differs from the super-peer selection method presented in
SG-1 [11]. After that, peers execute the corresponding op-
erations according to their roles: joining a super-peer or
recruiting client peers. In the SPS, all the peers act as a cli-
ent peer in the beginning of the overlay construction.
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Opverall, the proposed SPS algorithm has the following
contributions:

(1) The SPS algorithm introduces a set of super-peer
candidates for each peer to select super-peers,
which enables the algorithm to select peers with
high capacity as super-peers and consequently
reduces the time of super-peer selection.

(2) The SPS algorithm employs a conditional two-top
search method for super-peers to find and add
client peers, which reduces both the time for
building an overlay and the communication
overhead.

(3) The SPS algorithm achieves a comparable
robustness, and better performance in terms of
convergence time, scalability, compared to related
work SG-1 [11].

This paper extends our previous work [20]. In this
paper, we provide a more in-depth development and
analysis of our SPS algorithm. We also carry out addi-
tional experiments to evaluate the performance of our
SPS algorithm compared to related work SG-1 [11]. The
remainder of the paper is organised as follows: in
Section 2, we briefly explain a communication method,
called Newscast, utilized by the SPS, and present the
SPS algorithm. In Section 3, we evaluate performance of
the SPS in terms of convergence time, communication
overhead, scalability, and robustness. In Section 4, we
conclude the paper with future directions.

2. The SPS algorithm

In this section, we first give the background of a gossip
based communication method utilized in the SPS (called
Newscast [26]), and then present the design rationale.
After that, we provide the general idea of the SPS algo-
rithm. Finally, we depict the details of the SPS algorithm
for super-peer overlay construction. We consider a set
of nodes connected through an existing network, and as-
sume that each node stores identifiers of its neighbors.
Each node can directly or indirectly communicate with
other nodes via its neighbors. In this paper, we consider
a dynamic network environment and nodes may join or
leave the overlay network at anytime. A node’s informa-
tion, such as its identifier, available resources, current
role (i.e, client peer or super-peer), neighbors, and life-
span are assumed to be disseminated through Newscast.
A peer can capture the dynamicity of the network
through message exchange of Newscast.

2.1. Background of a communication method utilized by
the SPS algorithm

In our work, we use Newscast [26] (a gossip protocol that
maintains a dynamic random topology) for information
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dissemination between peers. Newscast has been used for
P2P applications, such as broadcast [24] and aggregation
[26] for its effective information dissemination. Further-
more, Newscast is designed for dynamic environment and
enables peers to capture the dynamicity of an overlay, e.g,
joining of a new node or leaving of a node [26].

The general idea of Newscast is as follows: in News-
cast, each node maintains a partial view that is con-
stituted of a fixed-size set of peer descriptors. A peer
descriptor is composed of the information of the address
of a node, a timestamp identifying when the descriptor
is created, and application specific information. Each node
periodically exchanges and merges its partial view with a
randomly selected node to get an up-to-date partial view
and a better approximation of the target topology. More
information can be found in Jelasity et al. [26].

2.2. Design rationale

We build a super-peer overlay as an additional overlay
imposed on top of an existing connected topology (i.e., a
random graph), which is maintained by Newscast. In a
random graph, peers are randomly connected with each
other. The neighborhood of a node in the SPS algorithm
is set as follows: if a node is a super-peer, it connects to
a random sample of other super-peers and to the set of
client peers that are managed by this super-peer. If a
node is a client peer, it connects to only one super-peer.
The initial role of all the nodes is a client peer. The SPS
uses a node’s capacity as a criterion for selecting a
super-peer candidate and a super-peer. The SPS selects
as few super-peers as possible when building a super-
peer overlay, which aims to maximize the contribution
of nodes with high capacity. Inspired by the method
called VoRonoi Regions for mobile network [27], the
SPS selects super-peers first during the super-peer over-
lay construction. Note that the reason for building a
super-peer overlay on top of a connected overlay is to
avoid a danger of disconnection if a large number of
super-peers are failed.

The SPS overlay interacts with the Newscast overlay
(i.e, the connected overlay) to disseminate information
of the set of super-peer candidates utilized by the SPS.
Specifically, when a node disseminates the information
of a set of super-peer candidates (which contains sam-
ples of super-peer candidates), this node needs to inter-
act with Newscast overlay to get a random peer from
the connected Newscast overlay. Then, this node sends
its partial view to the randomly selected node to ex-
change and update their descriptors. Finally, the descrip-
tor of this node contains not only an identifier, a time
stamp, but also a set of super-peer candidates, which in
its turn is used by the upper SPS overlay for selecting
super-peers.
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2.3. Overview of the SPS algorithm

The general idea of the SPS algorithm for selecting
super-peers and client peers is as follows: all the nodes
in the overlay periodically perform operations (1) and
(2) described below until the super-peer overlay is built.

(1) A node n; rebuilds its super-peer candidates CanSP
(n;) through communication with its neighbors for
their super-peer candidates. Nodes with higher
capacity (chosen from retrieved super-peer
candidates) are promoted as super-peer candidates
(i.e., added into CanSP(%;)).

(2) By checking whether there is a change in the rebuilt
CanSP(n;) retrieved in (1) (i.e., whether new super-
peer candidates are rebuilt into CanSP(#;) or not), n;
will perform one of the operations (a) or (b) given
below.

(a) If there are new super-peer candidates added in
CanSP(n,), n; notifies its neighbors of the new
super-peer candidates and has its role
determined again. Specifically, if #; is a client
peer and belongs to CanSP(#;), n; changes its
role to become a super-peer. If #; is a super-peer
but it does not belong to CanSP(#;), n; changes
its role to become a client peer and transfers its
client peers (if any) to other super-peers.

(b) If CanSP(n;) is not changed, n; proceeds as
follows: if #; is a super-peer, it searches and adds
client peers until #; is fully loaded or no more
client peers can be found. If #; is a client peer
and belongs to CanSP(n,), n; changes its role to
become a super-peer. If #; is a client peer and
does not belong to CanSP(x,), and has not joined
a super-peer, #; searches and joins a super-peer.

Note that initially each node #; takes the role of a cli-
ent peer and sets its super-peer candidates CanSP(n;) to
be itself and its super-peer to be null. Then, each node
starts to perform the SPS algorithm described above to
build a super-peer overlay. The super-peer candidates of
each node are rebuilt periodically and the role of each
node could be changed dynamically during the super-
peer overlay construction. When a new node #; joins the
overlay, it declares itself as a client peer, sets its super-
peer candidates CanSP(#;,) to be itself and its super-peer
to be null. Then, this node executes the SPS algorithm.

2.4, Detailed description of the SPS
Before presenting the details of the SPS algorithm, the
notations used in the SPS are summarized as follows:
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(1) n; denotes a node in an N-node P2P overlay
network. #; has only one of the exclusive roles:
client peer or super-peer. #; has two optional states,
i.e, State(n;) = {normal, failed}. The former denotes
that #; is part of the overlay without suffering from
a failure, and the latter denotes that #; is failed.
Each client peer maintains three sets of data: its
neighbors, its super-peer, and a set of super-peer
candidates. Each super-peer in its turn maintains
the data of its neighbors, a set of super-peer
candidates, and a set of client peers.

(2) SP(n;) denotes the super-peer of node n;.

(3) C(n;) represents the capacity of node n,. C(n;) is the
aggregation of three resource metrics:
computational resource (CPU cycles, storage),
network bandwidth, and lifespan. It is represented
as follows:

C(n;) = Zizlwk*vk’ (1)

where wy is the weight of the K resource metric, and v,
is the value of the k”* resource metric. Each metric of C
(n;) has a different weight, which can be set according to
specific applications. The value of C(#,) is set in the be-
ginning of building a super-peer overlay. For simplicity,
we omit computation details of C(n;) and assign the
number of client peers that n; can manage to C(n,),
which does not affect the presentation of the SPS.

(4) CanSP(n;) denotes the set of super-peer candidates
of n;. It is used to judge the role of n;. Nodes with
high capacity are promoted as super-peer
candidates. The number of super-peer candidates
included in CanSP(#,) is computed as:
superfpeefsl’}Zch);ime capacity Each node stores the
overlay size and computes the number of super-peer
candidates when building a super-peer overlay. It
should be noted that in real life, the overlay size is
retrieved by utilizing an underlying gossip
aggregation protocol to compute the number of
nodes in the overlay.

(5) Ld(#;) denotes the workload of node #;, which
shows how many client peers is managed by #;. If
the workload Ld(#,) is lower than C(1;), n; is set as
under-loaded, otherwise #; is set as full-loaded.

Figures 1 and 2 show the detailed actions of a client
peer and a super-peer that are running the SPS algo-
rithm for building a super-peer overlay. Table 1 summa-
rizes all the basic operations used in Figures 1 and 2.
According to Figure 1, a client peer »; running the SPS
algorithm acts as follows: (1) in the case when #; has
joined a super-peer SP(n,): if SP(n;) is failed, n; calls a

Page 4 of 12

super-peer-failure handler, otherwise 7; does nothing. (2)
In the case when #; has not joined a super-peer, (2.1) #;
checks whether there is a message about a failed super-
peer. If there is such a message, n; removes the failed
super-peer from CanSP(n;). (2.2) n; checks whether there
is a message about a new set of super-peer candidates. If
such a message exits, n; updates its CanSP(n;). (2.3) n;
checks whether the super-peer candidates of its neigh-
bors have higher capacity than its CanSP(n;). If the
super-peer candidates of /s neighbors have higher ca-
pacity than CanSP(n;), n; retrieves a new CanSP(n,)
based on super-peer candidates of its neighbors and has
its role judged again according to the new CanSP(#,).
Otherwise, n; searches and joins a super-peer.

As shown in Figure 2, an under-loaded super-peer #;
running the SPS algorithm proceeds as follows: (1) simi-
lar to the operation of a client peer shown in Figure 1,
super-peer n; checks whether there is a message about a
new set of super-peer candidates. If such a message
exits, n; updates its CanSP(n;). (2) Similar to the ope-
ration of a client peer shown in Figure 1 again, super-
peer n; also checks whether super-peer candidates of its

Input: A client peer n;

Operation:
if SP(n;) # null then
if State(SP(n;)) ==failed then
SPFailureHandler(n;).
else Do nothing and return.
end if
else

RemoveFailedSPIfExist(n;).

if UpdSP = RetriveUpdateSPc(n;) then
UpdateSPCandidates(n; , UpdSP).

end if

if ExistBiggerSPCandidate(n;) ==true then

CanSP(n;) = RetriveNewSPCandidates(n;).
NotifyNewSPcandidates(n;).

if ;€ CanSP(n,) then

ChangeRole(n;).
end if
else
if n; € CanSP(n,) then
Search&JoinUnderLoadedSP(n;).
else
ChangeRole(n;).
end if
end if
end if

Figure 1 The action of a client peer running the SPS.
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Operation:

end if

Input: A super-peer n; and n; is under-loaded

if UpdSP = RetriveUpdateSPc(n;) then
UpdateSPCandidates(n; , UpdSP).

if ExistBiggerSPCandidate(n;) == true then
CanSP(n;) = RetriveNewSPCandidates(;).
NotifyNewSPcandidates(n;).
if n, € CanSP(n;) then

Figure 2 The action of a super-peer running the SPS.

neighbors have higher capacity than its CanSP(n;). If the
super-peer candidates of #n/s neighbors have higher ca-
pacity than CanSP(n;), n; retrieves a new CanSP(n;) and
has its role determined based on the new CanSP(x;). If
n; cannot keep the role of super-peer, n; transfers its
client peers (if any) to other super-peers and changes its
role to be a client peer. In contrast, if super-peer candi-
dates of ns neighbors do not havehigher capacity than
CanSP(n;), the role of m; is not changed. Then, n;
searches and adds client peers until #; is fully loaded or
no more client peers can be found.

Note that the operation AddClientnodes(#;) (shown in
Figure 2) employs a conditional two-hop search method
for a super-peer to find client peers. That is, #; increases
search step from one hop to two hops in the condition

TransferClients(r;). of a worst case. Herein, the worst case is that a super-
ChangeRole(n,). peer n; manages some client peers and #; finds that all
. neighbors of #; have joined super-peers after it searches
end if its neighbors. The worst case would increase the conver-
else gence time of building a super-peer overlay dramatically
if only one-hop search method is used.
AddClientnodes(n;). In the face of the worst case described above, if #;
. changes its role to be a client peer and searches a super-
end if

peer, both the convergence time of the SPS algorithm
and the network traffic would increase. Specifically, on

one hand, n; needs to transfer its client peers to other
super-peers, which would increase the network traffic.
On the other hand, after n; changes its role to be a client
peer, n; needs to perform the SPS algorithm to find a
super-peer, which in its turn would increase the

Table 1 The primitive operations used in the SPS algorithm

Operation

Description

AddClientnodes(n;)

ChangeRole(n)

ExistBiggerSPCandidate(n))

NotifyNewSPcandidates (n,)
RetriveUpdateSPc(n;)

RetriveNewSPCandidates(n;)

RemoveFailedSPIfExist(n;).

Search&JoinUnderLoadedSP(n))

SPFailureHander(n)

TransferClients(n,)

UpdateSPCandidates(n;,UpdSP)

Node n; adds client nodes until n; is full-loaded or no more client nodes can be found. Specifically, n; first
searches its neighbors to find and add nodes. After that, if n; is still under-loaded, n; searches its neighbors'
neighbors to find and add client nodes.

Node n; changes its role.

n; sends messages to its neighbors to check whether its neighbors' super-peer candidates have higher capacity
than CanSP(n)). If that is the case, true is returned. Otherwise, false is returned.

n; notifies its neighbors to update their sets of super-peer candidates to be CanSP(n).

Node n; checks whether there is a message about new super-peer candidates UpdSP. If such a message exists,
UpdSP is returned. Otherwise, null is returned.

Node n; computes its new set of super-peer candidates CanSP(n;) according to its retrieved set of super-peer
candidates through communication with its neighbors.

Node n; checks whether there is a message about super-peer failure. If such a message exists, the failed super-
peer contained in the message is removed from the super-peer candidates of n;.

Node n; sends query messages to super-peers contained in its super-peer candidates to check these nodes’
workloads. If a super-peer that is under-loaded is found, n; joins this super-peer.

When the super-peer of n; (ie, SP(n) fails, n; removes SP(n,) from its set of super-peer candidates and empties
its super-peer. n; also notifies its neighbors of the failure of SP(n)).

When a super-peer n; has to change its role to be a client peer, n; transfers its client peers (if any) to super-
peers that are randomly selected from its set of CanSP(n).

Node n; updates its set of super-peer candidates to be UpdSP, which is an ordinary set to store updated super-
peer candidates.
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convergence time of the SPS. In contrast, when #n;
increases the search step conditionally to two hops, a
faster convergence time at the expense of network traffic
is achieved by the SPS. Specifically, n; searches the
neighbors of its neighbors to find more client nodes in
the face of the worse case, which reduces the conver-
gence time of building a super-peer overlay. On the
other hand, only a little more communication overhead
is generated when increasing the search step conditio-
nally to two hops, because super-peers that perform the
two-hop search take only a very small portion of the
whole peers. More importantly, our work aims to
quickly build a super-peer overlay. Thus, we employ a
conditional two-hop search method for a super-peer to
find client peers in AddClientnodes(#;).

3. Performance evaluation

In this section, we describe simulations conducted for
evaluating the feasibility and performance of the SPS al-
gorithm. First, we introduce experimental settings. Then,
we evaluate performance of the SPS from four aspects:
convergence time, communication overhead, scalability,
and robustness, respectively.

3.1. Experimental setup

We use PeerSim [28] to carry out simulations. In PeerSim,
one simulation round means that all the nodes finish
performing deployed protocols once. Four performance
metrics are emphasized in the experiments: (1) con-
vergence time of the SPS and the impact of parameters
(e.g, the maximum capacity of super-peers) on the SPS’s
convergence time, compared to related work SG-1 [11];
(2) communication overhead compared to SG-1; (3) sca-
lability in comparison to SG-1, and (4) the SPS’s robust-
ness to failure of super-peers compared to SG-1. The
overlay size for simulations is set as 10° unless separately
specified. All the peers take the role of client peer in the
beginning of simulations. The initial overlay topology
adopted in the simulation is a random graph, where all
the peers are randomly connected with each other. The
initial random graph topology provides a good chance to
verify the efficiency of the SPS because the initial overlay
is far from the converged super-peer overlay.

3.2. Evaluation of the convergence time
In this section, we evaluate how fast the SPS can converge,
and how parameters affect the convergence time of the
SPS. Two types of distributions for nodes’ capacity are eva-
luated: the uniform distribution and the power-law distri-
bution. Simulation results are depicted in Figures 3 and 4.
Figure 3 shows the convergence of the SPS, i.e, the
variation of the number of client peers that have joined
super-peers as the simulation goes on. It should be
noted that simulations converge in the condition that
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no more client peers will join a super-peer. Specifically,
when the capacity of peers follows the uniform distri-
bution, it takes about 7 simulation rounds for all the
client peers to finish selecting and joining super-peers
(i.e, building a super-peer overlay). When the capacity
of peers follows the power-law distribution, it takes
about 4 rounds. The results show that the SPS performs
well when measured with the convergence time for
building a super-peer overlay. At simulation round 4,
client peers that have joined super-peer in uniform dis-
tribution are almost the same as those in power-law
distribution. However, in uniform distribution, the SPS
algorithm continues running until by simulation round
7 because there are still nodes that have not joined
super-peers at simulation round 4. This result shows
that different distributions of peers’ capacity lead to dif-
ferent convergence times (i.e, different numbers of
needed simulation rounds). In other words, distribution
of peers has an impact on the convergence time (i.e.,
simulation rounds) of the SPS algorithm [29]. The
number of selected super-peers in power-law distribu-
tion is 370 according to the SPS algorithm. In contrast,
the number of selected super-peers in uniform distribu-
tion is only 201. The reason is that in power-law distri-
bution, only a small portion of peers have a relatively
high capacity, and more super-peers are selected for
managing client-peers when building the super-peer
overlay. The result shows that the number of selected
super-peers is related to the distribution of peers’
capacity.

Figure 4 shows the impact of super-peers’ maximum
capacity on the SPS’s convergence time compared to SG-1
[11]. Figure 4a depicts the number of selected super-peers
in the target super-peer overlay as maximum capacity of
super-peers increases. Figure 4b illustrates the number of
needed simulation rounds for convergence as maximum
capacity of super-peers increases.

The result shown in Figure 4a is as expected: the larger
the maximum capacity of super-peers (i.e, a super-peer
can manage more client peers according to the capacity
defined in Section 2.2), the fewer super-peers are selected
in the converged super-peer overlay.

According to Figure 4b, when the maximum capacity
of super-peers increases, more simulation rounds are
needed for convergence. Specifically, the SPS takes a few
more simulation rounds to converge (i.e., from 8 to 9
rounds), but SG-1 gains an obvious increase in simula-
tion rounds for convergence (i.e, from 8 to 14 rounds).
This result shows that the SPS is less affected by the
variation of super-peers’ maximum capacity compared
to SG-1.

The reason for different convergence times between
the SPS and SG-1 is that different super-peer selection
and search methods are used in the SPS and SG-1.
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Specifically, when the maximum capacity of super-peers
increases (i.e, a super-peer can manage more client
peers), the number of the required super-peers de-
creases. In the SPS, a set of super-peer candidates is
built for selecting peers with very high capacity as super-
peers, and a conditional two-hop search method is
employed for super-peers to quickly find client peers.
Even when the number of the required super-peers de-
creases, most of the super-peers can still be selected
through super-peer candidates during the first few simu-
lation rounds. As soon as super-peers are selected, client

peers can quickly join a super-peer and super-peers can
quickly find and add client peers with a conditional two-
hop search method (which makes the SPS converge even
faster). However, for SG-1, when the number of the re-
quired super-peers decreases, more super-peers need to
change their role to be client peers, since the initial role
of all the peers is a super-peer. Moreover, super-peers
only compare their capacities with one of their neigh-
bors to determine their role and search client peers
among its one-hop neighbors. Thus, it requires more
simulation rounds of message exchanges to finish
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selecting super- peers. Therefore, it takes longer for SG-1
to converge compared to the SPS when the maximum
capacity of super-peers increases.

3.3. Evaluation of the communication overhead

In this section, we evaluate the communication overhead,
i.e., the number of messages that are transmitted between
peers during a super-peer overlay construction. Three
types of communication overhead are evaluated: (1) the
total number of probes per node for query about the load
of neighbor super-peers, (2) the number of gossip mes-
sages per node for building super-peer candidates, and (3)
the number of client peer transfers per node. Herein, the
term client peer transfer means that client peers are trans-
ferred to other super-peers when their super-peers change
their roles to be a client peer. For simplicity, we use the
average value of these three types of communication over-
head for presenting results. Figure 5 shows the results and
the comparison between the SPS and SG-1.

According to Figure 5, one can find out that: (1) for
the SPS algorithm, the number of probes is independent
from the overlay size and approximately one probe per
node is sent for query about workload of super-peer (as
shown in Figure 5a. (2) Taking account of the total com-
munication overhead (i.e., the sum of the three types of
communication overhead), as shown in Figure 5a and b,
the SPS is comparable to SG-1. Specifically, the number
of communication messages generated in the SPS for
building super-peer candidates per node is a little bit
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large. However, the number of client peer transfers in
the SPS (i.e., 0.04 on average) is much smaller than that
of SG-1 (ie, 9.5 on average). In other words,
maintaining the set of super-peer candidates in the SPS
generates more communication overhead; nevertheless it
makes a significant positive effect on reducing the num-
ber of client peer transfers (as shown in Figure 5b).

The reason for the much lower number of client trans-
fers in the SPS compared to SG-1 is as follows: the SPS
selects peers with the highest capacity among its neigh-
bors to be super-peer candidates and then picks up
super-peers from the super-peer candidates. Thus, only
a small portion of super-peers change their roles to be a
client peer and the number of transferred client peers
(because of role change of these super-peers) is low.
However, in SG-1, one peer exchanges gossip messages
with randomly selected neighbors to decide whether it
keeps the role of super-peer or changes its role to be a
client peer. Thus, one peer could frequently change its
role when it compares its capacity with different neigh-
bors. Consequently, client peers managed by these super-
peers generate a large number of client peer transfers.

3.4. Evaluation of the scalability

In this section, we verify the scalability of the SPS in
terms of convergence time. In other words, we examine
the variation of the SPS’s convergence time while the
number of peers increases from 1,000 to 100,000. Two
types of distributions for peers’ capacity are examined:
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the power-law distribution and the uniform distribution.
In addition, we compare the scalability of the SPS with
that of SG-1. Figure 6 and Table 2 show the results and
the comparison between SPS and SG-1.

According to Figure 6 and Table 2, one can find out
that: (1) the SPS scales well and the number of needed
simulation rounds for building a super-peer overlay
grows gradually when the number of peers increases
from 1,000 to 100,000. Specifically, the number of simu-
lation rounds increases from 2.0 to 7.0 rounds for the
uniform distribution, and from 3.0 to 12.0 rounds for
the power-law distribution. (2) The deviation on the
simulation rounds for convergence in the SPS is smaller
than that in SG-1 when the total number of peers in the
overlay increases (as shown in Table 2). For example, for
the uniform distribution, the number of simulation
rounds in the SPS increases from 2.0 to 7.0 rounds with
a standard deviation of 2.5, and it increases from 7.0 to
19.0 rounds with a standard deviation of 6.0 in SG-1, as
shown in Table 2. This result shows that the SPS has
better scalability than SG-1.

The rationale behind result (1) mentioned above is
that although there is a huge increase in the number of
nodes in the overlay, most of the required super-peers
can still be selected during the first few simulation
rounds by all the peers executing the SPS algorithm.
The rest of the required super-peers can be selected in
the following simulation rounds. After that, client peers
join super-peers, and super-peers search and add client
peers using a conditional two-hop search (as explained
in the end of Section 2). Therefore, the increase in the
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overlay size has only a little impact on the needed simu-
lation rounds for building a super-peer overlay.

The reason for result (2) mentioned above, is as fol-
lows: in the SPS, most of the required super-peers can
be selected in the first few simulation rounds using the
set of super-peer candidates. As soon as super-peers are
identified, client peers can join super-peers and super-
peers can search for client peers. However, for SG-1,
when the overlay size increases, firstly, more super-peers
need to change their roles to be client peers since the
initial role of all the nodes is a client peer. Hence, more
simulation rounds are inflicted on the convergence time.
Secondly and more importantly, in SG-1, super-peers
only compare their capacities with one of their neigh-
bors to determine their role, which increases the time of
selecting peers with high capacity as the target super-
peers and the convergence time. In addition, in SG-1, a
super-peer 7; only searches client peers among its one-
hop neighbors. When #; is still under-loaded after
searching all its one-hop neighbors, #; has to wait for cli-
ent peers to join it. Thus, it takes longer for n; to find
client peers. As the overlay size increases, nodes like #;
increase and much more time is required for SG-1 to
converge. Taking into account the three factors men-
tioned above, it takes longer for SG-1 to build a super-
peer overlay when the overlay size increases.

3.5. Evaluation of the robustness

In this section, we verify the robustness of the SPS in
the face of super-peers’ failure and compare the result
with that of SG-1. We examine three catastrophic
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Table 2 Scalability of the SPS compared to SG-1

Algorithm Capacity Simulation rounds Simulation rounds Simulation rounds Standard deviation of the simulation
distribution needed with 1,000 needed with 10,000 needed with 10,0000  rounds needed as the overlay size
peers peers peers increases
The SPS Uniform 20 4.0 70 25
Power-law 3.0 7.0 120 4.5
SG-1 Uniform 7.0 120 190 6,0
Powerlaw 90 180 240 76
scenarios: (a) 10% of super-peers are removed at the According to Figure 7 and Table 3, one can find out

sixth simulation round, (b) 20% of super-peers are re- that: the robustness of SPS is comparable to SG-1 in the
moved at the sixth simulation round, and (c) 30% of face of super-peer failure when taking into account both
super-peers are removed at the sixth simulation round. the convergence time and the impact of super-peers’ fail-
Results are shown in Figure 7 and Table 3. ure on client peers. For example, in the case of the
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Table 3 Robustness of the SPS to failure of super-peers compared to SG-1

Algorithm Simulation rounds needed
when 10% of super-peers are

Simulation rounds needed
when 20% of super-peers are

Standard deviation of
the simulation rounds

Simulation rounds needed
when 30% of super-peers are

failed failed failed
The SPS 17.0 16.0 15.0 10
SG-1 220 240 250 1.5

failure of 30% super-peers as shown in Figure 7 (c), the
number of client peers without a super-peer (because of
super-peer failure) in SPS (around 3/5 of client peers) is
larger than that of SG-1 (around 1/5 of client peers).
That is, there is a sharp decrease in the number of client
peers that have joined a super-peer in our SPS compared
to a slight decrease in SG-1. In other words, the super-
peer failure in SPS makes worse impact on client peers
than that in SG-1. However, the needed simulation
rounds for restoring stable state in our SPS (restored at
round 10) are fewer than those in SG-1 (restored at
round 12). In summary, our SPS takes fewer simulation
rounds to restore in the face of larger number client
peers without a super-peer (because of super-peer fail-
ure) compared to SG-1.

The rationale behind result (1) mentioned above is as
follows: when some super-peers are failed at the sixth
simulation round, they are removed from the overlay.
On one hand, the client peers, whose super-peers have
crashed, remove the failed super-peers from their sets of
super-peer candidates and rebuild their sets of super-
peer candidates by executing the SPS algorithm. Then,
these client peers select and join new super-peers. On
the other hand, most of the required super-peers can be
selected during the first few simulation rounds. Thus,
even more super-peers fail; there is only a little variation
in the number of the required simulation rounds for the
overlay to converge again. Based on the simulation re-
sults above, we can conclude that our SPS is robust to
failure of super-peers and our SPS is efficient in re-
organizing a super-peer overlay.

4. Conclusion and future work
In this paper, we have presented a gossip-based super-
peer selection algorithm (SPS) for quickly building a
super-peer overlay upon a connected overlay. In the
SPS, each peer periodically rebuilds its set of super-peer
candidates through gossip communication. Peers with
high capacity are promoted to be super-peer candidates.
The decision whether a peer takes the role of a super-
peer is made based on its set of super-peer candidates.
Once the roles of peers are determined, peers join a
super-peer, or search and add client peers with a condi-
tional two-hop search method according to their roles.
The conducted simulations show that the proposed
SPS is efficient in both selecting super-peers and quick
building a super-peer overlay. Furthermore, our SPS

achieves a comparable robustness and better perform-
ance in convergence time, scalability compared to SG-1
[11].

In the future work, we will reduce the communication
overhead for building the set of super-peer candidates,
and take account of the stability of a super-peer overlay
using a local search method. Moreover, it would also be
interesting to apply a greedy approach in selecting
super-peers in our SPS algorithm in order to improve
the performance of quickly building a super-peer
overlay.
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