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Abstract

Background: Prenatal growth restriction and low birth weight have been linked to long-term
alterations of health, presumably via adaptive modifications of the epigenome. Recent studies indicate a plasticity
of the 11p15 epigenotype in response to environmental changes during early stages of human development.

Study design: We analyzed methylation levels at different 11p15 loci in 20 growth-discordant monozygotic twin
pairs. Intrauterine development was discordant due to severe twin-to-twin transfusion syndrome (TTTS), which was
treated by fetoscopic laser coagulation of communicating vessels before 25 weeks of gestation. Methylation levels
at age 4 were determined in blood and buccal cell-derived DNA by the single nucleotide primer extension reaction
ion pair reverse-phase high performance liquid chromatography (SNuPE IP RP HPLC) assay. Methylation at LINE-1
repeats was analyzed as an estimate of global methylation.

Results: In general, variance of locus-specific methylation levels appeared to be higher in buccal cell- as compared
to blood cell-derived DNA samples. Paired analyses within the twin pairs revealed significant differences at only one
CpG site (IGF2 dmr0 SN3 (blood), +1.9% in donors; P=0.013). When plotting the twin pair-discordance in birth
weight against the degree of discordance in site-specific methylation at age 4, only a few CpGs were found to
interact (one CpG site each at IGF2dmr0 in blood/saliva DNA, one CpG at LINE-1 repeats in saliva DNA), with 26 to
36% of the intra-twin pair divergence at these sites explained by prenatal growth discordance. However, across the
entire cohort of 40 children, site-specific methylation did not correlate with SD-scores for weight or length at birth.
Insulin-like growth factor-ll serum concentrations showed significant within-twin pair correlations at birth (R=0.57)
and at age 4 (R=0.79), but did not differ between donors and recipients. They also did not correlate with the
analyzed 11p15 methylation parameters.

Conclusion: In a cohort of 20 growth-discordant monozygotic twin pairs, severe alteration in placental blood
supply due to TTTS appears to leave only weak, if any, epigenetic marks at the analyzed CpG sites at 11p15.

Background

The association between low birth weight and an in-
creased risk of developing metabolic and cardiovascular
disease later in life has been known for decades [1].
However, the molecular mechanisms underlying the
phenomenon of fetal programming remained largely
unknown. In recent years, an increasing number of
studies identified epigenetic alterations at certain loci to
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be involved in this process of programming and adapta-
tion [2-5].

The 11pl5 chromosome region harbors a set of
imprinted genes involved in the expression of insulin-like
growth factor (IGF)-II and fetal growth. Gene expression
at this locus is controlled by differentially methylated re-
gions (dmrs), and disturbances of these control elements
resulting from either genetic or epigenetic mutations are
known to cause fetal growth disorders such as Beckwith-
Wiedemann syndrome (BWS) or Silver-Russell syndrome
(SRS) [6]. Tissue-specific 11p15 imprinting abnormalities
have also been implicated in the development of different
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human tumors [7,8]. Interestingly, Heijjmans and col-
leagues [9] reported on persistent epigenetic differences at
the 11p15 locus among adults six decades after pericon-
ceptional exposure to nutrient restriction during the
Dutch famine in the winter of 1944 to 1945, and subse-
quent studies revealed folic acid supply before conception
and during pregnancy to be associated with the methyla-
tion pattern at the 11p15 region in infants [10,11].

Here, we analyzed the methylation status at different
11p15 regions in a cohort of monozygotic twin pairs dis-
cordant for prenatal growth due to a severe twin-to-twin
transfusion syndrome (TTTS). TTTS twins suffer from a
substantial asymmetry in fetal blood supply caused by
communicating placental vessels, which can lead to hyper-
volemia, heart insufficiency and hydrops fetalis in the re-
cipient, and to critical hypovolemia, nutrient restriction
and growth arrest in the donor twin. Since the 1990s,
endoscopic laser coagulation of the communicating ves-
sels has become a standard treatment option in many in-
dustrialized countries worldwide [12,13]. Although still a
medical challenge, TTTS twins offer a unique goal to
analyze the influence of prenatal environmental changes
on the epigenome.

Methods

Twin cohort

We analyzed 20 monozygotic twin pairs with discordant
intrauterine growth due to severe TTTS. In brief, TTTS re-
sults from communicating placental vessels and threatens
the donor’s and recipients health by either hypovolemia,
anhydramnios, nutrient restriction and growth retardation,
or hypervolemia, heart insufficiency and hydrops fetalis.
Fetoscopic laser coagulation of the communicating placen-
tal vessels was performed before 25 weeks of gestation in
all 20 pregnancies (range 17.1 to 24.9 weeks). Further
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information on treatment regime and study design is
given elsewhere [13-15]. Mean age at birth was 34.8 weeks
of gestation (SD + 2.1 weeks; range 29.7 to 37.4 weeks).
Mean birth weight was 1,970 g (SD + 500 g; range 790 to
3,060 g). Birth weight differences between donor and
recipient ranged from 0 to 62% (mean 20.5%). On examin-
ation, mean age of the children was 4.4 years (SD +
0.6 years; range 2.7 to 5.1 years). Auxological data in-
cluding calculations of intra-twinpair differences were
expressed as standard deviation score (SDS) according to
national reference percentiles ([16,17]; Table 1). At birth,
parameters between donor and recipient were classified as
discordant if either birth weight difference was >10% [18]
or birth length differed by >1.0 (SDS). At age 4, classifica-
tion of discordance was based on body length (SDS) only.

Written informed consent was obtained from the
twins’ parents. The study was approved by the ethics
committee of the University of Bonn.

Hormone measurements

IGF-1II serum levels in serum samples were determined by
a commercially available RIA kit (Mediagnost, Germany).
Neonatal hormone measurements from 16 out of 20 twin
pairs of the current study cohort have been included in
previous reports focusing on the impact of impaired pre-
natal growth on the physiology of IGF-I and -II [14,19].

Quantitative methylation analysis

DNA from blood and saliva samples was extracted using
commercially available kit protocols (QiaAmp DNA
Blood®, Qiagen, Hilden, Germany; Oragene®, DNA Gen-
otek, Ottawa, Canada). Whereas blood-derived DNA
was available from all 20 twin pairs, suitable amounts of
saliva DNA were obtained in only 34 of 40 childen (16
complete twin pairs). For methylation analysis, a total of

Table 1 Auxological parameters at birth and at age 4 years according to the former twin-to-twin transfusion syndrome

status
Recipient Donor P

Gestational age at laser treatment (weeks) 2096 +2.27

Gestational age at birth (weeks) 3454+2.16

Birth weight (g) 2,141 £ 428 1,780 £ 522 <0.001
Birth weight SDS -062+0.80 -1.514£091 <0.001
Birth length (cm) 4542 £3.08 4263 +£4.28 <0.001
Birth length SDS -048+1.11 -147+£127 <0.001
Age at follow-up 441+£059

Height SDS 4 years -039+0.86 -1.01+1.10 <0.001
Weight SDS 4 years -0.14 £ 067 -097£083 <0.001
BMI SDS 4 years -0.11+081 -0.74+0.71 0.001
IGF-Il'in cord blood (ng/ml) 322.69+5792 322.81 +£4497 0.995
IGF-Il at age 4 years (ng/ml) 533.10+95.82 539.95 +98.69 0.825

Data are given as mean + SD. BMI, body mass index; IGF, insulin-like growth factor; SDS, standard deviation score.
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1 pg DNA was chemically modified by bisulfite conver-
sion using the Epitect® kit (Qiagen). The basic principle
of bisulfite modification is the chemical conversion of
unmethylated cytosine residues to uracil, whereas methyl-
ated cytosines remain unchanged [20]. This step allows
accurate quantitative measurement of locus-specific
cytosine methylation by several PCR-based downstream
reactions [21-23].

Locus-specific methylation was determined at several
CG dinucleotides within the H19 and IGF2 differentially
methylated regions and the KCNQ1OT1 promoter using
the SIRPH (SNuPE IP RP HPLC) assay. A detailed de-
scription of this method is given elsewhere [23]. In brief,
a single nucleotide primer extension reaction (SNuPE)
of bisulfite-converted DNA followed by ion pair reverse-
phase high performance liquid chromatography (IP RP
HPLC) enables discrimination and quantitative assess-
ment of formerly methylated versus unmethylated CpGs
depending on specific mass and hydrophobicity of the
extended primer product.

Figure 1 displays the positions of the analyzed CpG
sites at the chromosome region 11p15.5. Exact target
CpG site positions and nucleotide sequences of amplifi-
cation and extension primers used in the SNuPE IP RP
HPLC assay are listed in Additional file 1: Table S1. Se-
lection of target CpG sites was based on methodological
(avoidance of further CpG dinucleotides within the ex-
tension primer complementary regions) and functional
aspects. SN is the internal abbreviation for the SNuPE
extension primers used; the SN-number corresponds to
the relative position of the CpG site within the PCR
amplicon. CpG sites SN1 and SN3 at the IGF2 dmrO re-
gion are identical with CpG sites 1 and 3 in the study of
Hoyo and colleagues [11] and have also been analyzed
by Hejmans and co-workers in their Dutch famine co-
hort [9]. CpG sites targeted with H19 SN5 and SN12 are
located within the H19 promoter region and a CTCF6
binding site approximately 800 bp upstream of the tran-
scription start site. The CpG sites at KCNQ1OT1 (SN16
and SN1) are located in a CpG island surrounding the
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transcription start site of the antisense KCNQ1OT1 tran-
script. This CpG Island shows a relatively uniform pattern
of methylated maternal and unmethylated paternal alleles,
with loss of maternal methylation in many patients with
Beckwith-Wiedemann syndrome [24]. Because of its high
CpG-density and difficulties with the selection of CpG-
free amplification and extension primers, methylation
levels at this region were analyzed using the corresponding
5'3" bisulfite DNA strand, explaining the reversed order
of appearance (SN16, SN1) in text and figures. Extension
primers SN1 and SN13 for the assessment of LINE-1
methylation are identical to extension primers SN9 and
SN8 used in a previous study [25]. The term “mean
methylation” at a specific region refers to the average
methylation levels calculated from ((SNA + SNB)/2).

Statistical analysis

Data analyses were performed using the SPSS software
version 20 (SPSS IBM, Armonk, NY, USA). Unless other-
wise defined, auxological and biochemical data, including
intra-twin pair differences are expressed as mean + SD.
Differences between groups and between twin pairs were
analyzed by analysis of variance (ANOVA), Student’s ¢ test
and Mann-Whitney U-test. Relations within twin pairs
were examined by paired ¢ tests and correlation analyses
(Spearman; Pearson). P values < 0.05 were considered sta-
tistically significant.

Results

Auxological parameters and circulating insulin-like
growth factor-II levels

Detailed information on auxological development and
hormone measurements in serum samples drawn at birth
and at the follow-up examination 4 years later is given
elsewhere [14,15]. In brief, 11/20 pairs had differences in
birth weight of 210% or in birth length of 1.0 SDS. At a
mean age of 4.4 years, only 5/20 pairs were still discordant
for body length. Auxological parameters of the current co-
hort are displayed in Table 1. As reported earlier, birth
weight differences and IGF-I concentrations in cord blood
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Figure 1 Location of the analyzed CpGs at the 11p15.5 region. Exact positions of the target CpGs as well as nucleotide sequences of the
amplification and extension primers used in the single nucleotide primer extension reaction ion pair reverse-phase high performance liquid
chromatography (SnuPE IP RP HPLC) assay are listed in Additional file 1: Table S1. DMR, differentially methylated region; ICR, imprinting control region.
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were significantly associated with the growth pattern dur-
ing the first 4 years of life [19].

In the initial study cohort consisting of 27 twin pairs,
IGF-II concentrations in cord blood showed a relatively
strong intra-twin pair correlation (R=0.58; P<0.01)
[14]. Although the majority (16/20) of twin pairs of the
current cohort have been part of this initial collective, a
similar strong correlation (R=0.57; P<0.05) was de-
tected only after excluding three outlier pairs with the
highest discordance for cord blood IGE-II levels (delta
100 ng/ml or higher). IGF-II cord blood concentrations
were not different between donors and recipients
(Table 1). They did not correlate with SD scores for
weight or length at birth, and intra-twin pair differences
in cord blood IGF-II levels were also not related to the
degree of discordance in birth weight or birth length
SDS (all P>0.2).

At age 4, the IGF-II intertwin correlation was mark-
edly stronger (total cohort R =0.79; P<0.01; Additional
file 2: Figure S1). However, neither IGF-II concentrations
nor intertwin differences correlated significantly when
comparing neonatal values against those determined at
age 4 years. There were also no differences between the
donors’ and recipients’ IGF-II concentrations at age 4
(Table 1). Neither IGF-II concentrations at birth nor
those determined at the follow-up examination corre-
lated significantly with any of the following variables:
gestational age at laser treatment, gestational age at
birth, birth weight or birth length (all P > 0.2).
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Methylation analyses

Variability of methylation levels across different 11p15
regions and tissues

For each analyzed 11p15 region, methylation levels of two
separate CpG sites were determined by the quantitative
SNuPE IP RP HPLC assay. When comparing methylation
levels between two CpG dinucleotides within one sample
and one region, we detected significant correlations for
most regions in either saliva or blood DNA (Figure 2).
However, only a few CpQ sites showed significant interac-
tions across different 11p15 regions (Figure 2) and, with
the exception of one LINE-1-CpG (LINE-1 SN13 blood
versus saliva R = 0.468, P <0.01), we also did not observe
significant intra-individual correlations across different tis-
sues (data not shown). In general, variance of methylation
levels appeared to be markedly higher in saliva as com-
pared to blood DNA. This is also reflected by generally
higher intra-twin pair differences at the majority of CpG
sites in saliva-derived DNA, regardless of the status of dis-
cordance for auxological parameters at birth (Additional
file 1: Table S2). Accordingly, inter-twin correlations were
stronger in blood- as compared to saliva-derived DNA
samples (Additional file 1: Table S3).

Methylation levels according to timing of laser treatment,
age and gender

Gestational age at laser treatment and at birth did not
correlate significantly with methylation levels or the de-
gree of intra-twin pair methylation differences at any of

Saliva a

SN1 SN3 |SN16 SN1 | SN5 SN12| SN1 SN13

SN12,R=-0329, P=0.038).

Figure 2 Intra-individual correlation of single CpG methylation levels within and between regions. Spearman’s correlation coefficients are
indicated graphically. Correlation coefficients within regions were: saliva - KC(NQ1OT1, R=0.814, P < 0.01; H19, R=0.527, P < 0.01; blood - IGF2
dmr0, R=0.559, P<0.01; KCNQ1OT1, R=0.748, P < 0.01; LINE-1, R=0.539, P < 0.01). Significant correlations or trends (P < 0.1) for relations within
one sample but between regions were: saliva - IGF2 dmr0 SN1 x H19prom SN12, R=0.335, P=0.075; KCNQ1OT1 - SN16 X LINE-1 SN1, R=0410,
P=0.016; H19prom SN5 X LINE-1 SN13, R=0.400, P=0.031; H19prom SN12 x LINE-1 SN13, R=0.469, P=0.010; blood - IGF2 dmr0 SN1 x H19prom
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the analyzed CpGs. In our cohort with a comparatively
small age range (2.7 to 5.1 years) we also did not observe
significant relations between age at follow-up and methy-
lation levels or the degree of intra-twin pair methylation
differences.

As previously reported in adult cohorts [26], LINE-1
methylation levels at CpG site SN13 were slightly higher
in male compared to female individuals (blood - SN13,
57.80+0.80% versus 57.16 £0.56%, P <0.01; SNI +
SN13/2, 53.86+0.69% versus 53.44 +0.49% P <0.05;
SN1, not different; saliva - SN13, 61.12+1.38% versus
59.82+0.82%, P<0.01; SNI+SN13/2, 55.81+0.73%
versus 55.12 + 0.60%, P < 0.01; SN1, not different). A sig-
nificant gender effect was also found for one of two
CpG sites at the IGF2 dmr0O (blood - SN3, 39.09 + 3.24%
in boys versus 41.32 + 3.28% in girls, P <0.05; SN1, not
significant; saliva - SN1 and SN3, not different).

Methylation levels according to the TTTS (twin-to-twin

transfusion syndrome) status (donor versus recipient)

The primary aim of our study was to compare locus-
specific methylation levels between genetically identical
twins with special consideration of their discordant
growth during early developmental stages. However,
mean methylation levels were largely comparable be-
tween recipients and donors (Figure 3). Paired analyses
revealed significant differences for only one out of eight
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analyzed CpG sites (IGF2 dmrOp0s SN3: 39.16 + 3.46%
in recipients versus 41.03 +3.17% in donors, P =0.013,
paired ¢ test) and only one out of four regions when ana-
lyzing average methylation values (IGF2 dmrOpy,; (SN1 +
SN3/2): P=0.027, paired ¢ test). Subgroup analyses in
pairs with either concordance or discordance for auxologi-
cal parameters at birth (9 versus 11 pairs) or at age 4 (15
versus 5 pairs) did not accentuate these findings (data not
shown). Considering the presumed functional interrelation
within and between the analyzed 11p15 region, a stringent
correction for multiple testing may overestimate the false
discovery rate. By setting the number of independent tests
to n = 3 regions, the difference observed at IGF dmr0y;,.4
SN3 would still reach a Bonferroni-adjusted significance
level of P =0.017.

When plotting the degree of discordance in SD scores
for birth weight or length against differences in methy-
lation levels at age 4 years, again only a few CpGs were
found to interact: intra-twin pair variation at IGF2
dmr0p;,,;s SN1, IGF2 dmrOs,;,, SN3, and LINE-1giva
SN13 (up to one outlier pair excluded) revealed signifi-
cant correlations with discordance in weight and/or
length at birth (R-values between 0.51 and 0.60, P <
0.05), such that 26 to 36% of the within twin-pair vari-
ance in methylation at these sites may be explained
by prenatal growth discordance in this simplified view
(exemplified in Figure 4). However, according to the

IGF2 dmr0 KCNQ10T1 H19 prom LINE-1
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Figure 3 Site-specific methylation levels (mean + SD) in blood- and saliva-derived DNA. Except for IGF2 dmr0O SN3 methylation (P=0.013,
paired t test) and IGF2 dmr0O average (= SN1+ SN3/2) methylation (P=0.027, paired t test) there were no significant differences between former
recipients and donors.
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Figure 4 Relation of inter-twin differences for birth weight and
IGF2 dmr0 SN1 methylation; Spearman’s p=0.51 (P < 0.05).
Filled circles, concordant pairs; open circles, discordant pairs. Note
that due to the definition of discordance (difference in birth

weight 210% and/or birth length 21.0 SDS) some pairs with birth
weight differences <1.0 SDS were classified as discordant. SDS,
standard deviation score.

above-mentioned definition, discordance for body length
and/or weight at birth was present in only 11 out of 20
twin pairs, and the individual extent of catch-up growth
between laser treatment and birth may not necessarily
reflect the severity and discordance in placental blood
flow before treatment. Assuming that variation in locus-
specific methylation patterns in response to environmental
changes occurs with a consistent directionality in neigh-
boring CpG sites and/or interacting regions, we correlated
intra-twin pair methylation differences within and be-
tween regions. Indeed, the majority of Pearson correlation
coefficients showed positive values, indicating that methy-
lation differences within and between regions in our twin
cohort arose with a consistent directionality (Figure 5).

Methylation levels and IGF-Il serum concentrations

Finally, we compared IGF-II concentrations in cord
blood and in samples taken at age 4 years with site-
specific 11p15 methylation levels, but did not detect sig-
nificant correlations (Spearman correlations; all P> 0.2;
up to two outliers excluded). Similarly, intra-twin pair
differences in IGF-II levels did not correlate with intra-
twin pair methylation differences (P > 0.2).

Discussion

Studies of twins have driven the exploration of genetics
and heritability for a long time and continue to do so
hand-in-hand with recent technological advances in the
field of developmental programming and epigenetics.

Page 6 of 10

Monozygotic twins with a discordant clinical phenotype
provide a unique opportunity to evaluate the contribu-
tion of environmental factors against the identical gen-
etic background [27-31]. In this study, we have analyzed
locus-specific CpG methylation at the 11p15 region in
monozygotic twins with severely discordant prenatal de-
velopment due to TTTS. However, we found only weak
evidence for a contribution of environmental factors
such as inequality of mid-gestational blood supply to the
11p15 epigenotype at age 4. Pairwise comparisons be-
tween former donors and recipients revealed only slight
methylation differences at one out of three analyzed
11p15 regions (IGF2 dmr0). Accordingly, correlating the
degree of birth weight discordance against variation in
locus-specific methylation within twin pairs revealed a
significant interaction only for IGF2 dmr0. Overall, we
did not observe a significant relation between size at
birth and the 11p15 methylation pattern. We conclude
that severe alteration in placental blood supply due to
TTTS during mid-gestation appears to leave only weak,
if any, locus-specific epigenetic marks at the analyzed
11p15 regions.

Although it is generally assumed that severe 11pl5
methylation abnormalities, such as loss of methylation at
H19, are both an underlying cause and restricted to pa-
tients with SRS or SRS-like phenotypes [32-34], measur-
able variation of the 11pl5 methylation pattern arising
in response to environmental changes has been de-
scribed in cohorts of various ages, including very early
developmental periods [9-11,31,35]. Heijmans and co-
workers reported on persistent epigenetic marks at this
region following periconceptional famine exposure, sup-
porting the idea that sufficient periconceptional folic
acid supply is essential to establish the 11pl5 epigen-
otype [9,10]. Maternal folic acid intake during pregnancy
has also been linked to the 11p15 methylation status in
offspring [11,36]. However, findings of other recent stud-
ies on the relationship between maternal folate supple-
mentation and global and/or site-specific methylation
are controversial, and it is not known whether the subtle
methylation changes found in some of these studies
would significantly alter gene transcription [36-39]. In
addition, genotype-epigenotype interactions have been re-
ported to account for a significant proportion of the vari-
ability of methylation levels at the IGF2 dmr0 [40-43].

Our results, as well as data from other recent studies, do
not support the idea that intrauterine growth retardation
and/or being born small for gestational age without fea-
tures of SRS are associated with substantial epigenetic
changes at the 11p15 locus. Tobi and colleagues [44] com-
pared methylation levels at IGF2, GNAS, INSIGE and
LEP between preterm infants <32 weeks small for gesta-
tional age (SGA) and those appropriate for gestational age
(AGA) and did not find significant alterations of the
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Figure 5 Pearson correlation coefficients of intra-twin pair methylation differences within and between regions. Note that the majority
of correlation coefficients have a positive value, indicating that intra-twin pair methylation differences within and between regions arise with con-
sistent directionality (that is, increasing difference (= methylation recipient minus methylation donor) at one CpG going along with
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methylation status at these loci. Another study on SGA
pregnancies reported on 11p15 methylation abnormalities
detected in placental tissue of SGA compared to AGA
pregnancies, whereas no such differences were seen in
DNA from corresponding neonatal blood samples [45].

Somewhat unexpectedly, the observed intra-individual
correlations of CpG methylation levels within single 11p15
gene regions (Spearman’s p maximum 0.814 (saliva)/0.748
(blood)) were only modest, which may be partially ex-
plained by the relatively small number of included CpG
sites per region (n=2). We are aware that methods other
than the SNuPE IP RP HPLC assay used in our study may
have been advantageous in terms of the quantity of CpG
sites to be analyzed. However, considering presumed (and
observed) effects of only a few percent variation of locus-
specific methylation levels, we regarded this highly quanti-
tative method [21-23] as the method of choice.

Similar to findings from other recent studies analyzing
larger amounts of CpG sites at the 11p15 region [40-43],
intra-individual correlations between CpG sites across
different 11p15 dmrs were, if detectable, only weak
(Spearman’s p maximum 0.335). Together with signifi-
cant intra-twin pair correlations observed in our cohort
and previous studies this may indicate that locus-specific
methylation levels are regulated by their local genetic
background [15,40-43]. On the other hand, comparing
intra-twin pair differences at a specific region against the
differences arising at other regions revealed a small
number of significant correlations, almost all of which,
notably, showed positive correlation coefficients (see
Figure 5). Thus, methylation differences within and be-
tween regions in our twin cohort appear to arise with a

consistent directionality, indicating that environmental
factors may affect the 11pl5 epigenome in a more
global way.

We noted substantial intra-individual differences be-
tween methylation measurements from either saliva- or
blood-derived DNA. Variance of locus-specific methyla-
tion as well as intra-twin pair differences were generally
higher in saliva DNA, and only two out of eight CpG
sites (LINE-1 CpG SN13, H19 CpG SN5) showed signifi-
cant inter-tissue correlations between blood and saliva
samples. The issue of epigenotypical variation across
different tissue types has been discussed intensively dur-
ing recent years. Although inter-tissue correlations of
region-specific methylation as well as robust interactions
between epigenotype and genetic background have been
reported for several non-imprinted and imprinted re-
gions including 11p15 [15,40-43,46,47], systematic ap-
proaches analyzing larger numbers of tissues and loci
strongly endorse the concept that methylation patterns
at a variety of regions are commonly influenced by
tissue-specific and environmental factors [41,46-50].
Furthermore, DNA samples derived from oral mucosa
epithelium may be particularly susceptible to short-term
changes and environmental effects [51,52]. We are aware
that biological variation resulting from differing cell type
composition in saliva samples (mucosa cells and leuko-
cytes) and other biotechnical artifacts related to the sal-
iva sampling method cannot be fully excluded. In a
previous project on the same 20 twin pairs, we repeated
all experimental steps including DNA preparation, bisulfite
treatment, PCR reactions and site-specific SNuPE IP RP
HPLC for all 40 saliva samples, showing intra-individual
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variation of below 5% [15]. Finally, the fact that intra-twin
pair methylation differences in blood and saliva DNA ap-
pear to arise with a consistent directionality (see Figure 5,
right panel) may be indicative of variation due to physio-
logical changes rather than technical artifacts.

We did not find significant relations between prenatal
growth discordance and IGF-II serum levels. Generally,
IGF-1I is known as a potent promoter of prenatal growth
as demonstrated in animal models and naturally occurring
11p15 imprinting disorders in humans [6,53]. Within
healthy populations, circulating IGF-II levels as well as
common IGF2 gene polymorphisms have been associated
with size at birth [54,55]. However, little is known about
the developmental plasticity of IGF-II and there are only a
few studies on IGF-II serum levels in growth-discordant
monozygotic twin pairs so far. In a cohort of 13 TTTS
twin pairs, Bajoria and colleagues [56] found significantly
lower IGF-II concentrations in cord blood samples of
TTTS donors as compared to both recipients and a con-
trol group of monochorionic twin pairs without TTTS. In
contrast, IGF-II serum levels in our twin cohort were
comparable between donors and recipients both at birth
[14] and at age 4, whereas serum levels of IGF-I were
strongly related to intrauterine growth and subsequent
catch-up growth [19]. This is in line with most studies in
SGA infants associating prenatal growth restriction with
decreased IGF-I levels [57,58], although some impact also
on IGF-II has been discussed [59,60]. In our cohort there
was also no relationship between methylation at any of the
analyzed CpG sites at 11p15 and circulating IGF-II con-
centrations. However, normal serum IGF-II levels are seen
even in patients with SRS due to 11p15 imprinting defects,
which may reflect the non-imprinted biallelic postnatal
IGF2 expression in the liver [61-63].

Conclusion

In summary, we have analyzed locus-specific methyla-
tion levels at different 11p15 regions in a cohort of 20
monozygotic twin pairs with discordant intrauterine de-
velopment due to severe TTTS. Slight but significant
methylation differences within the twin pairs were ob-
served at only one (IGF2 dmr0) out of three analyzed
11p15 regions. Although a certain susceptibility of the
postnatal IGF2 dmr0O methylation pattern to environ-
mental factors during early developmental stages was
also reported by other groups [9,10], it is not known
whether such small methylation changes (IGF2 dmrO
SN3 mean difference in our cohort: + 1.87% in donors)
can significantly alter the complex regulation of gene
transcription at 11p15. We conclude that severe alter-
ation in prenatal blood supply due to TTTS appears to
leave only weak, if any, locus-specific epigenetic marks
at the analyzed 11p15 regions.
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Additional file 1: Table S1. Primer sequences and exact CpG position.
Table S2. Auxological parameters and intra- twin pair methylation
differences according to the concordance/discordance status at birth.
Table S3. Inter-twin correlations of locus-specific methylation levels
according to the concordance/discordance status at birth.

Additional file 2: Figure S1. Inter-twin correlation of insulin-like growth
factor (IGF)-Il serum levels at age 4. IGF-Il serum levels at age 4 showing
significant inter-twin correlations (total cohort Pearson R=10.79, P < 0.01).
Note that IGF-Il serum levels in pairs discordant for birth weight and/or
length at birth seem to correlate even stronger (filled circles/solid

line = concordant pairs, R=0.77, P=0.016; open circles/dotted

line = discordant pairs, R=0.89, P < 0.01), although the intra-twin pair
variation among the two groups did not differ significantly (P> 0.2).
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