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Abstract

In utero exposures to environmental factors may result in persistent epigenetic modifications affecting normal

development and susceptibility to chronic diseases in later life. We explored the relationship between exposure of
the growing fetus to maternal depression or antidepressants and DNA methylation at two differentially methylated
regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. Aberrant DNA methylation at the /GF2 and
neighboring H19 DMRs has been associated with deregulated IGF2 expression, childhood cancers and several

chronic diseases during adulthood. Our study population is comprised of pregnant mothers and their newborns (n

the IGF2 DMRs in the offspring.

= 436), as part of the Newborn Epigenetics Study (NEST). A standardized questionnaire was completed and
medical record data were abstracted to ascertain maternal depression and antidepressive drug use. DMR
methylation levels in umbilical cord blood leukocytes were quantified using pyrosequencing. From the 436
newborns, laboratory data were obtained for 356 individuals at the IGF2 DMRs, and for 411 individuals at the H19
DMRs; about half of each group was African American or Caucasian. While overall no association between
depression and methylation profiles was found, we observed a significant hypermethylation of the H79 DMRs in
newborns of African American (n = 177) but not Caucasian (n = 168) mothers who reported the use of
antidepressive drugs during pregnancy (B = +6.89, p = 0.01). Of note, our data reveal a race-independent
association between smoking during pregnancy and methylation at the IGF2 DMR (+3.05%, p = 0.01). In
conclusion, our findings suggest a race-dependent response related to maternal use of antidepressants at one of
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Introduction

Epigenetic mechanisms are important for regulating
gene expression and differentiation during early life.
Recent studies have highlighted the possible impact of
environmental factors on epigenetic characteristics dur-
ing development. In utero exposure to chemicals, nutri-
tion, or social factors may change the methylation status
at CpG-rich regions of gene promoter regions, causing
permanent modification of gene expression patterns
[1-3]. Such alterations may lead to increased risk of
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chronic diseases, including mental disorders, diabetes,
cardiovascular diseases and cancer [4-6].

Maternal depression, and associated drug use are
common exposures to the developing fetus. The preva-
lence of depression in pregnant women is greater than
ten percent [7], and the rate of prescriptions for mood
regulators reported among pregnant women in the U.S.
has increased threefold, from 1998 to 2005 [8]. Co-
occuring adverse factors include: inadequate nutrition
intake or insufficient weight gain, and cigarette smoking
[9]. It has been shown that in utero exposure to mater-
nal depression adversely affect fetal growth [10,11], fetal
neurobehavioral development, or childhood behavior
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[12-15]. Exposure to SSRIs (Selective Serotonin Reup-
take Inhibitors) has been associated with congenital mal-
formations [16-20], respiratory distress, or
neurobehavioral symptoms in newborns [21,22]. As a
consequence, treatment of psychiatric disorders during
pregnancy is controversial; the fetus is either exposed to
the psychotropic drugs or to the disease itself.

The biological mechanisms behind the adverse fetal
developmental consequences of antidepressant use of
the mother or exposure to maternal depression are
unclear. Evidence suggests that mood disorders or anti-
depressant medicines are associated with modulation of
epigenetic regulation [23]. Adverse social environments
can induce altered DNA methylation at the promoter of
the glucocorticoid receptor gene in the rat hippocampus
[24,25,2]. Aberrant methylation was detected at the pro-
moter regions of the rRNA gene in patients who were
suicidal [26]; and suicide victims with a history of child-
hood abuse showed a decreased level of glucocorticoid
receptor mRNA and an increased site-specific methyla-
tion at the promoter of the neuron-specific glucocorti-
coid receptor (NR3C1) gene [27]. Similar aberrant
methylation patterns were found in cord blood of new-
borns from mothers suffering depression or anxiety dur-
ing their third trimester of pregnancy [28].

These observations prompted us to search for promo-
ters of other genes where methylation patterns might
also be affected by adverse socio-environmental factors
during pregnancy. The Insulin-like growth factor 2 (IGF2)
gene is an epigenetically regulated imprinted gene with
important roles during embryonic and fetal growth. IGF2
imprinting and expression are regulated at least in part
by methylation of two differentially methylated regions
(DMRs), the DMR upstream of the /GF2 promoters
(IGF2 DMR) and the DMR upstream of the adjacent H19
gene (H19 DMR). In most normal tissues, the /GF2 and
HI19 DMRs are expected to be methylated at only one of
the parentally inherited alleles [29-31]. It has been
demonstrated that prenatal exposures to adverse social
or nutritional environments result in aberrant /GF2
methylation that could lead to deregulated expression,
including loss of imprinting (LOI) or activation of expres-
sion from the normally silent maternal allele [1]. A direct
causal relationship has recently been shown in ewes: peri-
conceptional undernutrition resulted in a decrease in
methylation at the CTCF-binding site upstream of HI19
in the offspring [3], corresponding to the H19 DMR in
human. We and others have hypothesized that the
methylation profile at the imprint regulatory elements
(or DMRSs) could serve as a biosensor and adverse envir-
onmental conditions acquired early in life could be
archived in the epigenome [32,33].

In this study, we evaluate whether in utero exposure
to maternal depression or intake of antidepressants is
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associated with variation in methylation at the two regu-
latory DMRs of the IGF2 imprinted domain.

Materials and methods

Study subjects and data collection

Study participants are part of the Newborn Epigenetics
Study (NEST) at Duke University, a multi-ethnic birth
cohort. Pregnant women were recruited between April
2005 and June 2008 from prenatal clinics serving
Duke Obstetrics and Durham Regional Hospital
Obstetrics facilities, in North Carolina. Recruitment
strategies have been detailed in a previous study; in
the first 200 subjects smoking mothers were targeted
[34]. Eligibility criteria were: age 218 years, English
speaking, being pregnant (no gestation age criteria
were applied), and intending to use one of the two
obstetric facilities for the index pregnancy to ensure
access to birth outcomes data and umbilical cord
blood. During the three-year period, 838 pregnant
women who met the eligibility criteria were identified
through appointment logs and asked to enroll in the
study. Of these women, 690 (82.3%) agreed to partici-
pate in the study and were followed throughout the
remainder of their pregnancy. A standardized ques-
tionnaire was administered at enrollment. Questions
were either self- or interviewer-completed, and the
data were further verified from medical records. Ques-
tionnaires included socio-demographic data (such as
race and education), morbidity (including depression),
lifestyle characteristics (such as cigarette smoking, and
alcohol use), and vitamin supplementation. Along with
other medical conditions, pregnant women were asked
to respond “yes” or “no” to the question: “What
describes any ailment you may have?"; depression was
one of the 15 conditions. Clinical charts were used to
verify depression. The use and type of antidepressants,
mother’s age, birth weight and gender of the baby
were abstracted from medical records using the stan-
dardized chart abstraction form. Antidepressants fell
into the following categories: Selective Serotonin
Reuptake Inhibitors (SSRIs), such as sertraline
(Zoloft), fluoxetine (Prozac), escitalopram (Lexapro),
paroxetine (Paxil), citalopram (Celexa); Serotonin-nor-
epinephrine reuptake inhibitors (SNRIs), such as ven-
lafaxine (Effexor); Tricyclic antidepressants (TCAs),
such as Amitriptyline HCI (Elavil); Serotonine Antago-
nist and Reuptake Inhibitors (SARIs) (Trazadone); and
bupropion (Wellbutrin). The type of antidepressant
use was diverse, but most were SSRIs (72%). Offspring
anthropometric measurements were abstracted at
delivery. The analysis focused on the first 436 partici-
pants, among whom methylation analyses had been
completed for at least one of the two DMRs. The
study protocol was approved by the Institutional
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Review Boards of the University of Texas - M.D.
Anderson Cancer Center, and Duke University.

Specimen collection

At delivery, the umbilical vein was punctured and cord
blood samples were collected within minutes of delivery
in a vacuum blood collection tube, coated with
IGEDTA. The tubes were inverted gently to mix the
anticoagulant with the blood and transported within 12
hours to the laboratory. After centrifugation the leuko-
cyte-containing buffy coat was isolated and stored at
-80°C. Genomic DNA was extracted using Gentra Pure-
gene Reagents (Qiagen, Valencia, CA).

DNA methylation analysis

The IGF2 and H19 DMRs were analyzed by pyrosequen-
cing. The IGF2 DMR includes three CpG dinucleotides
upstream of exon 3 (chr 11p15.5; CpG site 1: 2 109 519;
CpG site 2: 2 109 516; and CpG site 3: 2 109 500; NCBI
Human Genome Build 37.1) [35]. The region studied for
the H19 DMR encompasses four dinucleotides located
upstream of the H19 gene (chr 11p15.5; CpG site 1: 1
964 261, CpG site 2: 1 964 259, CpG site 3: 1 964 257,
and CpG site 4: 1 964 254; NCBI Human Genome Build
37.1), which is within one of the six CCCTC (CTCF)
binding sites [36]. Genomic DNA was treated with
sodium bisulfite, which converts unmethylated cytosines
to uracils while leaving methylated cytosines unchanged.
The samples were amplified by PCR and methylation
was quantified in duplicate. Pyrosequencing was per-
formed using a Biotage Pyromark MD pyrosequencing
instrument (Qiagen, Valencia, CA). Usually IGF2 only
expresses its paternally inherited allele, corresponding to
a theoretical methylation percentage of 50. When both
alleles are methylated the methylation status is expected
to be higher than 50%. Although the fact that /GF2 is a
well studied imprinted gene whose epigenetic profile
should be similar across all cell types, we verified the
IGF2 and H19 DMR methylation profiles in DNA from
different cell fractions from umbilical cord blood and
found no differences across the cell types [37]. We
finally analyzed cord blood DNA of the first 436 partici-
pants, and obtained experimental data for 356 partici-
pants at the /GF2 DMR, and for 411 participants at the
H19 DMR. The CV for the laboratory assays was 0.14
for the /GF2 DMR and 0.13 for the H19 DMR. The
measurements at the three and four CpGs of IGF2
DMR and H19 DMR, respectively, are highly correlated.
The pair-wise Pearson correlation coefficients for the
three CpGs at the IGF2 DMR are all 0.80, and the pair-
wise Pearson correlation coefficients for the four CpGs
at the H19 DMR are between 0.92 and 0.96. We also
ran control assays to validate our results. We used
defined mixtures of fully methylated and fully
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unmethylated bisulfite modified DNAs, and ran the
assays in triplicate. Standard deviations varied between
0.27% and 1.89% at the /IGF2 DMR, and between 0.47%
and 2.55% at the H19 DMR. R-squared values were 0.99
for both tests, at the /GF2 and the H19 DMRs.

Statistical methods

Variables were defined as follows: depression (yes/no),
antidepressive drugs (yes/no), smoking status (yes/no),
marital status (living with partner or married versus sin-
gle), age (< 30 versus >30), race (African American ver-
sus non-African American), pre-pregnancy maternal
BMI (<30 kg/m? versus > 30 kg/m?), birth weight of the
baby (< 2.5 kg versus 22.5 kg), and at least a college
graduate (yes/no). Chi Square tests were used to com-
pare depression and intake of antidepressant medicines
within different subgroups of pregnant women (Table
1). Methylation levels were distributed normally in the
groups studied (verified by using the Kolmogorov-Smir-
nov test). In Table 2, Student’s t-tests were computed to
test for significant differences in the methylation means.
We further assessed the effect of exposure to antide-
pressants and depression during development on the
methylation levels of IGF2; IGF2 and HI9 DMRs were
analyzed separately. We used multiple regression mod-
els, separately for each exposure, while controlling for
potential confounding variables (see Table 3). The
potential confounders included the characteristics found
to be associated with depression/antidepressants and
methylation, with p-values < 0.20 (see Tables 1 and 2)
[38]. DNA methylation was the dependent variable and
the independent variables were included as described
above.

The useful laboratory data obtained for /GF2 DMR (n
= 356) and H19 DMR (n = 411) were included in our
linear regression analyses. From our original cohort we
retained 35 of the 44 mothers taking antidepressants (23
Caucasians, 10 African Americans, and 2 other/missing)
and 56 of the 66 depressed mothers (26 Caucasians, 27
African Americans, and 3 other/missing) at the IGF2
DMR site; we retained 43 of the 44 mothers taking anti-
depressants (27 Caucasians, 14 African Americans, and
2 other/missing) and 65 of the 66 depressed mothers
(29 Caucasians, 33 African Americans, and 3 other/
missing) at the H19 DMR methylation data. The final
number of observations used by the statistical program
varied depending on some missing variables included in
the models, e.g. 331 (159 Caucasians + 172 African
Americans) observations were used for our analysis at
the IGF2 DMR site, and 345 (168 Caucasians + 177
African Americans) observations were used at the H19
DMR site (see Table 4). The distributions of all variables
used in our models, in each subgroups, were similar to
the distributions in our whole cohort; meaning that
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Table 1 Distribution of depression and intake of antidepressants in 436 study participants by socio-demographic
characteristics in the Newborn Epigenetics Study (NEST), NC, 2005-2008

Socio-demographic data Depression Antidepressant use
Subgroup n' %' n % p-value n % p-value
Total: 436 100 66 15.1 44 10.1
Maternal age: < 30 240 55.1 44 18.3 0.04 20 8.3 0.18
>30 196 449 22 1.2 24 122
Marital status: living with partner 276 63.3 38 13.8 0.30 30 109 048
single 160 36.7 28 175 14 88
Race’: African American 215 493 33 154 0.95 14 6.5 0.01
Caucasian 193 443 30 15.5 28 14.5
College graduate: no 284 65.1 55 194 0.0004 31 10.9 045
yes 151 346 10 6.6 13 8.6
Antidepressant use: no 392 89.9 46 1.7 < 0.0001
yes 44 10.1 20 455
Depression: no 370 84.9 24 6.5 < 0.0001
yes 66 15.1 20 30.3
BMI: <18 13 30 4 30.8 0.14 2 154 0.54
18- < 25 189 434 24 12.7 13 6.9
25-30 82 18.8 13 158 10 12.2
> 30 m 255 14 126 14 126
Smoking 1 year before non-smoker 305 70.0 46 15.1 092 30 9.8 0.82
pregnancy: smoker 123 28.2 19 154 13 10.6
Smoking during non-smoker 347 79.6 37 10.7 < 0.0001 29 84 0.02
pregnancy: smoker 88 20.2 29 330 15 171
Birth weight: < 2500 g 59 135 10 169 0.80 10 15.2 0.11
>2500 g 369 84.6 54 146 34 9.2
Gender of newborn: male 221 50.7 35 158 0.60 19 86 0.24
female 207 47.5 29 140 25 12.1

" The sum of the numbers (or percentages) for each characteristic are not always 436 (or 100), because some data were missing.

2 Other races were: Asian (n = 7), Native American (n = 2), or not listed (n = 13).

missing values are likely at random. All statistical ana-
lyses were conducted in SAS v9.2 (SAS Institute Inc.,
Cary, NC).

Results

Socio-demographic characteristics of the pregnant
women and corresponding methylation status at the IGF2
DMR and the H19 DMR in the offspring

The distribution of the socio-demographic characteris-
tics of women and their infants are presented in Table
1. The majority of the study population reported their
race as African American (49.3%) or Caucasian (44.3%).
Other races included Native Americans (0.5%), Asians
(1.6%), or “another race” not listed (2.9%); 1.4% was
missing. Gestational age at enrollment ranged from 19
to 42 weeks (mean = 38.1 weeks, SD = 2.5). Over half
the study population was under 30 years old (55.1%).
Fifteen percent of the women reported being depressed
during pregnancy and 10% took antidepressive medi-
cines during the pregnancy. Because smoking mothers
were targeted in the first half of participants [34],

approximately 20% of the women in the study reported
smoking during pregnancy. Over 25% were obese (BMI
> 30 kg/m?) and another 18% were overweight (25 <
BMI < 30 kg/m?) before pregnancy. A little over 13% of
the newborns had a low birth weight and the numbers
of male and female newborns were about equal.

We conducted bivariate analyses to evaluate potential
confounders for depression and the use of antidepressants.
Depression was most frequently reported by women < 30
years of age (p = 0.04), without a college degree (p =
0.0004), and reporting smoking during pregnancy (p =
0.0001). Smoking was also associated with the intake of
antidepressants (p = 0.02) and depression (p < 0.0001).
The use of antidepressants was more than twice as high in
Caucasian mothers compared to African American
mothers (14.5% versus 6.5%, p = 0.01) (Table 1).

Table 2 shows the average methylation percentage:
47.45% at the IGF2 DMR and 60.09% at the H19 DMR.
At both regions, we found no significant differences in
mean methylation percentages based on maternal anti-
depressant use or depression during pregnancy.
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Table 2 DNA methylation at IGF2 DMR and H79 DMR sites by socio-demographic characteristics

IGF2 DMR mean methylation% A (p-value) H19 DMR mean methylation% A (p-value)
n = 356 (SD) n = 411 (SD)
Total: 4745 (6.89) 60.09 (7.89)
Maternal age: < 30 4743 (7.29) +0.05 (0.95) 60.01 (7.44) +0.18 (0.81)
>30 4748 (6.40) 60.19 (842)
Marital status: living with 0 (6.59) +0.97 (0.20) 5948 (7.59) +1.63 (0.05)
partner
single 48.07 (7.37) 61.11 (8.30)
Race': African 47.62 (7.96) -0.52 (049) 61.00 (7.90) -1.80 (0.03)
American
Caucasian 47.10 (5.60) 59.20 (7.60)
College no 47.72 (7.04) -0.73 (0.34) 60.73 (8.07) -1.83 (0.03)
graduate:
yes 46.99 (6.61) 58.90 (7.45)
Antidepressant no 4744 (7.06) +0.17 (0.85) 60.12 (7.63) -0.25 (0.87)
use:
yes 4761 (5.07) 59.87 (9.98)
Depression: no 4721 (6.65) +1.52 (0.13) 8 (8.00) -0.07 (0.95)
yes 48.74 (8.00) 1(7.64)
BMI: < 30 47.81 (7.10) -0.71 (041) 59.51 (7.33) +1.81 (0.07)
> 30 47.10 (7.01) 61.32 (9.02)
Smoking 1 year non-smoker 4769 (7.15) -0.94 (0.24) 60.24 (7.90) -0.53 (0.54)
before smoker 46.75 (6.25) 59.71 (7.00)
pregnancy:
Smoking during non-smoker 46.82 (5.84) +3.05 (0.01) 60.07 (7.83) +0.14 (0.88)
pregnancy: smoker 49.87 (9.62) 60.22 (8.22)
Birth weight: <2500 g 47.57 (824) -0.14 (0.91) 5896 (5.32) +1.34 (0.15)
>2500 g 4743 (6.67) 60.30 (7.58)
Gender of male 47.05 (5.86) +0.80 (0.28) 59.67 (7.93) +0.85 (0.28)
newborn:
female 47.85 (6.63) 60.52 (7.95)

! Only the data from children born to Caucasian and African American women are included; numbers of other races were too low.

Smoking during pregnancy was associated with a higher
mean methylation percentage at the I/GF2 DMR
(+3.05%, p = 0.01). The mean methylation percentages
at the H19 DMR sites were higher in infants born to
single mothers, African American mothers, mothers
without a college degree, and mothers with a high pre-
pregnancy BMI. The respective elevation in methylation
levels were in the same range: +1.63% (p = 0.05),
+1.80% (p = 0.03), +1.83% (p = 0.03), and +1.83% (bor-
derline significant with p = 0.07) (see Table 2).

Assessment of the impact of maternal depression and use
of antidepressants on the methylation profile at the IGF2
DMR and H719 DMR in the offspring

Multiple regression analyses of DNA methylation at the
IGF2 DMR site (n = 356) and H19 DMR (n = 411) in
relation to the use of antidepressants and depression are
shown in Table 3. We did not detect a relationship
between the methylation status of the offspring and
maternal depression, or the intake of antidepressive
medicines, at either of the two regulatory elements

(models 1-2, Table 3). Further analysis revealed a signifi-
cant interaction between the use of antidepressants and
being African American: -coefficient was +9.18 at the
H19 DMR (p = 0.002) (model 3, Table 3). Also a posi-
tive, but insignificant, B-coefficient was noted at the
IGF2 DMR (B = +3.58, p = 0.19) for African Americans
exposed to antidepressants. Other possible interactions
were also verified, but no statistically significant interac-
tions were seen between antidepressive medicines or
depression and education, BMI, marital status, smoking,
or age of the mother (not shown).

In order to further explore the interaction between
race and antidepressants, we stratified our analysis by
race and included only Caucasians and African Ameri-
cans. We found that exposure to antidepressants among
African American newborns was associated with a high
methylation profile at H19 DMR (§ = +6.89, SE = 2.53,
p = 0.01) (model 1, Table 4), corresponding to an
increase of 5% in methylation mean if unadjusted; from
60.6% (95% CI: 59.6 - 61.7) to 65.7% (95% CI: 58.8 -
72.7) (Figure 1). In contrast, in Caucasian newborns, we
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Table 3 Multiple linear regression analyses: DNA
methylation at /GF2 and H79 DMR in the offspring in
relation to the use of antidepressants, depression, and
race of the mother

IGF2 DMR
n max.' = 356

B SE p B SE p

H19 DMR
n max. ' = 411

Model 12 -0.47 128 071 +0.54 140 0.70
Antidepressant use

Model 2°: +0.72 106 050 +0.25 125 084
Depression

Model 32, interaction with -1.63 155 029 -238 167 0.16
race: +0.40 092 066 -0.01 1.17 099

Antidepressant use +3.58 271 019 +9.18 295 0.002
Race (being African American)
Antidepressants X Race (African

American)

" Number included in the statistical analyses, this may vary slightly by missing
variables in the different models.

2 At IGF2 DMR: adjusted for age, race, education, and smoking during
pregnancy.

2 At H19 DMR: adjusted for age, race, smoking during pregnancy, marital
status, education, BMI, and birth weight.

detected a rather opposite, but non-significant effect (3
= -2.04, SE = 1.67, p = 0.22).

Discussion

In this study we examined a previously uncharacterized
effect of maternal depression and antidepressive medica-
tion use during pregnancy on two IGF2 differentially
methylated regions in the offspring. Maternal depression
was not found to independently affect the offspring’s
methylation status at any of the imprint regulatory
regions evaluated. Our data suggest a race-specific influ-
ence of the use of antidepressive drugs on the methyla-
tion outcomes at the DMR upstream of HI9, but not
significantly at the /GF2 DMR.

Over the years, a rapid increase in antidepressant use
in pregnancy has been reported [39,8], whereas SSRIs
are known to transfer across the placenta and the conse-
quences to the offspring’s health are still unclear [40].
One study conducted in the United States showed an
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increase of 5.6% in the use of antidepressants during
pregnancy between 1998 and 2005, from 2.5% to 8.1%;
with SSRIs being the most commonly used group of
drugs (ranging between 71% [39] and 84% [8]). Taking
into account the increased tendency in antidepressant
use, our frequency of reported maternal use is consis-
tent with the literature. Further, the 15% prevalence of
depression in our study is slightly higher than the pre-
viously reported 9.1% to 14%; this variation depends on
the study design and the trimester of pregnancy
[41,42,7]. Our slightly higher prevalence may be due, in
part, to the fact that depression frequencies vary by
smoking during pregnancy [43,44]. Thirty-three percent
of smoking mothers were depressed, while 10.7% of the
non-smoking mothers reported depression. Besides the
harmful effects of smoking, it is still unclear how the
fetus reacts to maternal mood changes or intake of anti-
depressants during pregnancy. As a consequence,
research in the field of maternal depression and asso-
ciated drug use is gaining in importance.

We analyzed the possible association between mater-
nal depression and changes in DNA methylation level at
the imprinted control domains of /GF2 (IGF2 DMR and
HI19 DMR) and did not observe any differences between
newborns exposed to maternal depression and indivi-
duals from mothers without any reported depression
during pregnancy. However, earlier studies conducted in
predominantly Caucasian populations suggested that the
methylation status of key regulatory regions of certain
genes may be sensitive to prenatal maternal mood,
stress, or undernutrition [28,1]. A study in the senior
offspring of mothers who were exposed to the Dutch
famine of 1944 during periconception, as well as to the
related emotional stress, showed a 5% lower mean
methylation at the /GF2 DMR compared to the non-
exposed same-sex sibling [1]; and Oberlander et al.
reported that prenatal exposure to maternal depression
or anxious mood is associated with increased methyla-
tion at a CpG-rich region of the NR3CI gene [28].
Although exposure to SSRIs did not influence the

Table 4 Linear regression analysis: DNA methylation at /GF2 and H19 DMRs in the offspring in relation to maternal
depression and the use of antidepressants, in African American and in Caucasian participants

IGF2 DMR H19 DMR
Caucasian African American n' = 172 Caucasian African American n' = 177
n' =159 n' =168
B SE p B SE p B SE p B SE p

Model 12 -1.41 127 027 +1.63 2.58 0.53 -2.04 167 022 +6.89 253 0.01
Antidepressant use
Model 2°: +1.10 126 038 +0.29 1.69 0.86 +0.15 1.70 093 +0.07 1.89 0.97
Depression

! Number of observations in the statistical analysis.
2 At IGF2 DMR: adjusted for age, education, and smoking during pregnancy.

2 At H19 DMR: adjusted for age, smoking during pregnancy, marital status, education, BMI, and birth weight.
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IGF2 DMR
Caucasian African American
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95% Cl: 57.9-603 560-632 | 583-607 544-604 | 598624 586626 | 595617 588727
Figure 1 DNA methylation profiles at /IGF2 DMR and H19 DMR in newborns by race and depression of the mother or the use of
antidepressants during pregnancy.

methylation status of NR3CI CpG sites in this latter
study, animal models have shown that SSRIs may signif-
icant affect the expression level of this glucocorticoid
receptor [45]. In our analysis on the methylation status

at the /GF2 and H19 DMRs we did not detect an overall
effect of antidepressant use, but when we looked at the
interaction term between race and intake of antidepres-
sants at any time during pregnancy (Table 3), and
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consecutively at the stratification by race (Table 4), our
results suggest an association between African American
mothers taking antidepressants and hypermethylation at
the differentially methylated region of IGF2 upstream of
H1I9 in the offspring. Hypermethylation at H19 DMR
has been associated with a remarkable down-regulation
of H19 expression, loss of imprinting of IGF2, and sev-
eral disorders [46-48], including Wilm’s tumors in chil-
dren; a cancer type that is more prevalent in African
Americans [49,50]. Race specific hypermethylation has
been reported in a prostate cancer study where black
men show a higher percentage of methylation on the
CD44 promoter-region, compared to white men [51,52];
black men are almost twice as likely to exhibit CD44
hypermethylation compared to white men independent
of tumor grade or disease stage [53]. A study on the
potential epigenetic influences on racial disparity in the
progression of endometrial cancer has also shown that
cancers from black women demonstrate a significant
lower ribosomal DNA methylation than tumors from
white women [54]. The racial differences in methylation
levels in these studies, as well as in our study, could
reflect inherent genetic differences between Caucasians
and African Americans, although we do not exclude
influences of unmeasured race-related environmental
factors. To our knowledge, a race-dependent effect of
prenatal exposure to psychotropic medications on gene
methylation has not previously been described. Race or
ethnicity is still poorly documented in genetic cancer
risk studies, especially in the field of epigenetics; and
race is often not included in drug-related studies [55].
Considering the fact that pre-pregnancy BMI and educa-
tion shared some effects on our DNA methylation out-
comes, other factors not examined in this study, such as
weight gain during pregnancy, specific dietary patterns,
or other life-style factors, should be considered in the
future. These, or other yet unidentified epigenetic deter-
minants, may possibly explain the racial discrepancy we
observe.

The present study has several limitations. The NEST
population is hospital based and limited to pregnant
women visiting Hospitals affiliated to Duke University.
Although, home birth and home consults are very
uncommon in the U.S.. Eighteen percent of the mothers
refused to participate, and for practical reasons our ana-
lysis was focused on the first 436 participants only. We
verified the distributions of the characteristics in all
groups (with and without refusal/exclusions) and did
not see any significant changes in distributions. Our
study population is representative for pregnant mothers
from Caucasian or African American origin in Durham
County, NC. We verified the population from NEST
with the US Census in Durham County [56], and the
distribution of maternal age in our study is similar to
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the American Community Survey Estimates (ACSE)
(2005-2009), reporting the numbers of women with
birth in the last 12 months. Although the ACSE data
suggest equal proportions of Caucasian and African
American women giving birth (38.8% and 37.4%, respec-
tively), we have slightly more African American mothers
(49.3%) participating the study than Caucasians (44.3%).
The Census reports 23.8% of “other races or origin”,
while only 5.0% of the NEST participants report this. A
possible explanation can be the restriction to English
speaking women in our study design. When comparing
education, the Census data suggest that 56.3% of the
mothers have lower education, compared to 65.1% in
NEST. However, adjusting for education and race in our
models did not alter the results.

In our study, twenty percent of the mothers smoke
during pregnancy. This is six percent higher than what
is expected in the US [57]. As mentioned in our earlier
published study [34], NEST originally focused on smo-
kers, and was later expanded to all pregnant mothers
(see Materials and Methods). As a consequence our
high percentage of pregnant smokers is not representa-
tive of the general population and smoking is over-
sampled. In order to verify if possible bias from this
study design would affect our results we did a sensitivity
analysis and rerun our data without the first part of the
cohort (where smoking mothers were focused) and
found the same associations. We also verified the distri-
butions of all variables in smoking mothers in both
phases of recruitments, and found no significant differ-
ences frequencies of depression, antidepressant intake,
race distribution, education, age, birth weight or BMI.

Further, while low birth weight has been associated
with depression [11] or intake of antidepressants [41],
we do not detect an association between depression
and birth weight. In mothers taking antidepressants we
see a slightly higher percentage (+6%) of newborns
with a birth weight less than 2.5 kg, although the dif-
ference is not significant (p = 0.11). Another limitation
in our study is the reliance on self-report to identify
individuals with depression, despite our verification
with medical records. We do not exclude the possibi-
lity that depression may be slightly underreported:
people with depression may not always report their
mood changes or be diagnosed with depression. More-
over, no data on duration, history, dosage or rating
scales were collected to evaluate any dose-response
patterns. In addition, the use of antidepressants was
based on medical records without verification of dose-
compliance from the pregnant women. Further, only
45.5% of the mothers taking antidepressants report
depression (Table 1). The reason for this could be
attributed to the following: psychotropic drugs are
widely prescribed for reasons other than depression
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[58], and as earlier mentioned the prevalence of
depression may be underestimated. Nevertheless, our
data suggest that methylation was not affected by the
reported depression, while the effect of psychotropic
drugs remained significant. As a consequence, the
intake of antidepressants in African American pregnant
women may be an independent predictor of hyper-
methylation at H19 DMR. We do not exclude a similar
effect at the IGF2 DMR, given the small sample size of
mothers taking antidepressants at this region studied.
Further, we did not stratify by the class of antidepres-
sants women used, given the low numbers, but the
proportions of mothers taking SSRIs in both, African
American and Caucasian, did not differ significantly
and was relatively high: 71.4% of the African American
mothers and 75.9% of the Caucasian mothers took
SSRIs (p = 0.75). A larger study is warranted to under-
stand more about the possible effects of antidepressant
use in pregnancy. In conclusion, we report a race-
dependent association between maternal use of antide-
pressants and hypermethylation at at least one of the
imprint regulatory regions of IGF2 in the offspring.
Although we do not know the exact underlying cause,
infants born to African American mothers using anti-
depressants in pregnancy suggest an adverse effect on
the methylation status of the H19 DMR, indicating a
higher risk for loss of imprinting of /GF2 and poten-
tially pernicious consequences for their health status in
later life.
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