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Abstract

educational advice and interventions.

Attention-Deficit/Hyperactivity Disorder is not a single pathophysiological entity and appears to have a complex
etiology. There are multiple genetic and environmental risk factors with small individual effect that act in concert
to create a spectrum of neurobiological liability. Structural imaging studies show that brains of children with Atten-
tion-Deficit/Hyperactivity Disorder are significantly smaller than unaffected controls. The prefrontal cortex, basal
ganglia and cerebellum are differentially affected and evidence indicating reduced connectivity in white matter
tracts in key brain areas is emerging. Genetic, pharmacological, imaging, and animal models highlight the impor-
tant role of dopamine dysregulation in the neurobiology of Attention-Deficit/Hyperactivity Disorder. To date, stimu-
lants are the most effective psychopharmacological treatments available for Attention-Deficit/Hyperactivity Disorder.
Currently only immediate release methylphenidate and atomoxetine are approved for the treatment of ADHD in
[taly. Drug treatment should always be part of a comprehensive plan that includes psychosocial, behavioural and

Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is a
common, long-lasting, treatable childhood psychiatric
disorder, characterised by a pattern of developmentally
inappropriate inattention, motor restlessness, and impul-
sivity that affects approximately 3-7% of school-aged
children [1].

ADHD was first recognised 100 years ago as a child-
hood disorder found mainly in boys, and was initially
described as “hyperactivity” or “hyperkinetic disorder of
childhood”. This abnormal behaviour was found to be
the result of a biological condition rather than a result
of poor parenting [2]. In the 1960’s and 70’s much of
the focus on what is now called ADHD was on hyperac-
tivity. The presence of excessive movements in children
was proposed to result from bilateral cortical activity
secondary to a lack of transcallosal fibre tract-mediated
interhemispheric inhibition [3]. Attention Deficit Disor-
der with or without Hyperactivity first featured in
DSM-III in 1980 [4], and the more recent DSM-IV-TR
provided updated ADHD criteria [5]. For a diagnosis of
ADHD, symptoms need to occur often, have persisted
for the past six months, and be maladaptive and incon-
gruent with the individual’s developmental level. Addi-
tionally, an ADHD diagnosis is only given if at least
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some of the behavioural symptoms were present before
the age of 7 years, occur in more than one setting, and
cause significant impairment in social and school
functioning.

The renaming of the disorder, the subsequent focus on
attention, and the clarification of three subtypes led to a
range of neurocognitive and neurobiological hypotheses
regarding the etiology and pathophysiology of ADHD
within a more specific brain localisation. Furthermore,
neurocognitive models of ADHD have become more
refined, and one particular executive process, inhibition,
is now considered to be a core deficit [6].

Current theories emphasise the central role of atten-
tional and executive dysfunctions in children [7,8], as
well as affective components involving emotional control
and motivational processes [9]. A growing body of evi-
dence supports a model in which multiple genetic and
environmental factors interact during early development
to create a neurobiological susceptibility to the disorder;
the expression of which is mediated by alterations within
different and diverse neural networks and deficits in the
neuropsychological functions that these subserve [10].
Individuals with ADHD present difficulties in several
domains of attentional and cognitive functions: problem
solving, planning, orienting, alerting, cognitive flexibility,
sustained attention, response inhibition, and working
memory [7,11]. Other domains involving affective com-
ponents, such as motivation and delay aversion, are also
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affected [8,9]. Motor difficulties, such as problems with
sensory motor coordination, including poor handwriting,
clumsiness, and marked delays in achieving motor mile-
stones [12], have also been reported and the prevalence
of motor impairment in the ADHD population has been
estimated to be approximately 50% [13]. Motor problems
might be partially related to abnormalities in structure
and/or function of the cerebellum and basal ganglia
found in ADHD [14].

Recently, neuroimaging has led to several important
advances in the understanding of the neurobiology
underlying the clinical picture of ADHD, and demon-
strates a clear brain basis to the disorder in regions
involved in attention, and executive and inhibitory con-
trol [15,16]. Furthermore, transcranial magnetic stimula-
tion (TMS) has provided evidence that intracortical
inhibition, as indexed by the immature ipsilateral motor
cortex, normalises with psychostimulant treatment [17].
There is an exciting confluence between emerging
studies in basic neurobiology and the genetic, neuroima-
ging, and neuropsychological analyses of ADHD. Knowl-
edge of neurobiology can offer child neurologists,
psychiatrists and other healthcare professionals a valu-
able framework for the interpretation of clinical findings
of children meeting the criteria for diagnosis of ADHD.
In this article we provide a brief overview of the salient
neurological basis of the disorder.

Etiology

ADHD is not a single pathophysiological entity and
appears to have a complex etiology. Multiple genetic
and environmental factors act together to create a spec-
trum of neurobiological liability.

The genetic basis for ADHD

Genetic factors are implicated in ADHD, but the
mechanism of action is not completely understood.
Twin, family and adoption studies of ADHD have sup-
ported a strong genetic contribution to the disorder,
with heritability ranging from 60-90% [18,19].

Genes regulating neurotransmitter systems have been
implicated in ADHD. Candidate gene studies of ADHD
have produced substantial evidence implicating several
genes in the etiology of the disorder, with meta-analyses
supportive of a role of the genes coding for DRD4,
DRD5, SLC6A3, SNAP-25, and HTR1B [20]. Genome
scan studies on potential alleles for ADHD have demon-
strated linkage on chromosomes 5p13, 6q12, 16p13,
17p11 and 11q22-25 [21,22]. However, genome-wide
association studies have failed to report any associations
that are significant after correction for multiple testing
[23]. Therefore, a plausible genetic hypothesis for
ADHD is a mixture of dominant and recessive major
genes that act with complex polygenic transmission
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patterns [18]. An increased rate of large, rare, chromo-
somal deletions and duplications known as copy number
variants have been reported in individuals with ADHD
[24]. However, genetic testing in an individual child is
not currently practical in normal clinical practise.

Sometimes ADHD-like symptoms are exhibited by
patients with established neurogenetic disorders such as
Tuberous Sclerosis Complex, Neurofibromatosis I,
Turner Syndrome, Williams Syndrome, Velocardiofacial
syndrome, Prader-Willy syndrome, and Fragile x Syn-
drome. Although each syndrome may arise from differ-
ent genetic abnormalities with multiple molecular
functions, the effects of these abnormalities may give
rise to common effects downstream in the biological
pathways or neural circuits, resulting in the presentation
of ADHD symptoms [25].

The environmental basis of ADHD

Pre-, peri- and postnatal environmental factors play an
important role in the pathogenesis of ADHD. Prenatal
factors are associated with maternal lifestyle during
pregnancy. For example, prenatal alcohol exposure is
known to induce brain structural anomalies, especially
in the cerebellum [26]. Children exposed prenatally to
alcohol can become hyperactive, disruptive, impulsive,
and are at an increased risk of a range of psychiatric dis-
orders [27,28]. Maternal smoking produces a 2.7-fold
increased risk for ADHD [29], and a dose-response rela-
tionship between maternal smoking during pregnancy
and hyperactivity has been reported [30]. This may be
due to an effect on nicotinic receptors, which modulate
dopaminergic activity. Dopaminergic disruption is
believed to be involved in the pathophysiology of
ADHD [31,32].

Peri-natal factors have also been implicated, with a
two-fold increase in ADHD in very low-birthweight chil-
dren and an increased rate of pregnancy and birth com-
plications in mothers of children later diagnosed with
ADHD [33].

Among postnatal factors, a role for malnutrition and
dietary deficiency in ADHD has been proposed. An
imbalance of essential fatty acid (omega-3 and omega-6)
intake has been suggested to be potentially involved in
the development of ADHD [34], although further evi-
dence is required to establish a role. Iron deficiency has
been implicated in some cases [35]. Early deprivation of
social environment during the postnatal period may also
have significant effects.

Gene-environment interactions

More complex models of the etiology of ADHD incor-
porating gene-environment interplay need to be consid-
ered. Recent studies have focused on the joint effects of
gene variants (of DRD4 and DAT1) and prenatal
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substance exposures on subtypes of ADHD children,
demonstrating that smoking during pregnancy is asso-
ciated with the combined ADHD type in genetically sus-
ceptible children [36]. A significant interaction between
DAT1 genotype and prenatal smoke exposure was
found in males. Men homozygous for the DAT1
10-repeat allele had higher hyperactivity-impulsivity
than males from all other groups [37]. Despite the het-
erogeneity of the etiology and pathophysiology of
ADHD, abnormal DAT density seems to be common
among subjects with ADHD ([38].

Neuroimaging

Growing evidence points to the involvement of the
frontostriatal network as a likely contributor to the
pathophysiology of ADHD. This network involves
the lateral prefrontal cortex, the dorsal anterior cingu-
late cortex, and the caudate nucleus and putamen. In
ADHD patients, reductions in volume have been
observed in total cerebral volume, the prefrontal cortex,
the basal ganglia (striatum), the dorsal anterior cingulate
cortex, the corpus callosum and the cerebellum [39].
A developmental trajectories study in ADHD patients
showed a delay in cortical maturation, and demon-
strated that different clinical outcomes may be asso-
ciated with different developmental trajectories in
adolescence and beyond [40]. In studies of cortical
development in children with ADHD, a marked delay in
brain maturation was seen; the grey matter peaks were
about 3 years later than in healthy controls [41]. The
delay was most prominent in prefrontal regions impor-
tant in the control of cognitive processes including
attention and motor planning [41,42]. Compensatory
networks including basal ganglia, insula and cerebellum
have been implicated for relative lower cognitive load
tasks in ADHD patients [43].

Neuroimaging studies have also reported reduced white
matter (WM) volumes [43], midsagittal corpus callosum
(CC) areas [44], and cortical thickness [43] in ADHD
patients compared with controls. One of the most repli-
cated alterations is a significantly smaller CC, but there
are conflicting reports regarding the affected callosal seg-
ments [45]. Recent magnetic resonance imaging (MRI)
structural investigations have shown that WM alterations
are present in children, adolescents and adults with
ADHD [46]. In 15 young males with ADHD, Silk et al.
(2008) found WM abnormalities in several distinct
regions underlying the inferior parietal, occipito-parietal,
inferior frontal, and inferior temporal cortex [47]. Tracto-
graphy methods showed that these regions form part of
WM pathways connecting prefrontal and parieto-occipi-
tal areas with the striatum and the cerebellum. The
authors also demonstrated anomalous WM development
in ADHD in distinct cortical regions that they had
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previously shown to be dysfunctional or hypoactive in a
functional MRI study of subjects with ADHD [47].

Diffusion tensor imaging (DTI) is an MRI modality
that provides information about the direction and integ-
rity of neural fibre tracks in the brain in vivo. DTI stu-
dies have revealed developmental changes in cortical
WM pathways in prefrontal regions and in pathways
surrounding the basal ganglia and cerebellum in patients
with ADHD, which presumably reflect decreasing myeli-
nation of axons. It is believed that these changes cause a
decrease in the speed of neuronal communication [48].
Moreover, the neural networks serving the corticostria-
tal and corticocerebellar circuits could represent puta-
tive biomarkers for ADHD. Indeed, in this disorder their
quantification using DTI could be relevant for both
diagnostic and therapeutic purposes [46].

As well as offering new data to map the brain systems
involved in ADHD, and to integrate these findings with
clinical symptoms, functional neuroimaging studies
allow us to understand the mechanisms of treatment
response [42,49]. Positron emission tomography (PET)
studies have shown that methylphenidate hydrochloride
(MPH) blocks dopamine active transporters (DAT) and
that extracellular dopamine (DA) increases in propor-
tion to the level of blockade and to the rate of DA
release. This process is associated with an enhanced per-
ception of the external stimulus as salient in subjects
with ADHD [50].

Clinical diagnosis and comorbidities
Clinical presentation of ADHD may vary according to
age and stage of development and there are cultural dif-
ferences in the level of activity and inattention that are
regarded as a problem [51]. Diagnosis requires that
there should be clear evidence of clinically significant
impairment in social, academic, or occupational func-
tioning [5]. The predominantly inattentive type is rela-
tively more common in females. Children with the
predominantly hyperactive-impulsive type are aggressive
and impulsive, and tend to be highly rejected by their
peers. The combined type causes more impairment in
global functioning, in comparison with the other two
types. Adolescents with ADHD often report low self-
esteem and poor peer relationships; and are at high risk
of smoking and substance abuse early in life [52,53].

Endophenotypes can be used as trait markers for dis-
ease susceptibility, to identify more genetically homoge-
neous subgroups, to highlight distinct pathophysiological
mechanisms or etiological pathways, or to define “spec-
trum” phenotypes suitable for quantitative trait analyses
[54]. Cognitive deficits and motor response inhibition are
the prime endophenotype candidates in ADHD [55].

The co-existence of several other types of psycho-
pathology along with ADHD, such as oppositional defiant
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disorder, mood and anxiety disorders, learning disorders,
tics, and mental retardation, is very common [56].

Treatment

Before starting treatment, it is important to identify the
target outcomes to guide the therapy decision. Drug
treatment should be based on a thorough assessment
and should always be part of a comprehensive treatment
plan that includes psychosocial, behavioural, and educa-
tional advice and interventions. Psychotherapy combined
with medication may play a role in treating behavioural
problems, organisational issues and psychiatric comor-
bidities [57]. In Italy, an ADHD diagnosis can only be
made at a regional referral centre approved by the Ita-
lian Ministry of Health. Treatment guidelines put for-
ward by the Ministry of Health and based on European
guidelines, specify that pharmacological treatment can
only be initiated after failure of cognitive behavioural
therapy over a period of 6 months or longer has been
demonstrated. Patients must first be enrolled in the
ADHD medication registry before treatment with MPH
or atomoxetine (ATX) can be prescribed.

Behavioural therapy and pharmacological treatment
have both been shown to benefit ADHD patients.
A longitudinal study of the efficacy of different treat-
ments (an intensively monitored medication program,
behavioural therapy, combination of medication and
behavioural therapy or treatment as usual by community
care) showed after 8-year follow-up that all four of the
original treatment groups had a similar outcome: all
showed improvement in comparison with pretreatment
baseline scores, but none demonstrated superiority [58].

The fronto-subcortical circuits (lateral prefrontal cor-
tex, dorsal anterior cingulate cortex, caudate, and puta-
men) associated with ADHD are rich in catecholamines,
which are involved in the mechanism of action of medi-
cations used to treat this disorder. Neuropharmacologi-
cal studies have provided evidence that ADHD involves
dysregulation of both noradrenaline (NE) and DA neu-
rotransmitter systems [59]. MPH treatment causes an
increase in DA signalling through multiple actions,
including blockade of the DA reuptake transporter,
amplification of DA response duration, disinhibition of
the dopamine D2 receptor and amplification of DA tone
[60]. MPH is also an inhibitor of NE re-uptake. ATX is
a selective inhibitor of synaptic re-uptake, and in vivo, it
specifically increases extracellular levels of DA in the
prefrontal cortex but not in the striatum; probably by
modulating cortical synaptic DA uptake via the NE
transporter [61]. Dextroamphetamine increases the
synaptic activity of DA and NE by increasing the release
of the neurotransmitters into the synaptic cleft, decreas-
ing reuptake back into the presynaptic neuron, and inhi-
biting their catabolism [62]. Strong evidence exists
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indicating that stimulant medications, such as MPH and
dextroamphetamine, and the non-stimulant ATX, are
effective in improving ADHD symptoms [63]. Guanfa-
cine is a selective alpha2A adrenergic receptor agonist,
which improves working memory by stimulating postsy-
naptic alpha2A adrenoceptors, strengthening the
functional connectivity of prefrontal cortex networks
[64]. Guanfacine has also been shown to be effective in
reducing ADHD symptoms [65,66]. Table 1 summarises
the most important characteristics of these pharmacolo-
gical treatments for ADHD. Only ATX and immediate
release MPH are currently approved for the treatment
of ADHD in Italy.

ADHD pharmacological therapies are generally well-
tolerated (Table 1). However, concerns surrounding the
cardiovascular safety of some of these drugs has
prompted a recent examination of the effects of ATX
and MPH on blood pressure (BP), heart rate (HR), and
ECG parameters. MPH appears to cause minor
increases in BP and HR, with no strong data to suggest
that itincreases the QT interval. Limited data suggest
that ATX may increase BP and HR in the short term;
in the long term it appears to only increase BP. The
effects of ATX on QT interval remain uncertain.
Because the current evidence is based on research that
has not been specifically designed to investigate the car-
diovascular effects of these drugs, it is difficult to draw
firm conclusions [67].

Both MPH and ATX significantly increase activation
in key cortical and subcortical regions subserving atten-
tion and executive functions. Therefore, alterations in
dopaminergic and noradrenergic function are apparently
necessary for the clinical efficacy of pharmacological
treatment of ADHD [68]. However MPH and ATX have
both common and distinct neural effects, consistent
with the observation that while many children respond
well to both treatments, some respond preferentially to
one or the other. Although pharmacotherapy for ADHD
appears to prepare and facilitate the brain for learning,
experiential programs need to elicit compensatory devel-
opment in the brain. The clinical amelioration of some
children after environmental experiential inputs and
early cognitive/behavioural treatment could indicate out-
come-associated plastic brain response [69]. One year of
treatment with MPH may be beneficial to show endur-
ing normalisation of neural correlates of attention. How-
ever, little is known about the long-term effects of
stimulants on the functional organisation of the devel-
oping brain [70]. Recent findings have shown that
chronic MPH use in drug-naive boys with ADHD
enhanced neuropsychological functioning on “recogni-
tion memory” component tasks with modest executive
demands [71]. Patients receiving pharmacological treat-
ment for ADHD should always be closely monitored for
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Table 1 Clinical characteristics of ADHD pharmacotherapies
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Pharmacotherapy Molecular mechanisms [59-66] Formulations Efficacy Common adverse events
(meta-analysis effect [75-79]
size) [74,70]
Stimulants
Methylphenidate Blocks DA reuptake transporter, Immediate release 0.92 (0.80, 1.05) Decreased appetite, insomnia,

amplifies DA response duration,
disinhibits D2 receptor, inhibits NE
re-uptake

Osmotic release

Extended release

Long-acting

Transdermal patch
Dexmethylphenidate

0.90 (0.76, 1.05)

0.85 (0.65, 1.05)

0.96 (0.75, 1.16)

Not available
0.76 (045, 1.08)

abdominal pain, headache dizziness,
reduced weight gain, affective
symptoms
Decreased appetite, abdominal pain,
headache

Decreased appetite, headache,
abdominal pain

Headache, insomnia, upper
abdominal pain, decreased appetite,
anorexia

Appetite, nausea, vomiting, insomnia

Decreased appetite, headache,
abdominal pain, nausea

Dextroamphetamine

Increases release of DA and NE into
synaptic cleft, decreases reuptake
into presynaptic neuron, inhibits

catabolism

Immediate release

Extended release

Prodrug

1.24 (0.88, 1.60)

1.13 (0.57, 1.69)

1.52 (1.34, 1.71)

Decreased appetite, insomnia

Palpitations, tremor, insomnia,
decreased appetite, headache,
dizziness, dry mouth, weight loss,
abdominal symptoms

Decreased appetite, headache,
insomnia, abdominal pain, irritability

Mixed
amphetamine salts

Increases release of DA and NE into
synaptic cleft, decreases reuptake

Immediate release

1.34 (095, 1.72)

Decreased appetite, agitation,
insomnia

into presynaptic neuron, inhibits
catabolism

Extended release

0.77 (0.59, 0.94) Decreased appetite, headache,

insomnia

Non-stimulants

Atomoxetine Selectively inhibits synaptic

DA re-uptake

Immediate release

0.63 (0.57, 0.69) Upper abdominal pain, decreased
appetite, vomiting, somnolence,

irritability, fatigue

Guanfacine Selective alpha2A adrenergic

receptor agonist

Extended release

Immediate release

Sedation, insomnia, decreased
appetite, dry mouth, constipation

Not available

0.8 (053, 1.07) Somnolence, fatigue, upper

abdominal pain, sedation

both common and unusual potentially severe adverse
effects.

Conclusions

Convergent data from neuroimaging, neuropsychology,
genetics and neurochemical studies consistently point to
the involvement of the frontostriatal network as a likely
contributor to the pathophysiology of ADHD. This net-
work involves the lateral prefrontal cortex, the dorsal
anterior cingulate cortex and the caudate nucleus and
putamen [39]. Functional neuroimaging has provided
new ways to examine the pathophysiology of ADHD,
has shown widespread dysfunction in neural systems
involving the prefrontal, striatal, and parietal brain

regions, and has led to a brain model of deficits in mul-
tiple developmental pathways [72]. Molecular genetic
studies support dysregulation of neurotransmitter sys-
tems as the basis of genetic susceptibility to the disor-
der, and it is becoming clear that the genotype may
influence the response to medications [73]. Hopefully,
advances in understanding the underlying neurobiology
of ADHD will contribute to identifying more specific
and targeted pharmacotherapies, and will help child
neurologists to better manage their patients.
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