RESEARCH

Open Access

The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences

Hong-Li Zhang^{1,2}, Yuan Huang², Li-Liang Lin², Xiao-Yang Wang² and Zhe-Min Zheng^{2*}

Abstract

Background: The phylogeny of the Orthoptera was analyzed based on 6 datasets from 47 orthopteran mitochondrial genomes (mitogenomes). The phylogenetic signals in the mitogenomes were rigorously examined under analytical regimens of maximum likelihood (ML) and Bayesian inference (BI), along with how gene types and different partitioning schemes influenced the phylogenetic reconstruction within the Orthoptera. The monophyly of the Orthoptera and its two suborders (Caelifera and Ensifera) was consistently recovered in the analyses based on most of the datasets we selected, regardless of the optimality criteria.

Results: When the seven NADH dehydrogenase subunits were concatenated into a single alignment (NADH) and were analyzed; a near-identical topology to the traditional morphological analysis was recovered, especially for BI_NADH. In both the concatenated cytochrome oxidase (COX) subunits and COX + cytochrome b (Cyt b) datasets, the small extent of sequence divergence seemed to be helpful for resolving relationships among major Orthoptera lineages (between suborders or among superfamilies). The conserved and variable domains of ribosomal (r)RNAs performed poorly when respectively analyzed but provided signals at some taxonomic levels.

Conclusions: Our findings suggest that the best phylogenetic inferences can be made when moderately divergent nucleotide data from mitogenomes are analyzed, and that the NADH dataset was suited for studying orthopteran phylogenetic relationships at different taxonomic levels, which may have been due to the larger amount of DNA sequence data and the larger number of phylogenetically informative sites.

Keywords: Orthoptera; Acrididae; Phylogeny; Protein-coding genes; Ribosomal RNA

Background

The Orthoptera is one of the oldest extant insect lineages, with fossils first appearing in the Upper Carboniferous (290 Mya) (Sharov 1968; Grimaldi and Engel 2005). The monophyly of this order was supported by both morphological and molecular data (Jost and Shaw 2006; Fenn et al. 2008, Ma et al. 2009). It is one of the largest and best researched of the hemimetabolous insect orders and consists of two suborders, the Caelifera (Acidoidea or Acrydoidea) and Ensifera (Tettigoniedea) (Handlirsh 1930; Ander 1939), which are widely accepted by most researchers. With regard to mid-level Caeliferan or Ensiferan relationships (among superfamilies, families, or subfamilies, respectively), there are a few hypotheses based on morphological and molecular data (Flook and Rowell 1997a, 1997b, 1998; Flook et al.

* Correspondence: zhengzhemin@163.com

²Institute of Zoology, Shaanxi Normal University, Xi'an 710062, China Full list of author information is available at the end of the article

Mitogenomes of insects are typically small doublestranded circular molecules. They range in size from 14 to 19 kb and encode 37 genes (Wolstenholme 1992; Boore 1999). For the past 2 decades, mitogenomic data have been widely regarded as effective molecular markers of choice for both population and evolutionary studies of insects. The mitogenome is one of the most information-rich markers in phylogenetics and has extensively been used for studying phylogenetic relationships at different taxonomic levels (Ingman et al. 2000; Nardi et al. 2003). The utility of mitogenomic data may provide new insights into systematics within the Orthoptera.

© 2013 Zhang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different DNA datasets from mitogenomes vary in the degree of phylogenetic usefulness. Protein-coding genes appear to be suited for studies of relationships among closely related species, because unconstrained sites (at the third codon position) in protein-coding genes and information from studies of amino acid substitutions in rapidly evolving genes may help decipher close relationships. In mitochondrial genes, phylogenetic trees based on ribosomal (r)RNA sequences can simultaneously reveal the evolutionary descent of nuclear and mitogenomes, because they are the only ones that are encoded by all organellar genomes and by nuclear and prokaryotic genomes (Gray 1989). The highly conserved regions of rRNA genes may be useful for deep levels of divergence (Simon et al. 1994). Formerly, the A + T-rich region in the mitogenome was rarely used in constructing phylogenies due to its high adenine and thymine contents and high variability (Zhang et al. 1995, Zhang and Hewitt 1997). However, Zhao et al. (2011) verified that the sequence of the conserved stem-loop secondary structure in this region discovered by Zhang et al. (1995) provides good resolution at the intra-subfamily level within the Caelifera.

Phylogenetic analyses have generally been performed with the maximum likelihood (ML) and Bayesian inference (BI) methods. There are yet no sufficient opinions to verify their superiority or inferiority in all cases. When the selected DNA sequence data are rather slowly evolving and large in amount, ML can lead to inferred phylogenetic relationships relatively close to those that would be obtained by analyzing the tree based on the entire genome (Nei and Kumar 2000). The recently proposed BI phylogeny appears to possess advantages in terms of its ability to use complex models of evolution, ease of interpretation of the results, and computational efficiency (Huelsenbeck et al. 2002).

Herein, we reconstructed the phylogeny of the Orthoptera as a vehicle to examine the phylogenetic utility of different datasets in the mitogenome to resolve deep relationships within the order. Also, we explored various methods of analyzing mitogenomic data in a phylogenetic framework by testing the effects of different optimality criteria and data-partitioning strategies.

Methods

Data partitioning

In total, 47 available orthopteran mitogenomes were included in our analyses (Table 1). *Ramulus hainanense* from the Phasmatodea and *Sclerophasma paresisense* from the Mantophasmatodea were selected as outgroups. We created six datasets to study the effect of different partitioning schemes on the topology of mitogenomic phylogenies: (1) ATP, (2) cytochrome oxidase (COX), (3) COX + cytochrome (Cyt) b, (4) NADH, (5) the concatenated conserved domain of ribosomal RNA (rRNA(C)), and (6) the concatenated variable domain of rRNA (rRNA(V)).

DNA alignment was inferred from the amino acid alignment of each of the 13 protein-coding genes using MEGA vers. 5.0 (Tamura 2011). rRNA genes were individually aligned with ClustalX using default settings (Thompson et al. 1997). The 15 separate nucleic acid sequence alignments were manually refined.

Phylogenetic analyses

MrModeltest 2.3 (Nylander 2004) and ModelTest 3.7 (Posada and Crandall 1998) were respectively used to select the model for the BI and ML analyses. According to the Akaike information criterion, the GTR + I + G model was selected as the most appropriate for these datasets. The BI analysis was performed using MrBayes, vers. 3.1.2 (Ronquist and Huelsenbeck 2003) under this model. Two simultaneous runs of 10^6 generations were conducted for the matrix. Each set was sampled every 100 generations with a burn-in of 25%. Bayesian posterior probabilities were estimated on a 50% majority rule consensus tree of the remaining trees. The ML analysis was performed using the program RAxML, vers. 7.0.3 (Stamatakis 2006) with the same model. A bootstrap analysis was performed with 100 replicates.

Results and discussion

Results

Phylogenetic relationships within the Orthoptera

Different optimality criteria and dataset compilation techniques have been applied to find the best method of analyzing complex mitogenomic data (Stewart and Beckenbach 2009, Cameron et al. 2004, Castro and Dowton 2005, Kim et al. 2005). In this paper, we compared the effect of partitioning according to different protein-coding genes (NADH, COX, COX + Cyt *b*, and ATP) and different regions in rRNA (rRNA(C) (small subunit ribosomal RNA (rrnS) (III) + large subunit ribosomal RNA (rrnL) (III + IV + V)) and rRNA(V) (rrnS (I + II) + rrnL (I + II + VI))).

Different partitioning schemes had greater or lesser influences on the phylogenetic reconstruction in terms of both the topology and nodal support. When all available data were analyzed, the monophyly of two Orthoptera suborders, the Caelifera and Ensifera, was consistently recovered in the context of our taxon sampling based on most analyses (Figures 1, 2, 3, and 4A,B).

Phylogenetic relationships within the Ensifera

Based on most analyses, within the Ensifera, the Rhaphidophoridae clustered into one group with the

Classification	Species	Accession no.	Reference
Ingroup			
Orthoptera			
Caelifera			
Acridoidea			
Acrididae			
Gomphocerinae	Gomphocerus licenti	GQ180102	Gao et al. (2009)
Gomphocerinae	Gomphocerus sibiricus	JX122541	Zhang et al. (2013b)
Gomphocerinae	Gomphocerus tibetanus	HM131804	Yin et al. (2012)
Gomphocerinae	Gomphocerippus rufus	GU294759	Sun et al. (2010)
Gomphocerinae	Chorthippus chinensis	EU029161	Liu and Huang (2008)
Gomphocerinae	Arcyptera coreana	GU324311	Unpublished
Gomphocerinae	Euchorthippus fusigeniculatus	HM583652	Zhao et al. (2010)
Oedipodinae	Locusta migratoria manilensis	GU344101	Unpublished
Oedipodinae	Locusta migratoria	X80245	Flook et al. (1995)
Oedipodinae	Locusta migratoria migratoria	EU287446	Unpublished
Oedipodinae	Locusta migratoria tibetensis	HM219224	Unpublished
Oedipodinae	Oedaleus decorus asiaticus	EU513374	Ma et al. (2009)
Oedipodinae	Gastrimargus marmoratus	EU527334	Ma et al. (2009)
Acridinae	Acrida willemsei	EU938372	Fenn et al. (2008)
Acridinae	Acrida cinerea	GU344100	Liu and Huang (2010)
Acridinae	Phlaeoba albonema	EU370925	Shi et al. (2008)
Melanoplinae	Ognevia longipennis	EU914848	Unpublished
Melanoplinae	Prumna arctica	GU294758	Sun et al. (2010)
Catantopinae	Traulia szetschuanensis	EU914849	Unpublished
Oxyinae	Oxya chinensis	EF437157	Zhang and Huang (2008)
Calliptaminae	Calliptamus italicus	EU938373	Fenn et al. (2008)
Cyrtacanthacridinae	Schistocerca gregaria gregaria	GQ491031	Erler et al. (2010)
Pamphagidae			
Thrinchinae	Filchnerella helanshanensis	JX468877	Zhang et al. (2013a)
Thrinchinae	Pseudotmethis rubimarginis	JX468878	Zhang et al. (2013a)
Thrinchinae	Asiotmethis zacharjini	JX468876	Zhang et al. (2013a)
Thrinchinae	Thrinchus schrenkii	GU181288	Zhang et al. (2011)
Romaleidae			
Romaleinae	Xyleus modestus	GU945503	Sheffield et al. (2010)
Pamphagoidea			
Pyrgomorphidae			
Pyrgomorphinae	Mekongiella xizangensis	HM583654	Zhao et al. (2010)
Pyrgomorphinae	Mekongiana xiangchengensis	HM583653	Zhao et al. (2010)
Pyrgomorphinae	Atractomorpha sinensis	EU263919	Ding et al. (2007)
Pneumoroidea			
Pneumoridae			
	Physemacris variolosa	GU945504	Sheffield et al. (2010)
Eumastacoidea			
Episactidae			

Episactinae	Pielomastax zhengi	JF411955	Yang and Huang (2011)
Tetrigoidea			
Tetrigidae			
Tetriginae	Tetrix japonica	JQ340002	Xiao et al. (2012b)
Tetriginae	Alulatettix yunnanensis	JQ272702	Xiao et al. (2012a)
Tridactyloidea			
Tridactylidae			
Tridactylinae	Ellipes minuta	GU945502	Sheffield et al. (2010)
Ensifera			
Tettigonioidea			
Tettigoniidae			
Tettigoniinae	Anabrus simplex	EF373911	Fenn et al. (2007)
Tettigoniinae	Gampsocleis gratiosa	EU527333	Zhou et al. (2008)
Bradyporinae	Deracantha onos	EU137664	Zhou et al. (2009)
Phaneropterinae	Elimaea cheni	GU323362	Zhou et al. (2010)
Conocephalinae	Ruspolia dubia	EF583824	Zhou et al. (2007)
Conocephalinae	Conocephalus maculatus	HQ711931	Unpublished
Meconematinae	Xizicus fuscipes	JQ326212	Unpublished
Rhaphidophoridae			
Troglophilinae	Troglophilus neglectus	EU938374	Fenn et al. (2008)
Grylloidea			
Gryllidae			
Gryllinae	Teleogryllus emma	EU557269	Ye et al. (2008)
Myrmecophilidae			
Myrmecophilinae	Myrmecophilus manni	EU938370	Fenn et al. (2008)
Gryllotalpidae			
Gryllotalpinae	Gryllotalpa orientalis	AY660929	Kim et al. (2005)
Gryllotalpinae	Gryllotalpa pluvialis	EU938371	Fenn et al. (2008)
Outgroup			
Phasmatodea	Ramulus hainanense	FJ156750	Unpublished
Mantophasmatodea	Sclerophasma paresisense	DQ241798	Cameron et al. (2006)

Table I Taxonomic information for the phylogenetic analysis used in this study (Continue	Table 1	Taxonomic information	for the phyl	logenetic analysis	used in this stud	v (Continued)
--	---------	------------------------------	--------------	--------------------	-------------------	----------------------

Tettigoniidae and together supported the monophyly of the Tettigonioidea (Figures 1, 2, 3, 4, and 5A,B). This was consistent with results presented by Flook and Rowell (1999), Fenn et al. (2008), Ma et al. (2009), Sun et al. (2010), Zhao et al. (2010), and Zhou et al. (2010), but conflicted with results of Jost and Shaw (2006). Jost and Shaw (2006) found that the Rhaphidophoridae was more closely related to the Grylloidea than to the Tettigoniidae. Relationships among the five subfamilies within the Tettigoniidae were only recovered in the analyses (BI_NADH, BI_ (COX + Cyt *b*), ML_NADH, and ML/BI_rRNA(C)) (Figures 1, 2B, 4A,B, and 6), (Meconematinae + ((Phaneropterinae + Conocephalinae) + (Bradyporinae + Tettigoniinae))). These results were similar to those by

Storozhenko (1997), Gwynne and Morris (2002), and Zhou et al. (2010).

The monophyly of the Grylloidea was supported by the analyses (ML_NADH, ML/BI_(COX + Cyt *b*), and ML/BI_COX) (Figures 2, 3A,B, and 6). However, the Myrmecophilidae clustered into one clade with the Gryllotalpidae, and the Gryllidae formed an independent monophyletic group in the BI_NADH (Figure 1). These results were consistent with those based on a mitochondrial (mt)DNA sequence by Zhou et al. (2010) but conflicted with results based on three rRNA gene sequences by Flook et al. (1999). The two datasets of COX + Cyt *b* and NADH may be good choices for resolving deep relationships within the suborder Ensifera.

nodes. Ac., Acridinae; Br., Bradyporinae; Cal., Calliptaminae; Cat., Catantopinae; Co., Conocephalinae; Cy., Cyrtacanthacridinae; Ep., Episactinae; Go., Gomphocerinae; Grylli, Gryllinae; Gryllo., Gryllotalpinae; Mec., Meconematinae; Mel., Melanoplinae; My., Myrmecophilinae; Oe., Oedipodinae; Ox., Oxyinae; Ph., Phaneropterinae; Py., Pyrgomorphinae; Ro., Romaleinae; Tetr., Tetriginae; Tett., Tettigoniinae; Th., Thrinchinae; Tri., Tridactylinae; Tro., Troglophilinae.

Phylogenetic relationships within the Caelifera

The monophyly of the Caelifera is widely accepted and is supported by morphological and molecular data (Xia 1994, Fenn et al. 2008, Eades and Otte 2010, Sheffield et al. 2010, Sun et al. 2010, Zhao et al. 2010, 2011). In the present study, five superfamilies of Caelifera lineages were included, and they clustered as a monophyletic clade. Our results may provide evidence for resolving phylogenetic relationships among those superfamilies within the Caelifera. The monophyly of five superfamilies within the Caelifera was well supported by our analyses (BI_NADH, ML/BI_(COX + Cyt b), and ML/BI_COX) (Figures 1, 2, and 3A,B). Relationships among the five superfamilies were (Tridactyloidea + (Tetrigoidea + (Eumastacoidea + (Pneumoroidea + (Acridoidea))))). The Tridactyloidea occupied the basal position.

Within the Acridoidea, the BI_NADH analysis produced an identical topology to the OSF system (Eades and Otte 2010) (Figure 1). The respective monophylies

of the Acrididae, Romaleidae, and Pamphagidae were well recovered only by this analysis.

Phylogenetic relationships within the Acrididae

With regard to relationships among those subfamilies within the Acrididae, divergent tree topologies were resolved from the different datasets we selected in this study. Our initial analyses using the six datasets led to quite different tree topologies, and neither the ML nor BI trees based on these datasets well resolved deep phylogenetic relationships with the exception of the BI_NADH analysis (Figure 1). The relationships among the eight acridid subfamilies were (Cyrtacanthacridinae + (Calliptaminae + (Catantopinae + (Oxyinae + (Melanopline + (Acridinae + (Oedipodinae + Gomphocerinae))))))).

The five subfamilies, the Cyrtacanthacridinae, Catantopinae, Calliptaminae, Oxyinae, and Melanopline, were placed in one family, the Catantopidae, in Xia's (1958) system. In the BI_NADH analysis, the five subfamilies were split into three clades, Cyrtacanthacridinae, (Calliptaminae + Catantopinae), and (Oxyinae + Melanopline). The Acridinae species were split into two clades. *Phlaeoba albonema* formed one monophyletic clade, while the other two species were grouped together into one clade with species of the Oedipodinae, which was in conflict with the morphological taxonomy and previously reported topologies (Fenn et al. 2008, Sheffield et al. 2010, Sun et al. 2010, Zhao et al. 2010, 2011). For the Gomphocerinae, both subfamilies Arcypterinae and Gomphocerinae in Xia's (1958) system were consolidated into one group. This result supports the monophyletic group of the Gomphocerinae in the OSF system (Eades and Otte 2010).

Few of the analyses recovered a topology completely congruent with other studies. Most datasets scattered

members of the Acrididae throughout the tree and failed to resolve most of the clades. The topology within the Acridoidea based on rRNA(V) was almost consistent with that of BI_NADH with the sole exception of the Pamphagidae which was located away from the Acridoidea (Figure 5A,B). In the analyses with this dataset, eight subfamilies within the Acrididae adopted in this work were grouped into three clades: (1) clade 1 containing (the Catantopinae + Cyrtacanthacridinae + Calliptaminae + Oxyinae + Melanopline); (2) clade 2 containing (the Oedipodinae + Acridinae), and (3) clade 3 containing the Gomphocerinae.

Discussion

Phylogenetic analyses in this study

We performed 12 separate phylogenetic analyses to test the effect of the optimality criteria and data-partitioning strategies on mitogenomic phylogenies of the Orthoptera. The results indicated that the differing datasets had much larger effects than the optimality criteria on both the topologies and levels of support.

In terms of the ability to resolve deeper-level relationships in the Orthoptera, conserved gene data (COX + Cyt *b* and COX) resolved the relationships among major Orthoptera lineages (between suborders or among superfamilies), but were unable to unambiguously resolve intra-subfamily relationships within the Acrididae (Figures 2 and 3A,B). This suggests that the two datasets might not have sufficient phylogenetic signals to resolve relationships among closely related species.

The ATP topologies were the worst among the analyses performed herein (Figure 7A,B). The ATP dataset gave tree topologies that were wildly incongruent with the other datasets and with previously accepted orthopteran phylogenies (Fenn et al. 2008, Ma et al. 2009, Sun et al. 2010, Zhao et al. 2010, 2011).

Among the total evidence analyzed, there were no apparent effects of different optimality criteria on the tree topologies with rRNA(C) and rRNA(V) (Figures 4 and 5A, B). However, different optimality criteria did result in different topologies among the other datasets. In both the MP and BI analyses based on COX + Cyt *b* (Figure 2A,B), Acrididae species were split into four clades: (1) clade 1 containing the (Gomphocerinae + Melanopline); (2) clade 2 containing the (Romaleinae + Pamphaginae + Cyrtacanthacridinae + Calliptaminae + Catantopinae + P. albonema); (3) clade 3 containing the (Acridinae (Acrida) + Arcyptera coreana); and (4) clade 4 containing the (Oedipodinae). However, the positions of clades 1 and 2 were reversed in the two analyses. Among the remaining datasets (NADH, COX, and ATP), different optimality criteria greatly influenced reconstruction of the ingroup topology (Figures 1, 3, 6, and 7A,B). Nodal support values also appeared to be affected by the optimality criteria in that bootstrap values for the ML analyses were generally lower than those for the BI analyses, which was consistent with analyses by Fenn et al. (2008).

Here, genes with intermediate rates of evolution might have had better phylogenetic utility for the questions at hand.

Choice of genes and their contribution to a total evidence tree

Correction or weighting of DNA-sequence data based on the level of variability can improve phylogenetic reconstructions in some cases. So gene choice is of critical importance.

Evolution rates of rRNA genes considerably vary along the length of molecules (Hillis and Dixon 1991, Simon et al. 1991). Short-range stems and loops tend to be less conserved compared to long-range stems (Hixson

and Brown 1986, Simon et al. 1990). Unpaired regions joining domains tend to be highly conserved. rRNA domains evolve at different average rates dictated by their functional constraints. For example, in rrnS, the 5' half (domains I and II) has many fewer conserved nucleotide strings than the 3' half (domain III) (Clary and Wolstenholme 1985, De Rijk et al. 1993, Van de Peer et al. 1993). So, domain III has routinely been used in insect systematic studies as a molecular marker (Simon et al. 1994). Similarly, in rrnL, domains I, II, and VI, on average, are less conserved than domains III, IV, and V (Uhlenbusch et al. 1987; Gutell et al. 1992). So the majority of structural and phylogenetic studies mainly focused on the 3' half of the rrnL molecule (Kambhampati et al. 1996, Flook and Rowell 1997a,b; Buckley et al. 2000). The 3' halves of rrnS and rrnL are not very useful for phylogenetic studies of recently diverged species, because they contain few sites that vary (Simon et al. 1994). Milinkovitch et al. (1993) successfully analyzed relationships among 16 whale taxa using only the most conserved domains of these two ribosomal genes. rRNA genes are most likely to be useful at the population level and at deep levels of divergence. However, if a researcher is choosing a study of relationships among closely related species, a protein-coding gene might be a better first choice.

Protein-coding genes may be more appropriate for phylogenetic analyses at intermediate levels of divergence. The phylogenetic performance of different genes is related to their particular rates of evolution. The three protein-coding genes, atp6, atp8, and nad4L, are the fastest evolving genes, while COX subunits and Cyt b show much-slower overall rates of evolution (Russo et al. 1996; Zardoya and Meyer 1996; Zhang et al. Zoological Studies 2013, **52**:37 http://www.zoologicalstudies.com/content/52/1/37

to the nodes.

shown close to the nodes.

Cameron et al. 2004). Cox1 is the most conserved gene in terms of amino acid evolution. In the past, cox1, cox2, cytb, and nad2 were extensively used for phylogenetic analyses (Liu and Beckenbach 1992; Simon et al. 1994; Caterino et al. 2000; Chapco et al. 2001; Litzenberger and Chapco 2001; Chapco and Litzenberger 2002; Amédégnato et al. 2003). Cox2 is the most widely used mitochondrial protein-coding gene in insects (Simon et al. 1994). Both nad4 and nad5 are large genes, and their protein sequence divergences seem to be helpful in constructing trees for distantly related species (Russo et al. 1996). The nad6 gene was often omitted because it is coded on the light strand, and its properties differ from those of the other 12 protein-coding genes (Springer et al. 2001). Zardoya and Meyer (1996) classified mitochondrial protein-coding genes into three groups, good (nad4, nad5, nad2, cytb, and cox1), medium (cox2, cox3, nadl, and nad6), and poor (atp6, nad3, atp8, and nad4L) phylogenetic performers. Some genes seem to be consistently more-reliable tracers of evolutionary history than others.

Conclusions

Our findings suggest that the best phylogenetic inferences can be made when moderately divergent nucleotide data from mitogenomes are analyzed, and that the NADH dataset was suited for studying orthopteran phylogenetic relationships at different taxonomic levels, which may have been due to the larger amount of DNA sequence data and the larger number of phylogenetically informative sites.

Abbreviations

Cox1 - 3: Cytochrome oxidase subunits I - III; COX: Concatenated cox1 - 3; nad1-6 and 4 L: NADH dehydrogenase subunits 1 to 6 and 4 L; NADH: The concatenated nad1-6 and 4 L; atp6 and 8: ATP synthase subunits 6 and 8; ATP: Concatenated atp6 and 8; cytb: Cytochrome b; rRNA: Ribosomal RNA; rmL and rm5: Large and small subunit ribosomal RNAs; rRNA(C): Concatenated conserved domains of two rRNA genes; rRNA(V): Concatenated variable domains of two rRNA genes; OSF: Orthoptera species file.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

HZ carried out the molecular genetic studies and drafted the manuscript, YH gave some important advices in the frame of this manuscript, LL and XW participated in the sequence alignment and data analyses, and ZZ modified and checked the language of this manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors are grateful to Z.J. Zhou and L. Zhao for their valuable suggestions for the manuscript and help with experiments. This study was supported by the National Natural Science Foundation of China (30970346 and 31172076) and the Fundamental Research Funds for the Central Universities (GK201001004).

Author details

¹College of Life Science, Shanxi Datong University, Datong 037009, China. ²Institute of Zoology, Shaanxi Normal University, Xi'an 710062, China.

Received: 17 December 2012 Accepted: 12 March 2013 Published: 17 October 2013

References

- Amédégnato C, Chapco W, Litzenberger G (2003) Out of South America? Additional evidence for a southern origin of melanopline grasshoppers. Mol Phylogenet Evol 29:115–119
- Ander K (1939) Vergleichend-anatomische und phylogenetische Studien über die Ensifera (Saltatoria). Opuscula Ent Suppl 2:1–306

Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780 Buckley TR, Simon C, Flook PK, Misof B (2000) Secondary structure and conserved

- motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene. Insect Mol Biol 9:565–580
- Cameron SL, Miller KB, D'Haese CA, Whiting MF, Barker SC (2004) Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics 20:534–557
- Cameron SL, Barker SC, Whiting MF (2006) Mitochondrial genomics and the new insect order Mantophasmatodea. Mol Phylogenet Evol 38:274–279
- Castro LR, Dowton M (2005) The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of *Perga condei* (Hymenoptera: Symphyta: Pergidae). Mol Phylogenet Evol 34:469–479

- Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: a thriving tower of Babel. Annu Rev Entomol 45:1–54
- Chapco W, Litzenberger G (2002) A molecular phylogenetic study of two relict species of melanopline grasshoppers. Genome 45:313–318
- Chapco W, Litzenberger G, Kuperus WR (2001) A molecular biogeographic analysis of the relationship between North American melanoploid grasshoppers and their Eurasian and South American relatives. Mol Phylogenet Evol 18:460–466
- Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of *Drosophila yakuba*: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271
- De Rijk P, Neefs JM, Van Y, de Peer R, Wachter D (1993) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 20(Suppl):2075–2089
- Ding FM, Shi HW, Huang Y (2007) Complete mitochondrial genome and secondary structures of IrRNA and srRNA of *Atractomorpha sinensis* (Orthoptera, Pyrgomorphidae). Zool Res 28:580–588
- Eades DC, Otte D (2010) Orthoptera species file 2.0/3.5. Available at http://orthoptera. speciesfile.org/HomePage/Orthoptera/HomePage.aspx. Accessed 26 January 2010
- Erler S, Ferenz HJ, Moritz RFA, Kaatz HH (2010) Analysis of the mitochondrial genome of *Schistocerca gregaria gregaria* (Orthoptera: Acrididae). Biol J Linn Soc 99:296–305
- Fenn JD, Cameron SL, Whiting MF (2007) The complete mitochondrial genome sequence of the Mormon cricket (*Anabrus simplex*: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Mol Biol 16:239–252
- Fenn JD, Song H, Cameron SL, Whiting MF (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol Phylogenet Evol 49:59–68
- Flook PK, Rowell CHF, Gellissen G (1995) Homoplastic rearrangements of insect mitochondrial tRNA genes. Naturwissenschaften 82:336–337
- Flook PK, Rowell CHF (1997a) The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences. Mol Phylogenet Evol 8:89–103
- Flook PK, Rowell CHF (1997b) The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera). Mol Phylogenet Evol 8:177–192
- Flook PK, Rowell CHF (1998) Inferences about orthopteroid phylogeny and molecular evolution from small subunit nuclear ribosomal DNA sequences. Insect Mol Biol 7:163–178
- Flook PK, Klee S, Rowell CHF (1999) Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implications for their higher systematics. Syst Biol 48:233–253
- Flook PK, Klee S, Rowell CHF (2000) Molecular phylogenetic analysis of the basal Acridomorpha (Orthoptera, Caelifera): resolving morphological character conflicts with molecular data. Mol Phylogenet Evol 15:345–354
- Gao J, Cheng CH, Huang Y (2009) Analysis of complete mitochondrial genome sequence of *Aeropus licenti* Chang. Zool Res 30:603–612
- Gray MW (1989) Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 5:25–50
- Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York
- Gutell RR, Schnare MN, Gray MW (1992) A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucleic Acids Res 20(Suppl):2095–2109
- Gwynne DT, Morris GK (2002) Tettigoniidae. Katydids, long-horned grasshoppers and bushcrickets. Available at http://tolweb.org/tree. Accessed January 2011
- Handlirsh A (1930) Mantodea order Fangheuschrecken. In: Kükenthal W, Krumbach T (ed) Handbuch der Zoologie. de Gruyter, Berlin, Leipzig, Germany, pp 803–819. 4(i)
- Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453
- Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 3:1–18
- Huelsenbeck JP, Larget B, Miller RE (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688
- Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nat 408:708–713
- Jost MC, Shaw KL (2006) Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication. Mol Phylogenet Evol 38:510–530
- Kambhampati S, Kjer KM, Thorne BL (1996) Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene. Insect Mol Biol 5:229–238

- Kim I, Cha SY, Yoon MH, Hwang JS, Lee SM, Sohn HD, Jin BR (2005) The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, *Gryllotalpa orientalis* (Orthoptera: Gryllotalpidae). Gene 353:155–168
- Litzenberger G, Chapco W (2001) A molecular phylogeographic perspective on a fifty-year-old taxonomic issue in grasshopper systematics. Heredity 86:54–59
- Liu H, Beckenbach AT (1992) Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phylogenet Evol 1:41–52
- Liu Y, Huang Y (2008) Sequencing and analysis of complete mitochondrial genome of *Chorthippus chinensis* Tarb. Chin J Biochem 24:329–335
- Liu N, Huang Y (2010) Complete mitochondrial genome sequence of *Acrida cinerea* (Acrididae: Orthoptera) and comparative analysis of mitochondrial genomes in Orthoptera. Comp Funct Genomics, ID 319486. doi:10.1155/ 2010/319486
- Ma C, Liu C, Yang P, Kang L (2009) The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus. BMC Genomics 10:1–12
- Milinkovitch MC, Orti G, Meyer A (1993) Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nat (Lond) 361:346–348
- Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: monophyletic or paraphyletic? Sci 299:1887–1889
- Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York
- Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Uppsala University, Uppsala, Sweden, Evolutionary Biology Centre
- Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinform 14:817–818
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572–1574
- Russo CAM, Takezaki M, Nei M (1996) Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol Evol 13:525–536
- Sharov AG (1968) Phylogeny of the Orthopteroidea. Akad Nauk SSSR Trudy Paleontologicheskogo Inst 118:1–216
- Sheffield NC, Hiatt KD, Valentine MC, Song H, Whiting MF (2010) Mitochondrial genomics in Orthoptera using MOSAS. Mitochondr DNA 21:87–104
- Shi HW, Ding FM, Huang Y (2008) Complete sequencing and analysis of mtDNA in *Phlaeoba albonema* Zheng. Chin J Biochem 24:604–611
- Simon CS, Pääbo TK, Wilson AC (1990) Evolution of the mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction. In: Clegg M, O'Brien S (ed) Molecular evolution, vol 122. UCLA Symposia on Molecular and Cellular Biology, New York, pp 235–244
- Simon C, Franke A, Martin A (1991) The polymerase chain reaction: DNA extraction and amplification. In: Hewitt GM, Johnson AWB, Young JPW (ed) Molecular techniques in taxonomy. Springer-Verlag, Berlin, pp 329–355
- Simon C, Rati FF, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701
- Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, de Jong WW, Stanhope MJ (2001) Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Mol Biol Evol 18:132–143
- Stamatakis A (2006) RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinform 22:2688–2690
- Stewart JB, Beckenbach AT (2009) Characterization of mature mitochondrial transcripts in *Drosophila*, and the implications for the tRNA punctuation model in arthropods. Gene 445:49–57
- Storozhenko SY (1997) Fossil history and phylogeny of orthopteroid insects. In: Gangwere SK, Muralirangan MC, Muralirangan M (ed) The bionomics of grasshoppers, katydids and their kin. CAB International, Oxon, Oxford&New York, pp 59–82
- Sun HM, Zheng ZM, Huang Y (2010) Sequence and phylogenetic analysis of complete mitochondrial DNA of two grasshopper species *Gomphocerus rufus* (Linnaeus, 1758) and *Primnoa arctica* (Zhang and Jin, 1985) (Orthoptera: Acridoidea). Mitochondr DNA 21:115–131
- Tamura K (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

- Uhlenbusch I, McCracken A, Gellissen G (1987) The gene for the large (16S) ribosomal RNA from the *Locusta migratoria* mitochondrial genome. Curr Genet 11:631–638
- Van de Peer Y, Neefs JM, De Rijk P, De Wachter R (1993) Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J Mol Evol 37:221–232
- Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216
- Xia KL (1958) Classification summary of grasshoppers in China. Science Press, Beijing, China (in Chinese)
- Xia KL (1994) Fauna Sinica Insecta, vol 4. Science Press, Beijing, China. in Chinese
- Xiao B, Chen W, Hu CC, Jiang GF (2012a) Complete mitochondrial genome of the groundhopper Alulatettix yunnanensis (Insecta: Orthoptera: Tetrigoidea). Mitochondr DNA 23:286–287
- Xiao B, Feng X, Miao WJ, Jiang GF (2012b) The complete mitochondrial genome of grouse locust *Tetrix japonica* (Insecta: Orthoptera: Tetrigoidea). Mitochondr DNA 23:288–289
- Yang H, Huang Y (2011) Analysis of the complete mitochondrial genome sequence of *Pielomastax zhengi*. Zool Res 3:353–362
- Ye W, Dang JP, Xie LD, Huang Y (2008) Complete mitochondrial genome of *Teleogryllus emma* (Orthoptera: Gryllidae) with a new gene order in Orthoptera. Zool Res 29:236–244
- Yin H, Zhi YC, Jiang HD, Wang PX, Yin XC, Zhang DC (2012) The complete mitochondrial genome of *Gomphocerus tibetanus* Uvarov, 1935 (Orthoptera: Acrididae: Gomphocerinae). Gene 494:214–218
- Zardoya R, Meyer A (1996) Phylogenetic performance of mitochondrial proteincoding genes in resolving relationships among vertebrates. Mol Biol Evol 13:933–942
- Zhang DX, Hewitt FM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120
- Zhang CY, Huang Y (2008) Complete mitochondrial genome of *Oxya chinensis* (Orthoptera, Acridoidea). Acta Biochim Biophys Sin 40:7–18
- Zhang DX, Szymura JM, Hewitt GM (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 40:382–391
- Zhang DC, Zhi YC, Yin H, Li XJ, Yin XC (2011) The complete mitochondrial genome of *Thrinchus schrenkii* (Orthoptera: Caelifera, Acridoidea, Pamphagidae). Mol Biol Rep 38:611–619
- Zhang HL, Zeng HH, Huang Y, Zheng ZM (2013a) The complete mitochondrial genomes of three grasshoppers, *Asiotmethis zacharjini, Filchnerella helanshanensis* and *Pseudotmethis rubimarginis* (Orthoptera: Pamphagidae). Gene 517:89–98
- Zhang HL, Zhao L, Huang Y, Zheng ZM (2013b) The complete mitochondrial genome of the *Gomphocerus sibiricus* (Orthoptera: Acrididae) and comparative analysis in four Gomphocerinae mitogenomes. Zool Sci 30:192–204
- Zhao L, Zheng ZM, Huang Y, Sun HM (2010) A comparative analysis of mitochondrial genomes in Orthoptera (Arthropoda: Insecta) and genome descriptions of three grasshopper species. Zool Sci 27:662–672
- Zhao L, Zheng ZM, Huang Y, Zhou ZJ, Wang L (2011) Comparative analysis of the mitochondrial control region in Orthoptera. Zool Stud 50:385–393
- Zhou ZJ, Huang Y, Shi FM (2007) The mitochondrial genome of *Ruspolia dubia* (Orthoptera: Conocephalidae) contains a short A + T-rich region of 70 bp in length. Genome 50:855–866
- Zhou ZJ, Shi FM, Huang Y (2008) The complete mitogenome of the Chinese bush cricket, *Gampsocleis gratiosa* (Orthoptera: Tettigonioidea). J Genet Genom 35:341–348
- Zhou ZJ, Huang Y, Shi FM, Ye HY (2009) The complete mitochondrial genome of *Dercantha onos* (Orthoptera: Bradyporidae). Mol Biol Rep 36:7–12
- Zhou ZJ, Ye HY, Huang Y, Shi FM (2010) The phylogeny of Orthoptera inferred from mtDNA and description of *Elimaea cheni* (Tettigoniidae: Phaneropterinae) mitogenome. J Genet Genom 37:315–324

doi:10.1186/1810-522X-52-37

Cite this article as: Zhang *et al.*: **The phylogeny of the Orthoptera** (Insecta) as deduced from mitogenomic gene sequences. *Zoological Studies* 2013 **52**:37.