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Abstract

potential to produce functional mature microRNAs.

Background: The processing of a microRNA results in an intermediate duplex of two potential mature products
that derive from the two arms (5" and 3') of the precursor hairpin. It is often suggested that one of the sequences is
degraded and the other is incorporated into the RNA-induced silencing complex. However, both precursor arms
may give rise to functional levels of mature microRNA and the dominant product may change from species to
species, from tissue to tissue, or between developmental stages. Therefore, both arms of the precursor have the

Results: We have investigated the relationship between predicted mRNA targets of mature sequences derived from
the 5" and 3" arms of the same pre-microRNAs. Using six state-of-the-art target prediction algorithms, we find that
573" microRNA pairs target different sites in 3" untranslated regions of mRNAs. We also find that these pairs do not
generally target overlapping sets of genes, or functionally related genes.

Conclusions: We show that alternative mature products produced from the same precursor microRNAs have
different targeting properties and therefore different biological functions. These data strongly suggest that
developmental or evolutionary changes in arm choice will have significant functional consequences.

Keywords: Arm switching, Gene regulation, miRNA, Target prediction

Background

MicroRNAs are crucial regulators of gene expression
whose biogenesis is tightly controlled by multiple enzymes
[1,2]. Primary microRNA transcripts are single-stranded
RNA molecules that fold into hairpins, and are cleaved by
two RNases producing an approximately 22-nucleotide
RNA duplex [1]. In a process called arm-sorting or
strand-sorting, one of the sequences of the duplex
(derived from one of the arms of the precursor hairpin)
associates with the RNA-induced silencing complex
(RISC), which will mediate mRNA translational repression
or transcript degradation (reviewed in [1]). The other arm
(the star sequence or microRNA*¥) is generally considered
a byproduct and is typically degraded [3]. However, it has
become clear that both arms of the hairpin may produce
functional mature products in many cases [4,5]. Indeed,
microRNA* sequences are often highly expressed, evolu-
tionarily conserved, and associated with RISC proteins [5].
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For example, the microRNA* product of the Drosophila
bantam gene is present at approximately 10-fold greater
levels than any other microRNA product across a range of
cell types and developmental stages. MicroRNA*
sequences have been shown to be loaded into the RISC
complex and to repress target genes both in vivo and
in vitro [5-7].

Recent studies have shown that precursor microRNAs
can change the arm from which the dominant functional
mature microRNA is produced. This process, called
arm-switching, occurs both in different tissues and de-
velopmental stages [4,8,9] and during evolution [10-13].
During microRNA biogenesis, both arms are produced
at equal amounts in a given cell and, later on, one of the
arms is usually degraded. For that reason, one may ex-
pect that microRNAs from the same precursor have
similar targeting properties. Alternatively, since opposite
arms of the hairpin have different sequences, it is
expected that they target different sites. If these sites are
in different transcripts, changes in arm usage would have
the potential to alter microRNA function. So far, the
only studied case is the mir-100/10 family, for which we
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have shown that opposite arms of precursor microRNAs
do not significantly share target genes [13]. The func-
tional consequences of changes in arm usage have not
been extensively studied.

MicroRNA target recognition is mediated by comple-
mentary base-pairing between the microRNA and the 3’
untranslated regions (UTR) of targeted transcripts [14].
The number of experimentally validated microRNA/tar-
get pairs remains limited. However, computational pre-
diction of microRNA targets has been widely used,
although these approaches produce high rates of false
positives [15]. In spite of this limitation, computational
prediction of targets permits the study of general bind-
ing properties of a given microRNA. A widely accepted
view of microRNA target preferences relies on nucleo-
tides 2 to 7 of a microRNA, the so-called seed sequence,
which recognizes binding sites often by perfect comple-
mentarity to the targeted transcripts (reviewed in [14]).
However, distinct modes of target recognition have been
described and they form the basis of distinct prediction
algorithms. Since different prediction strategies are
based on different assumptions and may give quite dif-
ferent results, it is often useful to apply a variety of algo-
rithms to study the targeting properties of microRNAs.

Here, we use multiple target prediction algorithms to
predict targets of human and fly microRNAs. We assess
whether pairs of mature sequences derived from the 5’
and 3’ arms of the same precursor target identical sites
(Figure 1A), different sites in the same gene transcripts
(Figure 1B) and different genes in the same functional
pathways (Figure 1C).

Results

Mature microRNAs from the same precursor have distinct
target sites

We tested whether alternative mature microRNA pro-
ducts derived from the 5" and 3’ arms of the same pre-
cursor share predicted target sites (Figure 1A). We
predicted all canonical seed targets for all microRNAs in
Drosophila melanogaster and human [14] and counted
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how many target sites have pairs of microRNAs from
the same precursor in common. We observed that not a
single predicted site was shared between the pairs of ma-
ture microRNAs from Drosophila. In humans, only one
5'/3" microRNA pair, derived from mir-3648, had com-
mon targets, sharing 61 predicted sites out of a total of
569 and 455 sites predicted for the 5" and 3’ microRNAs
respectively. This is explained by the fact that both ma-
ture sequences are GC rich, and both seed sixmers are
identical: GCCGCG. A closer inspection of the patterns
of deep sequencing reads mapped to the mir-3648 locus
(as shown in miRBase; [16]) suggests that mir-3648 may
not be a bona fide microRNA, since it does not show a
read pattern compatible with small RNA processing. In
general, mature microRNAs from opposite arms have
different sequences, therefore their propensity to target
different sites is expected.

5/3" microRNA pairs target non-overlapping gene lists
UTRs may contain multiple target sites for different
microRNAs. Therefore 5'/3’ pairs of microRNAs may
target sites in the same transcript (Figure 1B). To test
whether 5'/3" microRNA pairs target common genes, we
predicted regulated genes using six different and com-
plementary methods: canonical seeds, miRanda, PITA,
Diana-microT, RNAhybrid and TargetScan (with conser-
vation - see Methods). For each 5'/3' microRNA pair we
compared the overlap between the predicted target lists
and the expected overlap for random pairs of micro-
RNAs (see Methods).

Canonical seeds, PITA, Diana-microT, RNAhybrid and
TargetScan methods consistently showed that the over-
lap between genes targeted by 5'/3" microRNA pairs is
not statistically different from random expectation
(Figure 2A). Only the miRanda algorithm suggests a sig-
nificant overlap of genes targeted by 5'/3' microRNA
pairs (see below). The number of microRNA pairs with
overlapping target gene predictions in the human dataset
is about twice that for Drosophila. This is likely due to
the fact that human 3’ UTRs are longer than those from
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Figure 2 Distribution of target overlaps between 5'/3’ microRNA pairs. Average overlap of target predictions for multiple algorithms (grey
boxes) and expected overlap based on random sampling (white boxes). Error bars depict standard errors of the means. Statistical differences
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P-values below 0.05 are shown. (A) Overlap between lists of targeted genes from microRNA pairs from the same precursor. The human datasets
include additional values for strict sets of predictions for four of the algorithms. (B) Term overlap between the targets of 5//3/ pairs of microRNAs.

Human term overlap values were calculated, when available, for the strict target prediction sets.

Drosophila, and therefore the number of microRNAs pre-
dicted to target each transcript is significantly larger. There-
fore, we performed a second analysis in the human set
using a more stringent set of parameters (see Methods).
These strict predictions yielded smaller overlapping values,
but the overall findings remain robust to the parameter
changes: only the miRanda set showed significant differ-
ences between the observed and the expected overlap
values (Figure 2A).

We investigated whether the observed overlap for mi-
Randa predictions of gene targets of 5/3’ microRNAs
pairs could be explained by sequence composition
biases. In particular, programs that use hybrid stability
to detect microRNA targets (such as miRanda) may be
biased by variable GC content [17]. We therefore stud-
ied the potential effect of composition bias on predicted
microRNA targets in humans. We find that the number
of predicted gene targets is highly correlated with the
GC content of the microRNA (R*=0.72, P <0.001).
There is also a positive correlation between the micro-
RNA duplex GC content and the overlap between the
genes targeted (R*=0.58, P <0.001). After removing
those microRNAs with high GC content (defined as

greater than 67% as in [17]), the overlap between target
genes of human 5'/3 microRNA pairs was still signifi-
cant (P=0.003). The overlap between miRanda predic-
tions for 5'/3' microRNAs pairs is therefore robust to
sequence bias.

5/3" microRNA pairs do not target genes in the same
functional classes

Different genes targeted by different microRNAs may
have related functions or be involved in related pathways
(Figure 1C). The functional similarity of two genes can
be quantified by assessing the similarity of their annota-
tion, for example using Gene Ontology (GO) terms
[18,19]. This class of methods is known as semantic
similarity measures. Semantic similarity using GO term
annotation has been widely applied in genomics to com-
pare functional similarity between pairs of genes (for ex-
ample, [19,20]). Here we use a measure called average
term overlap (TO) to estimate the functional similarity
between lists of genes (see Methods). Values for average
TO were calculated for the lists of genes targeted by
5'/3' pairs of microRNAs. We did not observe any signifi-
cant overlap in the functions of genes targeted by 5'/3’
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pairs of microRNAs based on GO annotations with any
of the algorithms. A slight bias (although not significant)
for 5'/3" microRNAs to target genes with related func-
tions using miRanda (Figure 2B) is explained by the sig-
nificant overlap of targeted genes discussed above
(Figure 2A). From these analyses, we conclude that alter-
native microRNAs from the same precursor have signifi-
cantly different targeting properties.

Cases in which 5'/3' pairs have similar targets

We have shown that miRanda predictions suggest that
some 5'/3' microRNA pairs tend to target common
genes. We explored whether the relative amount of
microRNA produced from each arm of the hairpin pre-
cursor is associated with the targeting properties for the
human dataset. In Figure 3 we plot the average gene
overlap for different levels of arm usage bias. Arm usage
bias reflects the number of reads from deep sequencing
experiments that map to one arm with respect to the
other (see Methods), and was calculated only for micro-
RNAs that have reads associated with both arms. The
impact of arm usage bias in the targeting properties of
human microRNAs is shown in Table 1. Where pairs of
alternate microRNAs from the same hairpin are pro-
duced at ratios of at least 10:1 (that is, a mature product
from one arm dominates), we find that the 5'/3" pairs of
microRNAs do not bind to overlapping lists of genes.
MicroRNAs with low or no arm usage bias produce
pairs of mature sequences that do bind to overlapping
lists of genes (Table 1). By contrast, mature 5'/3" micro-
RNA pairs that are expressed at similar levels tend to
bind more similar lists of genes (Figure 3). We observe a
similar pattern in Drosophila: the subset of microRNAs
producing mature sequences approximately equally from
both arms share more targets than expected by chance
(Table 1), although the differences are not statistically
significant. The set of human microRNAs that produce
similar amounts of mature products from each arm
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(ratio less than 3:1, and a minimum of 10 reads mapping
to either arm) is shown in Table 2. Three out of the 11
pairs have a target overlap above the expected value
(>0.071). We therefore show that the significant overlap
of predicted gene targets of 5'/3" microRNA pairs can be
attributed to microRNAs that produce approximately
equal amounts of mature sequences from both arms.

Discussion
In this work, we have shown that, in general, 5'/3 ma-
ture microRNA sequences derived from the same micro-
RNA precursor target non-overlapping lists of genes.
The only exceptions derive from predictions made with
the miRanda algorithm [21] of targets of mature
sequences produced in equal concentrations from both
arms of the precursor. miRanda takes into account hy-
brid stability of the target and the microRNA, as well as
strong sequence complementarity in the seed region
[21]. We envisage two possible explanations for the dif-
ferent result from miRanda predictions. On the one
hand, the relaxation of the requirement for perfect com-
plementarity in the seed region may allow miRanda to
detect targets and trends that escape other prediction
algorithms (probably at the expense of prediction speci-
ficity). Indeed, a small number of cases of 5'/3" micro-
RNA pairs binding to the same transcript have been
described (for example, [22]). On the other hand, mi-
Randa predictions may be susceptible to unknown biases
such that the observed pattern is an artifact of the algo-
rithm (although we rule out the effects of GC bias here).
Nevertheless, all six different algorithms with two differ-
ent sets of parameters, covering the spectrum of most
existing target prediction algorithms [23], concur that
5'/3' mature microRNA pairs do not target the same
genes or pathways when the precursor produces func-
tional products primarily from one of the arms.

Early experiments suggested that the thermodynamic
properties of the microRNA duplex determine the
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Figure 3 Effect of microRNA arm usage on targeting properties. Sliding-window plot showing (A) mean target list overlap and (B) mean
term (function) overlap with respect to the microRNA arm usage bias (see Methods).
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Table 1 Effect of arm usage bias on gene overlap of
miRanda predictions of 5'/3' microRNA pairs

Low or no arm High arm
usage bias usage bias®
Drosophila
Observed (SEM) 0.1026 (0.0179) 0.0823 (0.0122)
Expected (SEM) 0.0840 (0.0011) 0.0706 (0.0009)
P-value® (N) 0.183 (62) 0.422 (%)
Human
Observed (SEM) 0.3444 (0.0248) 0.3143 (0.0214)
Expected (SEM) 0.2906 (0.0021) 0.3104 (0.0019)
P-value? (N) 0.059 (87) 0.5369 (70)
Human (strict set)
Observed (SEM) 0.0769 (0.0152) 0.0361 (0.0846)
Expected (SEM) 0.0464 (0.0012) 0.0430 (0.0011)
P-value? (N) 0.028 (87) 0.269 (70)

2P-values for differences between the expected and observed distributions
calculated with one-tailed Kolmogorov-Smirnov non-parametric test. PHigh
arm usage bias microRNAs defined as those with a ratio of reads mapping to
each arm of at least 10:1. SEM: standard error of the mean.

sequence that is incorporated into the RISC, and hence,
which arm is functional [5,6,24]. However, we recently
proved that identical duplex sequences in Drosophila
melanogaster and the beetle Tribolium castaneum can
produce functional microRNAs from opposite arms [13].
Moreover, the dominant arm can change within the
same species in different developmental stages or tissues
[9-11]. This suggests that arm sorting can be determined
by signals outside the mature microRNA duplex. Thus,
changes in arm usage may occur without changing the
nucleotide sequences of mature microRNAs, such that
the potential targeting properties of both arms are
unchanged (see also [5,6]). We have described five
instances of arm switching between Drosophila and
Tribolium microRNAs [12]: mir-10, mir-33, mir-275,
mir-929 and mir-993. These microRNAs are highly
expressed and, in each case, mature sequences are

Table 2 Human microRNAs with low arm usage bias
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produced in ratios of around 10:1 [25]. In this work, we
provide evidence that the targeting properties of 5'/3’
microRNA products are not similar when one mature
product dominates. Therefore, arm-switching events in
these five microRNAs [12] are predicted to lead to func-
tional changes, as we previously suggested for mir-10 in
Drosophila and Tribolium [13].

Conclusions

Alternative mature products from the same precursor
microRNA have different targeting properties. Excep-
tions to this rule are observed for microRNAs from
which both arms produce significant amounts of mature
products using miRanda gene predictions. We therefore
strongly suggest that microRNA arm preferences have
important functional consequences. Comparative ana-
lysis of regulatory networks accounting for microRNA
arm usage will be slightly more complex, yet biologically
more meaningful.

Methods

We extracted all fly (D. melanogaster) and human
(Homo sapiens) microRNAs from miRBase (version
16; [16]). This version of miRBase does not index 5’
and 3’ mature sequences for all microRNAs. Where a
single mature sequence from a microRNA precursor
is reported, we selected as the miR* sequence the
most abundant read from the appropriate arm from
high-throughput sequencing data displayed in miRBase
(December 2010; [16]) and discarded sequences with no
evidence for a miR* sequence. This resulted in a total of
163 and 426 pre-microRNAs in fly and human respect-
ively. The expression datasets used in this analysis are
listed in Additional file 1: Table S1.

We used six different algorithms to detect potential
targets of mature microRNA sequences: canonical seeds
as described in [14]; miRanda [21], a method based on
hybrid energy and stability; PITA [26], which takes into

MicroRNA 5’ targets 3’ targets Common targets Gene overlap 5’ reads 3’ reads Arm usage
mir-378 1,988 55 53 0.026 13 10 0.1
mir-32 0 0 0 0 15 " 0.13
mir-3648 170 2926 170 0.055 9 13 0.16
mir-128-1 1,695 9 9 0.005 25 17 017
mir-193a 1470 175 155 0.094 284 192 0.17
mir-187 468 369 175 0.209 12 19 0.20
mir-183 0 0 0 0 29 18 0.21
mir-500a 428 307 184 0.250 16 9 025
mir-361 30 801 27 0.032 46 25 027
mir-106b 1 605 0 1,394 724 0.29
mir-424 0 0 0 0 167 84 0.30

Targets predicted with miRanda, with a score threshold of 1,000.
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account the site accessibility at 3" UTRs; Diana-microT
[27], a predictor that combines multiple features; RNA-
hybrid [28], which detects stable RNA-RNA duplexes;
and TargetScan [29,30], a canonical seed detection pro-
gram that also takes into account conservation of micro-
RNAs and target sites. We ran TargetScan to identify
target sites conserved in at least two species in the 3’
UTR alignments available from their webpage [30]. We
generated target prediction datasets for each algorithm
using default parameters. We also generated a second
prediction set for human microRNAs (called the strict
set) using each algorithm with the following parameter
modifications: at least two sites in canonical seed predic-
tions; miRanda targets with a score above 1,000, to re-
duce the number of targets to a tenth of the original
predictions; PITA-predicted targets of a size of 7 to 8,
with no mismatches or wobble positions; Diana-microT
predictions with an MRE score above 0.6 as suggested
by the authors.

We used as potential targets the largest 3'UTR avail-
able for each gene in Drosophila in Flybase (genome ver-
sion BDGP 5.25 [31]) and in human from ENSEMBL
(assembly 60 [32]). For each pair of mature products
from a precursor microRNA, we identified potential tar-
gets with all six methods, and we calculated for each
method the overlap between the lists of target sites as
the number of commonly targeted sites divided by the
total number of sites targeted by both arms (Jaccard
similarity; [33]). Similarly, the overlap between lists of
target genes was calculated as the number of commonly
targeted genes divided by the total number of genes tar-
geted by both arms. The expected distributions of values
were calculated by selecting 10,000 random pairs of
microRNA arms and calculating the target overlap for
each pair.

To assess whether two lists of genes have a similar
functional annotation, we cross-compared all gene pairs
between the two lists and calculated semantic similarity
using the term overlap (TO) measure [19,34] for the
‘biological process’ domain of Gene Ontology [35]. Aver-
age TO values for pairs of gene lists are defined as:

zn:f: T{G;,G;}

TO — i—1 j=1

nm

where T{G;G;} is the number of common GO terms to
which genes G; and G; are annotated. The TO analysis
in humans was performed only for the strict target pre-
diction sets. Expected average TO values were calculated
by generating 1,000 randomized pairs.

Arm usage is defined as the relative production of ma-
ture products from one arm with respect to the other
arm, and it is calculated as described in [12]. Only
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microRNAs with reads in both arms were included. An
arm usage of 0 means that both arms produce the
same amount of product. Each unit above 0 indicates a
two-fold increase in the biased production of one of
the arms.

Additional file

[Additional file 1: Table S1. Gene expression datasets. ]
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