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Abstract

which are the focus of this review.

Shortly after their discovery, repertoires of miRNA were identified, together with proteins involved in their
biogenesis and action. It is now obvious that miRNA-mediated gene regulation itself is requlated at multiple levels.
Identifying the regulatory mechanisms that underpin small RNA homeostasis by modulation of their biogenesis
and action has become a key issue, which can be partly resolved by identifying mediators of Argonautes turnover.
An emerging theme in the control of Argonaute stability and activity is through posttranslational modifications,
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Introduction

Small RNA such as miRNA and siRNA have emerged as
important eukaryotic posttranscriptional gene regulators.
Functioning as guides, these small RNA direct Argonaute
proteins to complementary targeted mRNA, often result-
ing in reduced gene expression by a variety of mechan-
isms [1-3]. Since the discovery of small RNAs, much
focus has been directed toward dissecting their mode of
action. Very recently, an increasing number of studies
have also started to reveal mechanisms for the turnover
of miRNAs [4,5]. However, the mechanisms that mediate
the stability and activity of the pathways’ central protein
components, Argonautes, are less understood and are the
topic of this review. We summarise studies that have
identified posttranslational modifications of Argonaute
and Piwi proteins and how these modifications affect
Argonautes’ function and/or turnover. We also reflect on
the potential wider biological implications of these post-
translational modifications on gene silencing by modulat-
ing Argonautes’ activity and/or turnover.

Posttranslational control of Argonautes
Studies of a variety of organisms have shown that dele-
tion or overexpression of the enzymes involved in
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miRNA biogenesis and action can severely disrupt major
cellular process. Therefore, it is a cellular necessity to
maintain the homeostasis of these components, which
can be dynamically regulated in response to internal or
external stimuli. An elegant example of this is a negative
feedback loop that exists in Arabidopsis. Where AGO1,
the main Argonaute directing miRNA and siRNA silen-
cing in plants, is involved in a posttranscriptional auto-
regulatory loop with a low-abundance miRNA, miR168
[6]. Only when AGOL protein levels increase is miR168
able to incorporate into the RNA-induced silencing
complex (RISC) efficiently and target AGOI mRNA.
The inverse is also true. When AGO1 protein levels
decrease, miR168 is less effectively loaded into RISC and
a consequent AGOI mRNA increase is observed; thus
small perturbations are compensated for to maintain
AGOI equilibrium [7]. An agol mutant resistant to
miR168 silencing shows increased mRNA expression
but developmental defects [8]. To date, analogous regu-
latory mechanisms for mammalian Argonautes have
remained elusive; however, a few recent findings have
indicated that these Argonautes undergo a barrage of
signals that mediate their action and stability. A recent
study has demonstrated that Ago2 is the most abundant
human family member at both the mRNA and protein
levels in a wide range of commonly used cell lines [9].
In contrast, Ago4 protein levels are barely detectable,
even though relatively high levels of mRNA have been
detected, suggesting that, at least for Ago4,
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posttranscriptional control may in part mediate its
expression [10,11]. Similarly, Argonaute proteins have
also been found to harbour a variety of posttranslational
modifications, each with differing degrees of conserva-
tion between the four human isoforms (Additional file
1, Table S1). Posttranslational modifications manifest as
chemical modifications that occur on amino acid side
chains in a site-specific manner. They can temporarily
or permanently change the fate of the protein by enhan-
cing the functionality and/or stability of the target pro-
tein through the recruitment of auxiliary factors, change
the proteins’ cellular localisation or signal the most
terminal fate, proteasomal degradation.

Qi and colleagues [12] demonstrated that human
Argonautes can undergo prolyl 4-hydroxylation by type
I collagen prolyl 4-hydroxylase (C-P4H9I). They showed
in vitro that Ago2 and Ago4 were more susceptible to
hydroxylation than Agol and Ago3. In the case of Ago2,
prolyl 4-hydroxylation of proline 700 (P700) is necessary
for stability. Depletion of a C-P4HPI subunit, P4H-a,
leads to a decrease in Ago2 protein level and subsequent
reduction in RNAI efficiency. However, prolyl 4-hydro-
xylation appears to be dispensable for miRNA-mediated
translation repression. Furthermore, the Ago2 P700A
mutant, containing a mutation that prevents prolyl 4-
hydroxylation, could partially rescue RNAi if endogen-
ous Ago?2 is depleted [12]. Although it remains to be
determined whether hydroxylation enhances small RNA
binding, the decreased stability observed with the Ago2
P700A mutant is perhaps, a consequence of this.

A more recent study has linked poly(ADP-ribose), or
pADPr, to modification of Argonautes by a subset of
pADPr polymerases. In the presence of stress, all four
human Argonautes seem to be modified, with overall
relief of miRNA-mediated silencing, being observed [13].

A few studies have associated phosphorylation with an
ability to regulate Argonautes’ function and localisation.
For example, oxidative stress directed by sodium
arsenite induces phosphorylation of serine 387 on Ago2
through p38 mitogen-activated protein kinase. Interest-
ingly, this site is conserved in human Agol and Ago4,
but not in Ago3 [14]. An increase in Ago phosphoryla-
tion may in part explain the general increase in global
miRNA expression observed previously with sodium
arsenite treatment [15]. Phosphorylation also facilitates
Argonautes’ P-body localisation [14]. Researchers at the
Meister laboratory [16] recently discovered that Ago2
can be phosphorylated on seven different amino acid
side chains, many of which coincide within known func-
tional domains. Their main efforts focused upon tyro-
sine Y529, which is located in the MID domain and
conserved in a wide range of species. A combination of
structural studies and the creation of a constitutive
phosphorylation mimic by the substitution of Y529 with
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negatively charged glutamate revealed that phosphoryla-
tion can inhibit small RNA binding by creating a nega-
tively charged environment within the small RNA 5’ end
binding pocket, thus opposing the 5’ phosphate of the
small RNA. This therefore could provide an elegant
switch mechanism by which to regulate unloading of
Argonautes and prevent gene silencing. Furthermore,
this would inherently mediate Argonautes’ turnover, as
Argonautes bound to small RNA are considerably more
stable than the unloaded form [17].

The vast majority of intracellular proteins are
degraded by the ubiquitin-proteasome system, and
Argonautes are no exception. The proteasome is respon-
sible for degrading damaged, misfolded and redundant
proteins. Specific degradation is accomplished by the
actions of ubiquitin, which is covalently bound to a
lysine residue on the targeted substrate. mLin4l (mouse
homologue of lin-41), which is targeted by let-7 specifi-
cally in stem cells, has been reported to act as an E3
ubiquitin ligase for Ago2. mLin41 directly binds and
ubiquitinates Ago2, thus acting as a negative regulator
of the miRNA pathway. Alterations in mLin41 levels
inversely affect Ago2 stability by recruitment of the pro-
teasome [18]. A potentially analogous mechanism may
exist in plants, wherein the F-box protein FBW2, a mod-
ular component of the Cullin-RING E3 ubiquitin ligase,
has been reported to be a negative regulator of Agol in
Arabidopsis thaliana [19]. Other mammalian E3 ligases
have also been implicated in a regulatory role for
miRNA-mediated gene regulation. The TRIM-NHL
family of proteins have been shown to influence
miRNA-mediated gene repression [20-22]. Mammalian
Trim32 contains a RING finger domain that confers E3
ligase activity. One of the Trim32 substrates was identi-
fied as the transcription factor c-Myc [21], which itself
has been shown to downregulate miRNA expression at
the transcriptional level [23]. Thus Trim32 has been
shown to enhance the repression ability of certain
miRNA indirectly but also directly by interacting with
Agol. However, Trim32 was not reported as being cap-
able of ubiquitylating Agol [21]. Ubiquitination does
not solely seal a protein’s fate to the proteasome but
also is involved in sorting proteins into multivesicular
bodies and cell signalling networks. Therefore, one
could postulate that tagging Argonautes at different
stages with different ubiquitin chains could mediate
their function and localisation. Initial studies demon-
strated that human Ago2 can be associated with cell
membranes [24], and more recent studies have linked
Ago2 and GW182 to multivesicular bodies; therefore, it
is not hard to imagine these trafficking event’s being dri-
ven by ubiquitination [25].

Other posttranslational modifications have been linked
to the turnover of the related Piwi proteins. Drosophila
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methyltransferase 5 (APRMT5) catalyses the methylation
of Ago3 and Aubergine, which enhances their stability.
Additionally, methylation of Piwi proteins facilitates the
recruitment of multiple members of the Tudor family,
which may assist in piRNA production and loading of
Piwi proteins [26]. Depletion of dAPRMT5 contributes to
a loss of piRNA and an accumulation of retrotranspo-
sons [27]. PRMTS5 has also been shown to associate
with human Argonautes [28], which is surprising, as
motif-based predictions indicate the absence of any
potential methylation sites in all four human Argonautes
[27].

miRNA homeostasis could be regulated via the regulation
of Argonaute stability

The majority of miRNA research has focused on catalo-
guing changes in miRNA expression in diverse biologi-
cal pathways and disease models. However, relatively
little has been done to reveal the nature of the alteration
of miRNA expression. In addition, we do not know how
the endogenous miRNA pathway can deal with the
sometimes immense influx of endogenous and viral
miRNAs, which is characteristic of some immune cells
upon infection [29]. As miRNAs have surfaced as key
regulators for many different cellular and pathological
processes, it is of little surprise to learn that they them-
selves are strictly regulated by a multitude of mechan-
isms. Mammalian miRNAs are regulated at the
transcriptional level, with tissue and developmental
stage specificity being key to their production. Another
emerging theme conveys regulation at a posttranscrip-
tional level. Many studies have identified additional
components of the miRNA maturation pathway that
alter the processing of certain pri- and/or pre-miRNAs.
It is also evident that these auxiliary proteins can them-
selves respond to external stimuli and mediate the pro-
duction of pre- and/or mature miRNA transcripts on
demand, adding a further layer of regulation [30-33]. An
additional stage at which miRNA homeostasis could be
regulated is the point when miRNA are loaded into
Argonautes. Previous studies have demonstrated that
Argonaute expression can be the rate-limiting step for
miRNA maturation. Overexpression of any of the four
human Argonaute proteins leads to an increase in
mature, ectopically expressed miRNA [34]. Lower
miRNA expression has been observed in Ago2-knockout
mice. However, overexpression of Ago2 in these cells
could compensate and rescue miRNA levels [34].
Furthermore, overexpression of Ago2 has been found to
enhance RNAi [35]. Similarly, we have previously
demonstrated that the stability of unloaded Argonautes
is different from that of Argonautes bound to a small
RNA. Also, inhibition of heat shock protein 90 that sta-
bilises small RNA-free Argonautes leads to the
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proteasome-mediated degradation of Argonautes. Ubi-
quitination, and potentially even SUMOylation, are
indeed good candidates for the regulation of miRNA
homeostasis by influencing Argonautes’ stability and
turnover. For instance, these pathways are frequently
modified and hijacked by pathogens, which can also
affect general miRNA homeostasis, either by introducing
small RNA derived from the pathogen or by modulating
components involved in miRNA biogenesis [36,37].
Moreover, misregulation of ubiquitination and SUMOy-
lation could lead to uncontrolled cell proliferation and
transformation, which are often characterized by altera-
tion in the miRNA expression profile.

A series of systematic studies are necessary to identify
and map all Argonaute posttranslational modifications
in an effort to gain insight into the degree of posttran-
slational control. It is likely that these modifications act
in concert to partition Ago in various cellular localisa-
tions, aid in the recruitment of auxiliary protein factors
to build RISC and potentially determine when RISC is
recycled. Furthermore, studies aimed at identifying how
the miRNA pathways respond to attacks by pathogens
may also lead indirectly to the identification of novel
Argonaute posttranslational modifications and shed light
on how miRNA homeostasis is maintained, all of which
are necessary to gaining a full insight into the currently
elusive mechanism behind Argonaute regulation and
miRNA homeostasis.

Additional material

Additional file 1: Table S1. Posttranslational modification
conservation of site-specific residues on Argonautes involved in
miRNA-mediated gene regulation. Tick represents residue that is fully
conserved and predicted to be modified. Cross represents residue that is
not conserved and therefore will not be modified. For posttranslational
modifications where site-specific residue has yet to be determined, “Not
tested” represents that there is insufficient evidence to suggest whether
posttranslational modification is present, whereas tick indicates that the
Argonaute has been experimentally shown to be modified.
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