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Abstract

Prior to the advent of new, deep sequencing methods, small RNA (sRNA) discovery was dependent on Sanger
sequencing, which was time-consuming and limited knowledge to only the most abundant sRNA. The innovation
of large-scale, next-generation sequencing has exponentially increased knowledge of the biology, diversity and
abundance of sRNA populations. In this review, we discuss issues involved in the design of sRNA sequencing
experiments, including choosing a sequencing platform, inherent biases that affect SRNA measurements and
replication. We outline the steps involved in preprocessing sRNA sequencing data and review both the principles
behind and the current options for normalization. Finally, we discuss differential expression analysis in the absence
and presence of biological replicates. While our focus is on sRNA sequencing experiments, many of the principles
discussed are applicable to the sequencing of other RNA populations.

Introduction

Deep sequencing technologies have revolutionized the
field of genomics since their inception in 2000, when
Lynx Therapeutics’ Massively Parallel Signature Sequen-
cing (MPSS; Lynx Therapeutics, Hayward, CA, USA)
was described as a way to quantify messenger RNA
(mRNA) populations [1]. MPSS allowed the parallel
sequencing of 17- or 20-nucleotide (nt) signatures from
hundreds of thousands of cloned RNA, but it has been
made obsolete by newer systems enabling longer
sequence reads with fewer biases. Next-generation
sequencing has since been adapted to the study of a
wide range of nucleic acid populations, including mRNA
(RNA-seq) [2], small RNA (sRNA) [3], microRNA
(miRNA)-directed mRNA cleavage sites (called parallel
analysis of RNA ends (PARE), genome-wide mapping of
uncapped transcripts (GMUCT) or degradome sequen-
cing) [4-6], double-stranded RNA (dsRNA) [7,8], actively
transcribing RNA (NET-seq) [9], translated mRNA [10],
transcription factor DNA binding sites and histone
modification sites (chromatin immunoprecipitation
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(ChIP)-seq) [11], methylated DNA (BS-seq) [12] and
genomic DNA (DNA-seq) [13-15]. These applications
vary with regard to the templates used, but they rely on
the same sequencing technologies.

Prior to high-throughput sequencing, DNA microar-
rays were the predominant method of genome-wide
transcriptional analysis. Microarrays have been used to
quantify the levels of both known and unknown mRNA,
alternative splicing products, translated mRNA and
miRNA, as well as to detect miRNA cleavage sites,
transcription factor binding sites, single-nucleotide poly-
morphisms and deletions. Now, however, high-through-
put sequencing is often favored over microarrays for
such experiments because sequencing avoids several
problems encountered in microarray experiments. First,
unlike microarrays, sequencing approaches do not
require knowledge of the genome a priori, enabling any
organism to be easily studied. Second, sequencing is not
dependent on hybridization. Microarray data are
obtained by hybridizing a labeled target to complemen-
tary DNA probes immobilized on a solid surface, and
the strength of this hybridization is dependent on the
base composition of the probe [16-20]. With arrays, it is
possible for cross-hybridization to occur, such that the
signal may come from sources besides the perfectly
complementary intended target [17,18,21]. Sequencing,
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however, has a single-nucleotide resolution, which
increases specificity and is far superior for certain appli-
cations, such as defining transcription factor binding
sites to the probe-defined resolution of microarrays.
Third, sequencing produces digital data by counting the
number of copies of a particular sequence, enabling
accurate determination of low-, middle- and high-abun-
dance species. Because microarray data are based on
the intensity of the fluorescence label at each spot on
the hybridized array and intensity falls on a continuum,
the data are analog. The disadvantage of this is that it is
hard to accurately quantify signals at the two extremes:
signals near the lower limit of detection [22-28] and
those near the intensity saturation point [29,30]. The
proper quantification of intensity also depends on accu-
rate measurement of background levels, which is not an
issue for digital data [31-33]. Although sequencing is
free from these intrinsic experimental limitations, micro-
array experiments are cheaper (at the moment) and do
not suffer from ligation biases (discussed below in the
section “Library preparation and inherent biases”).

Next-generation sequencing has proved to be a boon
to the study of sRNA. Sequencing of individual sSRNA
clones by traditional Sanger sequencing was laborious
and did not achieve a sufficient sequencing depth to
detect rare species [34-39]. There are several biologically
relevant and functionally diverse classes of SRNA of spe-
cific sizes and produced by different, genetically separ-
able pathways. These include miRNA, small interfering
RNA (siRNA) and the animal-specific Piwi-interacting
RNA (piRNA, originally called repeat-associated siRNA
or rasiRNA). miRNA are 19 to 25 nt long and originate
from noncoding RNA called pri-miRNA that have
extensive secondary structure [40]. miRNA posttran-
scriptionally silence non-self-targeted mRNA through
imperfect base pairing, directing target cleavage [41,42]
or translational inhibition [40,43].

The biogenesis of miRNA is in contrast to that of
siRNA (20 to 24 nt), which are formed from long
dsRNA [44-46]. siRNA can direct the cleavage of per-
fectly base-paired mRNA, including the RNA from
which they originate [34,46]. Several subclasses of
siRNA exist, which vary by name or by type in different
organisms. In animals, siRNA are designated on the
basis of their source: endogenous dsRNA (endo-siRNA,
or esiRNA) and exogenous dsRNA (exo-siRNA) [47,48].
esiRNA are derived from long dsRNA made by RNA-
dependent RNA polymerases (RDRs) from sense tran-
scripts, pairing between convergent transcripts (sense
and natural antisense transcripts) or long self-comple-
mentary RNA, while exo-siRNA come from RNA
viruses. The Caenorhabditis elegans and plant literature
distinguish primary siRNA, that is, those that are formed
from the dsRNA that initiates a silencing event, from
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secondary siRNA, that is, those that are formed from
the cleaved target mRNA and perpetuate and amplify
silencing [49-52]. In plants, siRNA are also defined
based on their origin and/or function and include het-
erochromatic siRNA (hc-siRNA, sometimes also referred
to as rasiRNA), natural antisense transcript-derived
siRNA (nat-siRNA), and trans-acting siRNA (ta-siRNA).
hc-siRNA are 23- to 24-nt siRNA found in plants and
Schizosaccharomyces pombe that direct methylation of
DNA and histones, leading to transcriptional gene silen-
cing, particularly in repeat regions [53-55]. A second
subset of siRNA in plants, nat-siRNA, arise from the
hybridization of sense transcripts with their naturally
occurring antisense forms and subsequent cleavage [56].
siRNA derived from natural antisense transcripts are
also found in animals, but are not always referred to as
nat-siRNA [57-60]. ta-siRNA appear to be plant-specific
and originate from noncoding RNA that are the targets
of miRNA. Following miRNA cleavage, the cleavage pro-
ducts are made double-stranded and then chopped into
20- or 21-nt ta-siRNA. These ta-siRNA target non-self-
targeted mRNA via imperfect base pairing for cleavage,
similarly to miRNA [61-64].

The most recently identified major class of SRNA is
the piRNA group, a 25- to 30-nt sSRNA associated with
the Piwi subclade of Argonaute family of proteins, and
these sSRNA have functions in the germline of animals
[65-71]. All of these kinds of sSRNA can be identified by
generating sRNA sequencing libraries from size-selected
populations of RNA that are approximately 18 to 30 nt
long. Along with these biologically relevant sSRNA, RNA
degradation products, including fragments of transfer
RNA (tRNA) and ribosomal RNA (rRNA), are also
sequenced. Studies have found an abundance of specific
tRNA-derived sRNA in Saccharomyces cerevisiae, Arabi-
dopsis and human cells [72-74], at least some of which
are Dicer cleavage products [73], and methionine tRNA,
or tRNAM®', was associated with human Argonaute 2
protein, or Ago2, in human cells [75]. The finding by
the Dutta laboratory [72] that some of these tRNA
sequences, called tRNA-derived RNA fragments, have a
biological function further suggests that new classes of
and roles for sRNA will likely continue to be identified.

Sequencing can also be used to study sRNA targets.
RNA-seq can directly quantify expression levels of
mRNA that are targets of sRNA. High-throughput
sequencing has recently been applied to the identifica-
tion of miRNA cleavage sites, a method alternately
called degradome sequencing [4], PARE [5] and
GMUCT [6]. This approach is useful for identifying pre-
cise miRNA target sites because the fragment immedi-
ately downstream of the cleavage site will appear much
more abundantly than any surrounding sequences pro-
duced by nonspecific decay. These methods will not
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detect the effects of miRNA on target translation, how-
ever. New approaches that combine immunopurification
of polysomes (mRNA that are associated with ribo-
somes) with deep sequencing allow for the sequencing
of RNA that are actively being translated and enable the
detection of miRNA-mediated translational inhibition
[10,76]. In contrast to miRNA, the target of hc-siRNA is
chromatin, and hc-siRNA-induced DNA and histone
methylation can be identified using BS-seq and ChIP-
seq, respectively.

Next-generation sequencing data sets are similar to
one another in several aspects, regardless of the technol-
ogy or template used. In all cases, raw data files in the
form of images must be preprocessed and normalized
before they can be stored for analysis or visualization.
The preprocessing of data comprises a series of steps
that involve converting image files to raw sequences
(also called “reads”), handling low-quality base calls,
trimming adapters from raw sequencing reads, tabulat-
ing numbers of trimmed reads per distinct sequence
and aligning these reads to a reference genome if avail-
able. Normalization, the process of comparing raw
sequence counts against some common denominator, is
a critical step when processing expression data of all
types. Normalization removes technical artefacts arising
from the method itself or from unintended variation,
with the goal that differences remaining between sam-
ples are truly or predominantly biological in nature. Fig-
ure 1 demonstrates the flow of data for typical
sequencing experiments.

In this review, we consider the design of sRNA
sequencing experiments, the preprocessing and normali-
zation of sequencing data and basic differential expres-
sion analysis. We discuss various approaches for
normalizing sequencing data, starting with what has
been learned from microarrays about the fundamentals
of normalizing large-scale transcriptional data sets.
Because the cost of sequencing is still somewhat high
(although it is dropping rapidly), many experiments do
not currently involve biological replicates, so we discuss
statistical approaches for differential expression analysis
when replicates are and are not available.

Designing sRNA sequencing experiments
Sequencing technologies and inherent biases

The first decision to make when designing a sequencing
experiment is which sequencing technology to use.
Today there are two main varieties of next-generation
sequencing: (1) sequencing by synthesis (SBS), employed
by 454 sequencing http://www.454.com/; 454 Life
Sciences/Roche, Branford, CT, USA) [77], lllumina (for-
merly called Solexa sequencing; http://www.illumina.
com/; San Diego, CA, USA) [13], Helicos http://www.
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helicosbio.com/; Helicos Biosciences Corp., Cambridge,
MA, USA) [78,79] and the latest entrant into the mar-
ket, small-molecule, real-time sequencing, or SMRT,
sequencing introduced by Pacific BioSciences http://
pacificbiosciences.com/; Menlo Park, CA, USA) [80];
and (2) sequencing by ligation (SBL), used in SOLiD
(Sequencing by Oligonucleotide Ligation and Detection;
http://www.appliedbiosystems.com/; Applied Biosystems,
Carlsbad, California, USA) [81] and Polonator sequen-
cing http://www.polonator.org/; Dover Systems, Salem,
New Hampshire, USA) [82]. Table 1 shows the current
efficiency statistics for each of these methods as pro-
vided by the product websites, but the sequencing
depth, speed and accuracy of these technologies are
constantly increasing. Most of these approaches can be
implemented as paired-end runs, in which both ends of
each clone are sequenced, increasing the amount of
information gleaned per fragment, but single-end runs
are sufficient for the short length of SRNA [83-85].

The choice of sequencing method often comes down to
cost, read length and sequencing depth. Because sSRNA
are in the range of approximately 18 to 30 nt and high
sequencing depth is necessary to observe rare species,
[Nlumina and SOLID are currently the most appropriate
methods for sSRNA sequencing studies (Table 1). [llumina
uses a four-color, reversible terminator sequencing-by-
synthesis technology to sequence one base at a time.
SOLID uses 16 dinucleotide probes, each labeled with
one of four fluorophores, to sequence by ligation two
nucleotides of each clone at a time. This means that four
dinucleotide pairs share the same label, making the ana-
lysis of SOLID data a little more complicated. An algo-
rithm generates the nucleotide sequence of a particular
base # from this color space by examining the labels for
the overlapping dinucleotides n - 1, n and n, n + 1 [81].
In this fashion, two different probes interrogate each
base, which accounts for the reportedly high accuracy of
this method. A single color call error, however, invali-
dates the sequence determination for all positions after
this point. The read length and sequencing depth of Heli-
cos sequencing make Helicos appropriate for sSRNA
sequencing as well, but this application has not been
widely commercialized. For Helicos sequencing, cDNA
molecules are polyadenylated and then annealed to
immobilized oligo(dT) primers. Individual molecules are
sequenced by sequential addition of each of the four
nucleotides. One advantage of the Helicos method is that
it allows for the sequencing of individual DNA molecules,
eliminating the need for polymerase chain reaction (PCR)
amplification and its inherent error rate. While Polonator
sequencing allows for 26-nt reads at great sequencing
depths, a 3- to 4-nt sequence gap remains in the middle
of each read, which is not ideal for SRNA experiments.


http://www.454.com/
http://www.illumina.com/
http://www.illumina.com/
http://www.helicosbio.com/
http://www.helicosbio.com/
http://pacificbiosciences.com/
http://pacificbiosciences.com/
http://www.appliedbiosystems.com/
http://www.polonator.org/

McCormick et al. Silence 2011, 2:2
http://www.silencejournal.com/content/2/1/2

Page 4 of 19

I Isolate template ]

T

v Vv

| smallRNA | |

mRNA

[ 1

| | Other (ChlIP, etc.) |
|

v

| Prepare libraries

K

I Choose sequencer ]

v v

N4

| lllumina | I

454

soLiD |

I

: v

| Gather raw output files and pre-process data ]

| Map reads to genome ]

| Choose normalization baseline ]

. |

v v

2

I Spike-ins | I

All reads |

| Housekeeping genes
i

l Filter for outliers ]

v

| Normalize libraries ]

T

A2

I Total-count |

I Total-count by gene |

Vv
| RPKM |

|

Y

[ Perform differential expression analysis ]

\

Figure 1 Flowchart of typical data-handling steps for small RNA (sRNA) libraries. Flowchart depicting the steps involved in creating,
processing and normalizing next-generation sequencing libraries. In this article, we focus on sRNA data, but the methods for analyzing other
RNA-based or even chromatin immunoprecipitation sequencing data are similar.

Library preparation and inherent biases

Recent data have shown that the library preparation
method, more than the sequencing technology, can sig-
nificantly affect the diversity and abundance of the
sRNA that are sequenced [86]. For differential expres-
sion analyses comparing the relative abundance of the
same sequence in different libraries, this is not a pro-
blem because all libraries will be affected equally by
biases due to library preparation. Despite the digital nat-
ure of sequencing data, however, the relative levels of

different sequences within the same library will be
affected by these biases. Some sequences present in the
biological samples may even be absent in the libraries
because of preparation bias.

Illumina and SOLiD sRNA sequencing libraries are
made by ligating RNA adapters of known sequence to
the 5" and 3’ ends of single molecules in a purified
sRNA population. Alternatively, SOLiD sequencing can
be performed by in vitro polyadenylation of the 3’ end
of the sRNA and addition of a 5" adapter [86]. In either

Table 1 Comparison of next-generation sequencing technologies®

Technology Approach  Approximate sequencing depth Read Paired  Accuracy Individual molecule Optimal for
length, nt ends sequencing sRNA

lllumina Synthesis 500 M reads/flow cell, 12 Gb/35-nt 35t0 75 Optional >98% to No Yes
(Solexa) run 99%

454 Synthesis 1.6 M reads/flow cell or 500 Mb/run 400 Optional >99% No No
Helicos Synthesis 300 to 500 M reads/flow cell 25to 55 Optional > 99.995% Yes Yes
SMRT Synthesis 75 K reads/flow cell 1,000 N/A 99.30% Yes No
SOLD Ligation 24 B reads/flow cell or 300 Gb/run 35t0 75 Optional ~ =299.94% No Yes
Polonator Ligation 64 to 80 M mappable reads or 2.2.5 13 Mandatory 98% No No

Gb/flow cell

“nt, nucleotides; sRNA, small RNA; SMRT, small-molecule, real-time sequencing; SOLid, sequencing by oligonucleotide ligation and detection.
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case, the adapter-ligated sequences are reverse-
transcribed, amplified by PCR to increase the size of the
library, applied to the platform and amplified again
in situ to form millions of clusters of DNA of the same
sequence. Then these clusters are sequenced in parallel.

Three steps in this process have the potential to influ-
ence the sequencing results: adapter ligation, reverse
transcription and PCR amplification. Adapter ligation is
the most important. The adapters have typically been
ligated to each sSRNA using T4 RNA ligase 1, which is
capable of ligating two single-stranded oligoribonucleo-
tides, where the acceptor nucleotide (>3 nt long) has a
free 3’-hydroxyl group and the donor (=1 nt) has a
5’-monophosphate [87]. The ligation efficiency of T4
RNA ligase 1 is very sensitive to nucleotide base compo-
sition at the ligation site and to sRNA modifications,
however, and not all SRNA can act as donor substrates
for the enzyme. Studies have suggested that the
sequences of both the acceptor and the donor have an
effect on ligation efficiency [86-91], but the acceptor
sequence is more important [87]. The identity of at least
the three 3’-most nucleotides of the acceptor affects
ligation efficiency [87,91], with a different base prefer-
ence at each position (5’-nucleotide: A > G ~ C > U;
middle nucleotide: A > C > U > G; 3’-nucleotide: A > C
> G > U when using a pUUUCp donor) [91]. The donor
sequence appears to be less important, but the bias for
the 5" nucleotide is C > U > A > G [88,89].

Many sRNA are modified, and these modifications can
also make them poor substrates for T4 RNA ligase 1. In
particular, miRNA, siRNA, hc-siRNA, ta-siRNA and
nat-siRNA in plants, siRNA and piRNA in insects and
piRNA in animals are known to be 2’-O-methylated on
the 3’ end by the conserved methyltransferase HUA
ENHANCER 1 (HEN1) (reviewed in [92]), and this
modification lowers ligation efficiency by T4 RNA ligase
1 by 30% to 72%, depending on assay conditions
[93-95]. The 2’-O-methylation also introduces a
sequence bias for the 3’ nucleotide of the acceptor at
the ligation site, such that the efficiency is G = C > A >
U [95]. Unlike previous studies, the study by Munafé et
al. [95] did not find sequence bias at the acceptor site
in unmethylated sSRNA. Both of these issues are elimi-
nated by using a truncated version of a closely related
ligase, T4 RNA ligase 2, with a preadenylated 3’-RNA
adapter [95], so this enzyme is being used more and
more for library preparation. Illumina’s first-generation
sRNA library preparation kits used T4 RNA ligase 1 for
the ligation of both the 5’- and 3’-adapters, but their
Small RNA version 1.5 and TrueSeq™ RNA Sample
Preparation kits use the truncated form of T4 RNA
ligase 2 for the ligation of the 3’-adapter. T4 RNA ligase
1 is still required for the ligation of the 5’-adapter, how-
ever, because of the need by the truncated T4 RNA
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ligase 2 for a preadenylated donor, which in this case is
the sample itself. Thus, sequence bias is eliminated in
only one of the two ligation reactions. To test whether
an sRNA is 3’-modified or to specifically clone 3’-
modified products, SRNA can be oxidized with NalO,
followed by B-eliminated at an alkaline pH. This treat-
ment removes the 3’-most nucleotide from all sequences
with 2°,3’-OH groups (that is, unmodified sRNA), but
not from modified sRNA, leaving a 3’-phosphate [96-98],
which is not a substrate for T4 RNA ligase 1 or 2.

Because T4 RNA ligase 1 requires a 5’-monopho-
sphate on the donor sequence, sSRNA lacking this group
are absent from standard libraries. A large population of
5’-ligation-resistant secondary siRNA was found in
C. elegans [51,52]. These secondary siRNA are involved
in the perpetuation of RNA interference (RNAi) and
have a 5’-triphosphate, which is not a substrate for T4
RNA ligase 1. sSRNA with 5’-diphosphate or 5’-tripho-
sphate have also been found in the single-celled eukar-
yote Entamoeba histolytica [99]. The 5’-caps similarly
block ligation by the enzyme and have been seen on 18-
to 25-nt sSRNA associated with the human hepatitis
delta virus and on some RNA under 200 nt in human
cells [100,101]. Both of these ligase-resistant 5’-modifica-
tions can be removed by pretreatment with tobacco acid
pyrophosphatase before ligation of a 5’-adapter [101].
Alternatively, a 5’-adapter-independent method can be
used [51,99,100]; however, this approach is not compati-
ble with Illumina and SOLiD sequencing technologies.
The importance of considering such a method, however,
is highlighted by a study by Pak et al. [51], who studied
RNAi-induced C. elegans that used a 5’-adapter-
independent library preparation protocol. In contrast
to work that did not account for the possibility of 5'-
ligation-resistant SRNA, which suggested that miRNA
vastly outnumbered siRNA, they demonstrated that the
two classes are actually found in similar degrees of
abundance [51].

Because sRNA acts as the donor during the 5’-adapter
ligation and as the acceptor during the 3’-adapter liga-
tion, the best solution for avoiding this bias would be to
use a ligation-independent library preparation. Such a
method has been applied to the generation of Illumina
sequencing libraries [10] and would be applicable to
SOLID sequencing as well. This method involves using
Escherichia coli poly(A) polymerase (PAP) to polyadeny-
late the RNA molecules and then performing a reverse
transcription reaction with an oligo(dT) primer having
both 5’- and 3’-adapter sequences at the 5" end of the
primer. The products are then circularized and cut with
a restriction enzyme that cleaves between the 5- and 3'-
adapters, yielding the typical linear read of 5’-adapter,
clone and 3’-adapter. Ligation-independent methods
that rely on 3’-polyadenylation of the sSRNA population,
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such as this technique and the one used for Helicos
sequencing, may be better than ligation-dependent
methods, but they are still not perfect. PAP has a bias
for the 3’-nucleotide A = G > C > U, but the efficiencies
of the different bases are within twofold of each other
[95]. As seen with T4 RNA ligase 1, 2’-O-methylation
greatly reduces the efficiency of PAP by up to 10-fold,
with the sequence bias altered to 2'-O-meG > 2’-O-meA =
2’-O-meU > 2’-O-meC [93-95].

While adapter ligation is probably the largest potential
source of bias, bias can also be introduced during
reverse transcription and amplification. The 2’-O-methy-
lation of sSRNA reduces the efficiency of reverse tran-
scription as well as adapter ligation [95,102]. The step of
PCR amplification during library preparation can be a
problem with sequences that have very low or very high
guanine-cytosine (GC) content, reducing the likelihood
that these sequences will be represented in the final
population. Two techniques that do not require the
initial library amplification and are compatible with Illu-
mina sequencing have been used for DNA-seq and
RNA-seq, and both methods provide a less biased
library preparation for low GC sequences [103,104].
These approaches remain to be tried with sRNA
libraries and still require the standard amplification
within the Illumina flow cell to generate clusters of
identical sequences. The Helicos system will provide a
truly amplification-independent sequencing protocol
because it does not require PCR in the library prepara-
tion and sequences only single molecules, not clusters of
molecules.

Multiplexing

High-throughput sequencing can be costly when loading
only one sample per sequencing lane. To help improve
cost efficiency, users can multiplex two or more samples
in a single lane using bar coding [105-113]. As the num-
ber of reads per run has increased (Table 1), sufficiently
deep sequencing can be achieved even when running
multiple samples in the same lane, with the number of
multiplexed samples depending on the desired depth.
Multiplexing either incorporates a unique sequence
called a bar code into the 5- or 3’-adapter of each
library to be run in the same lane or adds the bar code
during a PCR step after adapter ligation, an approach
that minimizes ligation bias. All of the reads in a lane
can be sorted into their respective libraries using their
bar codes after sequencing has taken place. Because of
the inherent error rate of sequencing, it is recom-
mended that bar codes be long enough so that each pair
varies by multiple substitutions, thereby reducing the
likelihood that sequencing errors in the bar code will
result in assigning reads to the wrong sample [107,112].
In particular, Illumina sequencing has a tendency to
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erroneously incorporate adenine more than the other
bases [114], which should also be taken into account
when designing your own bar codes. Multiplexing
library preparation kits are now available for both Illu-
mina and SOLID. In both cases, the bar code is located
within one of the adapters and separated by multiple
bases from the ligation site, reducing the likelihood that
the bar code will introduce any ligation bias. Helicos is
also compatible with bar coding, though it requires a
ligation step not in the original protocol. The one down-
side of using a bar code is that it may reduce the maxi-
mum length of the sRNA that can be sequenced,
trimmed and assigned to a sample. However, the latest
multiplexing systems for the Illumina and SOLiD
machines incorporate the index into the 3’ PCR primer
and perform a second reaction specifically to sequence
the bar code. This type of approach has numerous
advantages, such as reducing or eliminating ligation
bias, ensuring long reads across the sSRNA and enabling
multiplexing that reduces sequencing costs.

Replication

Several reports have used technical replicates, that is,
the same library sequenced multiple times or indepen-
dent libraries constructed from the same biological sam-
ple, to demonstrate the high reliability of Illumina
[86,115-118] and SOLiD sequencing [86]. Similar results
are possible for biological replicates [115,118,119].
Because of the high cost of deep sequencing, most
experiments published to date have not used biological
replicates, even though they can increase the statistical
significance and reduce both false-positive and false-
negative rates. With biological replicates, the signifi-
cance analysis of microarrays (SAM) [115] and the
Bioconductor program edgeR [118,120] can be applied
to differential expression analysis of sequencing data, as
we discuss later in the section “Differential expression
analysis”. Standards for deep sequencing experiments
remain to be agreed upon, but as sequencing costs go
down, sequencing depths further increase and multi-
plexing becomes more widely adopted, the requirement
for biological replicates in differential expression experi-
ments will surely follow.

Preprocessing of sequencing data

The raw data of a sequencing experiment typically com-
prise a series of image files: one image per cycle of
nucleotide addition for Illumina or dinucleotide ligation
for SOLID. Because of the size of flow cells, each one is
subdivided into a number of “tiles” for imaging pur-
poses. Thus, there is a series of images for every nucleo-
tide. The images contain thousands of spots, one spot
for every cluster, with a cluster representing one read.
Each of these files must be analyzed to designate one of
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the four nucleotide bases (Illumina) or color space call
(SOLID) for each spot on the image, and then the data
from each image for the same spot must be combined
to give full sequence reads, one per spot. Each technol-
ogy has its own specifications regarding the file formats
used; for example, Illumina recently changed its stan-
dard output format from .qseq, which uses ASCII-64
encoding of Phred quality scores (a widely accepted
metric to characterize the quality of DNA sequences), to
.bcl, a binary format containing base call and quality for
each tile in each cycle. SOLID systems use .csfasta to
encode color space calls and .qual files to record the
quality values for each sequence call. Because one color
call error will affect the sequence of all 3’-nucleotdies,
SOLiD data are maintained in color space for much of
the preprocessing. Figure 2 demonstrates a sample pipe-
line for Illumina data files.

For many sequenced reads, ambiguous bases will exist.
Ambiguous bases are the result of low confidence in any
particular nucleotide. In the case of Illumina, a probabil-
ity is assigned for a given nucleotide being each of the
four bases. For a sequence designation to be assigned,
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the likelihood of the most likely base has to be at least
1.5 times greater than that of the next highest base;
otherwise, the position in question will be deemed an
ambiguous base. Different sequencing platforms and/or
software pipelines have alternative approaches for hand-
ling ambiguous reads, usually denoted with an “N” in a
sequence. Some will simply discard any sequence with
an ambiguous read if the sequencing depth is sufficient,
while others will assign the most likely base call at that
nucleotide in an attempt to maximize the number of
reads. A very sophisticated approach to this step is to
record each read as more than a static sequence by
using a probability matrix to record the probability of
each nucleotide at each position [12]. This additional
information can help recover reads that would otherwise
be classified as sequencing errors. For example, the most
likely sequence for an ambiguous read, according to its
probability matrix, might not map to any genomic locus,
but the second most likely sequence might correspond
to a known miRNA. This approach is likely to increase
the number of usable reads for any given library, but it
is undecided whether this increase is enough to warrant

HWUSI-EAS502 11 1 1 1099

HWUSI-EAS502 11 1 1 1288

HWUSI-EAS502 11 1 1 1336

936 0 1
GCCTTTCTGAAAAGGTGGCCGTTCGTA.GCCGTC
935 0 1
CTCTCCCCTTCAGCATCGAGACTCGTC.GCCGTC
939 (0] 1

ACCGGACAGTCCGTCGTGTGAGTCGTA. GCCGTC

y \

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBB

BBBBBEBBEBBEBBBBBBEBBEBEBBEBBEBBBBBEBBB

@HWUSI-EAS502_0012:1:1:1986:1199#0/1
ATTGACGAGGCGGAACCATTCATCGTATGCCGTCTT
+HWUSI-EAS502_0012:1:1:1986:1199#0/1
_A[AfIDIRR[INL\Fffaffffcffcaff_ffaff
@HWUSI-EAS502_0012:1:1:2053:1193#0/1
CTAGAATACCGGTGGCATCCGCATCGTATGCCGTCT
+HWUSI-EAS502_0012:1:1:2053:1193#0/1
fffffbHHaaaaakaffffdadcfdfccaraAdA]f
@HWUSI-EAS502_0012:1:1:2659:1197#0/1
GGAAGAGGGGGACTACTACGCCATCGTATGCCGTCT

fastq

\

tag_count

FGC_34:1:1:
FGC_34:1:1:1222:891:ATCGCTTTGGGCTTTTCCTGCGCAGCTTAGGTGTCG : hhghhhhhhhhhhhhhhhhhhhhMhhhhEhhohxhh
1:1:

FGC_34:

“tag count” format so that they can be easily stored and analyzed.

1624:900: ATCCCGCATGCCGCCTTCCGCCCGACCACCCAAAAG : AhhhhhILzohh>hhHVhhuhc@GChCBK?SBFE@I

1278:1129: ATCTCTGCACTCAAAGATGGTTCTGATTCGTATGCC : hhhhhhhhPhYhwGKhPNhhMhhcfLVVhhRIhXhh

Figure 2 Sample file formats for small RNA libraries. lllumina machines generate .bcl files, which are in binary form and are not human-
readable. These files are converted into .gseq files, which record the most likely sequence and a quality score for each read. Scripts are available
to convert files in .gseq format into fastq or SCARF format (Solexa Compact ASCIl Read Format). Files in these formats are often converted to a

ATTGACGAGGCGGAACCATT
CTAGAATACCGGTGGCATCCG
GGAAGAGGGGGACTACTACGC
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the increase in computational complexity that it brings.
This approach will also likely mistakenly assign the
sequence of some reads. The location of the ambiguities
may also allow some reads to be saved. Ambiguities in
the middle of a read will require that it be discarded
from further analysis, but if it is within the adapter
sequences, the read may still be retained.

The next step in processing next-generation sequen-
cing data is to trim or remove any adapter sequences.
Because these adapters are artificially introduced and
are not part of the organism’s transcriptome, it is neces-
sary to remove any remnants of them before attempting
to map the libraries against a reference genome. Trim-
ming scripts require a minimum number of bases for
adaptor recognition, so the maximum usable read length
of Illumina and SOLID is less than the total number of
sequenced bases. This also means that longer sRNA
may be lost as a result of an insufficient adapter
sequence for matching and trimming. This is not a pro-
blem for the typical 19- to 30-nt sRNA, as current tech-
nologies generate sequences > 36 nt. The process of
removing adapters can be inefficient because it is possi-
ble (even likely) that sSRNA sequences contain subse-
quences of the adapter. Thus, researchers must be
careful when defining exact rules for determining which
sequences to keep, which ones to trim and which ones
to throw out altogether.

The final steps before data analysis can begin are to
count the abundance for each distinct tag in a library
and to map distinct tags to a reference genome if one
exists. Calculating the abundance is computationally
trivial, given current sequencing depth and standard
computational limitations, so many researchers use
their own programs for this step. Genome mapping,
on the other hand, can be computationally expensive,
but fortunately there are a number of publicly avail-
able programs to perform this task, such as SOAP
[121] and Bowtie [122], each with its own benefits and
limitations. Some programs use multithreading and
efficient memory allocation to maximize mapping
speed.

The number of trimmed reads in a given library that
will align perfectly to a reference genome depends on
issues specific to the organism, the sample or the
sequencing run, as well as on decisions made during
data analysis. The completeness of the genome sequence
is a major factor. Even in so-called “complete” genomes,
there are highly repetitive regions (such as in centro-
meres and telomeres) that remain undetermined.
Because a large number of sSRNA originate from these
locations, many reads will incorrectly fail to map to the
genome. The sequence divergence between the reference
genome and the sample will also have an effect. Low-
quality sequencing runs will have reads riddled with
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erroneous base callings, causing them to be classified as
nongenomic as well.

There are also some data analysis decisions that will
influence the number of reads that align to a genome,
including minimum read length, how to handle reads
mapping to multiple genomic loci and how many mis-
matches to allow. Shorter sequences are more likely to
map to multiple loci in the genome. Because sRNA
researchers are generally interested in Dicer-mediated
cleavage events, and because the shortest known Dicer
products are 19 nt in length, it is recommended that
any reads shorter than 18 nt be excluded. In plants,
because the dominant size classes are miRNA and hc-
siRNA, with the bulk of these being 20 or 21 nt and
23 or 24 nt, respectively, the data should demonstrate a
significant decrease in the number of both distinct and
total 18- or 19-nt and > 25-nt reads. Figure 3 demon-
strates how reads shorter than 20 nt or longer than
24 nt are mostly derived from tRNA, rRNA, small nuclear
RNA (snRNA) or small nucleolar RNA (snoRNA) loci.

Several strategies have been employed to handle reads
that map to multiple loci, also known as multireads.
Reads that map to only one locus are called unique
reads, which should not be confused with the distinct
reads, which are reads with different nucleotide
sequences. Figure 4 shows the relative abundance of
unique and nonunique reads across all sSRNA size
classes. In some cases, researchers have chosen to
exclude all multireads from analysis [123], or to exclude
those multireads mapping to more loci than some
threshold [124,125], as many of these will map to cen-
tromeres and telomeres. However, this will result in a
loss of sequencing depth. When choosing to keep multi-
reads, the problem arises how to allocate those reads
between the different possible source loci. The two most
common approaches are to allocate the total number of
copies of a read to each mapped locus or to divide the
number of copies evenly among the mapped loci. Allo-
cating all copies to each locus ignores the fact that this
is biologically impossible, but allows for the possibility
that any locus might be the sole transcriptional source
of a read. Distributing the copies evenly, while reflecting
a biologically possible scenario, precludes such a possibi-
lity. A more sophisticated approach is to estimate the
proportion of multiread transcriptions at each locus by
examining the levels of uniquely mapping reads at
nearby loci [126,127]. This approach has several names,
but we shall refer to it as “probability mapping,” since it
involves estimating the probability that a transcript ori-
ginated from each associated locus. The basic idea of
probability mapping can be explained with this simple
scenario. Suppose a multiread maps to genomic loci L1
and L2 and that the number of uniquely mapping reads
overlapping L1 greatly outnumber those that overlap L2.
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Figure 3 Small RNA (sRNA) reads derived from structural RNA versus other sRNA-generated loci. (A) The number of total and distinct
reads for all genomic sequences divided into those derived from ribosomal RNA, transfer RNA (tRNA), small nuclear RNA (snRNA) or other
“structural” noncoding RNA-derived and other categories for each size class from 18 to 34 nt across 51 publicly available Arabidopsis SRNA
libraries. We typically refer to the sRNA from nonstructural loci as “good” sRNA. (B) The percentage of tRNA-derived reads for each size class
from 18 to 34 nt across 24 publicly available wild-type Arabidopsis libraries. Because of variations in sequencing read lengths among libraries,
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Intuitively, we can presume that most of the copies of
the multiread in question originated from L1, since
there is likely a higher level of transcription occurring at
L1 than at L2. The proportion of copies allocated to L1
is then approximately equal to the proportion of
uniquely mapping reads overlapping L1 compared to
those at L2. While it remains unknown whether the pre-
sence of uniquely mapping reads is an indication of a
higher overall level of transcription, the data from appli-
cations of this technique seem to support the idea.

The number of mismatches to allow when performing
genome mapping can be a difficult issue to resolve.

Individual specific DNA polymorphisms and posttran-
scriptional sequence modifications, which have been
seen in RNA from mitochondrial and plastid genomes,
tRNA and miRNA, will also cause some reads not to
map to the genome. Computational techniques that
allow indels and mismatches when performing genome
mapping are capable of “recovering” these modified
reads that would otherwise be classified as nongenomic
[125,128,129]. Allowing mismatches increases the num-
ber of raw reads that will map to the genome but also
decreases the likelihood that those reads originated from
the matched loci. Because of the short length of sSRNA,
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Figure 4 Repetitiveness of small RNA (sRNA) reads measured
across sizes. The number of total reads for all uniquely and
nonuniquely mapping genomic sequences divided into ribosomal
RNA- or transfer RNA-derived and other (also known as “good”)
categories for each size class from 18 to 34 nt across 51 publicly
available Arabidopsis sRNA libraries. For each size class, structural
RNA-derived reads are more likely to map nonunigquely mapping
genomic sequences (that is, to more than one genomic location),
whereas good reads are more likely to map uniquely mapping
genomic sequences (that is, to one genomic location).

it is generally recommended that only perfectly matched
reads be utilized, unless specific known polymorphisms
or posttranscriptional RNA sequence modifications exist
between the reference genome and the sample in
question.

Quality control

Once sRNA data have been preprocessed, it is common
for researchers to verify the quality of the data before
moving on to normalization and analysis. There are sev-
eral ways to perform quality control on sRNA data.
Each base of every Illumina sequenced read or each
color call of every SOLiD sequenced read is given a
quality score, which can be used to calculate an average
error rate for each cycle of a sequencing run. While it is
normal for the error rate to increase toward the end of
a run, for a good run the average error rate throughout
should be relatively similar and close to the expected
rate for the technology. Creating size distribution graphs
should reveal peaks of sequences corresponding to the
dominant size classes. For example, in Arabidopsis, the
dominant classes are 20 or 21 nt and 23 or 24 nt, which
correspond to miRNA and hc-siRNA, respectively.
Libraries made from high-quality RNA should have low
levels of sRNA corresponding to highly abundant
mRNA. Libraries made from green tissues of plants, for
instance, should have low levels of sRNA for genes
encoding the highly expressed photosynthetic proteins.
Computing the levels of other RNA types, such as tRNA
or rRNA, among different libraries in a data set may or
may not be informative, as the relative level of tRNA
can vary significantly. For example, from 51 public
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Arabidopsis sSRNA libraries in our databases, tRNA
represented from 4% to 40% of the total number of
sequenced reads. Ideally, the level of nongenomic reads
should also be similar between libraries to be compared.

Data normalization

Lessons from microarrays

The more than 20-year history of microarray experi-
ments provides a good starting point for considering
how to normalize next-generation sequencing data.
While there are many technology-specific issues
involved when handling raw microarray and sequencing
data, the basic problem is still the same: how to convert
raw data, in the form of image files, to numerical data,
such that any expression differences between samples
are due solely to biological variation, not to technical,
experimentally introduced variation. In the case of
microarrays, technical bias can be introduced during
sample preparation (differences in RNA isolation, quality
and amplification; target labeling; total amount of target;
dye biases for spotted arrays; and so on), array manufac-
ture (array surface chemistry, sequences used for the
probes, locations of the probes within a gene, array
printing for spotted arrays, scratches and so on) and
array processing (hybridization conditions and scanning
intensity and settings). Failing to properly remove these
biases can lead to false conclusions when making com-
parisons within a single array or between two different
arrays. Normalization attempts to remove technical bias
without introducing noise.

Normalization requires two basic decisions: (1) which
subset of genes (also called the normalization baseline
or reference population) to use to determine the nor-
malization factor and (2) which normalization method
to employ [130]. These two choices are independent,
such that a given reference population can be used in
combination with any of the different normalization
methods. A good reference population is invariant in
expression, meaning that the true expression levels are
constant across biological treatments and span the
entire expression range. Reference populations that have
been used previously for microarray normalization
include housekeeping genes [131], spike-ins of nonendo-
genous RNA or genomic DNA, an algorithmically iden-
tified set of invariant genes [29,132-135] and all genes
[130]. Housekeeping genes are typically used for nor-
malizing northern blot analysis results and quantitative
reverse transcription PCR (qRT-PCR) because of their
supposedly constant expression level, but it has become
ever more apparent that even these genes can vary in
their expression [136-141]. Commercial arrays typically
have probes for nonendogenous genes, and in vitro tran-
scribed RNA from these genes can be used as spike-ins
at various steps in the target preparation and array
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hybridization procedure. The point chosen will deter-
mine how much and what kind of technical variation
will be corrected by the normalization. Genomic DNA
has also been used for normalization because the con-
centration of a control sequence is readily known. In
the absence of knowledge regarding invariant genes,
algorithms have been developed that identify a set of
invariant genes from the set of arrays themselves. These
genes are discovered by comparing expression-ranked
lists of all of the probes in each array to find the most
rank-invariant genes [29,132-135]. This method is
advantageous because it makes no assumptions about
the expression patterns of individual genes. Normaliza-
tion is generally improved by increasing the size of the
reference population, which has been a disadvantage of
spike-ins because only a few sequences are typically
added. As an alternative to using a subset of probes for
normalization, all probes can be used. This type of nor-
malization assumes that because the RNA content is
constant between treatments and most of the genes do
not change in expression between treatments, the med-
ian or mean expression across all of the genes is
unchanged.

There are many different algorithms for normalizing
microarray data on the basis of the chosen reference
population, but they fall into four main categories: linear
scaling (as in the MAS5.0 algorithm), nonlinear scaling
(as in locally weighted linear regression (LOWESS), cyc-
lic LOWESS), quantile normalization (as in robust
multi-array average (RMA), GC-RMA (a variation of
RMA), dChip) and variance stabilization normalization
(VSN), two of which (linear and nonlinear scaling) have
been applied to sRNA sequencing data as we will see
later in the section “Normalization methods”. Linear
scaling uses the reference population to determine a sin-
gle factor by which the population varies when com-
pared to a set target, such as a predetermined mean or
median expression value. The expression of each probe
or gene on the array is multiplied by this factor to
achieve the normalized expression value. The advantage
of using linear scaling is that the scaling factor is deter-
mined independently for each sample, unlike the other
approaches, which normalize the data with reference to
the other arrays in the data set. Linear normalization of
microarray data has been largely abandoned, though,
because expression values are not necessarily linear, par-
ticularly at the extremes [142]. In attempt to overcome
this problem, nonlinear scaling methods have been
developed that, for a given pair of arrays or for an indi-
vidual array and the mean or median data derived from
all of the arrays in question, first fit a curve to the
expression values of the reference using LOWESS or
splines and then normalize the data such that the aver-
age fold change when comparing any two arrays is 1
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(that is, no change) across the expression range. Thus, a
scaling factor is determined independently for small
windows across the entire expression range. Quantile
normalization uses a nonscaling approach that assumes
that most genes are not differentially expressed and that
the true expression distribution is similar between dif-
ferent samples [142]. The average distribution of the
reference population is determined from all of the arrays
in question, and then each array is normalized to have
this same distribution. Variance stabilization normaliza-
tion likewise assumes that most genes are not differen-
tially expressed. Using a generalized logarithmic
transformation, VSN methods fit the data such that the
variance is equal across the expression range, allowing
for greater precision for low expression values, which
are generally subject to greater variance [143-145].
Many studies have been performed comparing these dif-
ferent normalization methods, but beyond the opinion
that linear scaling is not as ideal because of the analog
nature of microarray data, the general conclusion is that
there is no single “best” normalization method [31,131,
142,146-149]. Even though the data are digital, the same
is likely to be true in the case of RNA sequencing
experiments as discussed below in the section “Normali-
zation methods”.

Sources of nonbiological variation in SRNA sequencing
experiments
There are a number of nonbiological sources of varia-
tion that can add noise to sSRNA sequencing experi-
ments. RNA quality is a major issue because low quality
can result in an increase in sequencing of degradation
products. As discussed above in the section “Library
preparation and inherent biases”, the choice of library
preparation methods has a significant impact on the
makeup of the library because of biases in ligation,
reverse transcription, PCR amplification or polyadenyla-
tion efficiency. While not currently done, it may be pos-
sible to develop methods to correct for these biases.
One issue that can be dealt with to some extent by nor-
malization is differences in sequencing depth between
libraries. More total reads equate to a higher likelihood
of any particular sequence’s appearing in a library, and
standardizing the total number of reads per library or
sequence run is not a realizable goal. One way to reduce
the impact of this kind of variation (or other technical
variations encountered as a result of the sequencing
procedure itself) is to sequence all of the libraries to be
compared at the same time or to use multiplexing to
run the samples in the same lane or at least on the
same flow cell.

Microarray and sequencing experiments start with
equal amounts of total RNA when constructing a library
or a labeled target. When performing differential
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expression analyses using such data, an inherent
assumption is that a set amount of starting RNA comes
from the same number of cells in each sample. It is well
known, though, that transcription rates change depend-
ing on the stage of growth, development or environment
of the cell, tissue, organ or organism. Thus, this assump-
tion can result in over- or underestimation of differ-
ences between samples. This issue is probably most
significant when comparing different stages of growth or
development. Studies of the per-cell abundance of sSRNA
in different experimental conditions have not been per-
formed, but such studies might help improve our esti-
mates of differential expression as well as our
knowledge of the biology of SRNA.

Selecting a normalization baseline for sSRNA sequencing
experiments

Three reference populations for normalization have
been used with sRNA sequencing experiments: spike-
ins, all “good reads” and all reads. As discussed earlier
in the section “Lessons from microarrays”, housekeeping
genes have been shown to be nonideal for normalizing
microarray data because of their variable expression
[136-141]. In the case of sRNA, few “housekeeping”
sequences have been delineated. The identification of
rank-invariant sSRNA sequences would help to establish
a statistically significant baseline for normalization, but
this has not been done to date. RNA spike-ins of foreign
sequences have proven useful, however, to account for
multiple sources of variation in sequencing experiments,
particularly when the spike-in RNA have been added to
the total sample RNA prior to library preparation [115].
Fahlgren et al. [115] added multiple spike-ins at differ-
ent concentrations to cover a range of abundances.
Some sequences were more likely sequenced than others
even when added at the same concentration, possibly as
a result of sequence biases, so it is probably best to
include multiple spike-ins of varying base compositions
for each of the concentrations to be tested. Spike-ins
also have proven useful in demonstrating the accuracy
of some downstream data analyses [126,150].

Many other studies have used all reads or, more often,
all “good reads” for the normalization baseline, which is
comparable to using all probe sets when normalizing
microarrays. Good reads are defined as all tags that map
to a reference genome, except those associated with
tRNA, rRNA, snRNA, snoRNA or other structural RNA
[124,151]. This approach helps to mitigate the effects of
bad sequencing runs and contamination with foreign
RNA, both of which result in higher numbers of
sequences that do not map to the reference genome.
Experiments focusing on a specific RNA type, such as
miRNA, may choose to use only these sequences for the
normalization baseline [152,153].
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In sRNA sequencing experiments, the majority of dis-
tinct reads will be sequenced in only one copy and often
will be observed in only a single library. Because these
sequences can act as outliers, it is sometimes best to
eliminate them from the normalization baseline as dis-
cussed in the next section.

Normalization methods

Once a normalization baseline has been chosen, there is
still the decision which normalization method to use.
Existing methods can be classified as either linear or
nonlinear. Linear total count scaling is perhaps the sim-
plest of all existing methods. It involves using the sum-
mation of all reads belonging to the normalization
baseline as a “library size,” choosing an appropriate
“control” library size (either the actual size of a control
library or the average size of all libraries in the experi-
ment) and then multiplying the abundance of each indi-
vidual read by the normalization value (control divided
by library size). This method has been widely applied to
different types of data, including sSRNA Illumina data,
mRNA Illumina data [154] and PARE Illumina data
[151]. Linear total count scaling has been shown to be
no better than the analog data of microarray experi-
ments for detecting differentially expressed genes [154].
A slight variation of this method is to use the number
of distinct sequences, rather than the total abundance,
as the size of each library [155].

Total count scaling is computationally simple but, for
some experiments, biologically naive. Consider this
hypothetical scenario in which total count scaling fails:
If sample A contains all reads from sample B, as well as
a novel set of reads equal in size to the first set, total
count scaling will result in underrepresenting reads
from sample A and overrepresenting reads from sample
B [120]. Total count scaling is particularly inefficient in
the context of sSRNA sequencing because it ignores the
number of distinct reads within each sample. One pro-
posed method that incorporates this number is quantile-
based normalization, which uses the upper quartile of
expressed genes (after excluding genes not expressed in
any library) as a linear scaling factor [154]. (Note that
this differs from quantile normalization, which scales
data within each quantile separately.) The quantile-
based method has been shown to yield better concor-
dance with qRT-PCR results (with a bias near zero)
than linear total count scaling, making quantile-based
normalization better at detecting differentially expressed
genes [154]. This quantile-based method has been used
with RNA-seq data, where all reads per gene have been
grouped together to yield one total per gene, but it has
not been used with sRNA sequencing data. Our
attempts to apply this approach to sRNA sequencing
data (about 0.5 to 2 million distinct reads per library)
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found that the 75th-percentile SRNA were found at only
one or two copies per library. Even grouping sRNA by
gene or by 500-bp sliding window found very low copy
numbers at this percentile. As a result, this method may
need further modification to be applied to sSRNA data,
such as not considering distinct reads sequenced only
one time or raising the percentile used for the
normalization.

Even quantile-based normalization has its limitations,
because it assumes a similar distribution of abundances
per distinct read among all libraries being normalized. It
is not yet known how accurate next-generation sequen-
cing is with regard to read distribution. It is possible,
however, to properly normalize libraries that may not
have similar abundance distributions by using linear
regression [123]. This method involves performing linear
regression by comparing the abundance of each baseline
element between two samples or between one sample
and the mean or median of all samples, and then using
the slope of the regression line as a linear scaling factor.

Because the total RNA output of each sample is
unknown, linear total count scaling and other naive
methods can lead to underrepresentation of counts from
high-output samples. Highly expressed genes (or other
genomic elements) can sometimes take up too much
“sequencing real estate” in a sample. The number of
reads that map to a particular gene depends not only on
gene length and expression level but also on the compo-
sition of the RNA population being sampled [120]. In
some studies, it is assumed that most genes are not dif-
ferentially expressed and thus that their true relative
expression levels should be pretty similar. The trimmed
mean of M value (TMM) normalization method exploits
this fact by calculating, for each baseline element, the
log expression ratio (M values) of the experimental sam-
ple to a control sample (or the mean or median of all
samples) and using their trimmed mean as a linear scal-
ing factor. Although Robinson and Oshlack [120]
applied this method to genes using RNA-seq data, it
could be applied to individual sSRNA sequence counts as
well.

All of the normalization methods discussed thus far are
linear scaling methods, and they suffer from an inherent
flaw in assuming that the level of noise in an sRNA
library is directly proportional to the size of the library. A
two-step nonlinear regression method can be used to
eliminate nonlinear noise without making any assump-
tions about its shape [156]. A previously published imple-
mentation of this method is shown in Figure 5. This
method uses the number of sequences mapping to each
genomic window as well as the averages of these counts
across the set of libraries. While this particular normali-
zation method assumes that the data include only
uniquely mapping sequences, multireads could be
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included by using probability mapping (described above
in the section “Preprocessing of sSRNA data”) to estimate
the total number of transcripts originating from within
each genomic window. The first step is to regress
observed counts of differences (control minus sample) on
the mean to estimate fitted values and then subtract
these fitted values from the observed difference counts.
This results in each observed count’s being transformed
into a mean normalized difference. The second step is to
estimate the moving mean absolute deviation (by regres-
sing the absolute value of mean normalized differences
on absolute mean counts) and then divide the mean nor-
malized difference counts by the estimated mean of abso-
lute deviation.

A summary of the normalization methods discussed
here is given in Table 2. Because modern computational
standards make most of the more advanced normalization
methods relatively trivial, especially when compared to the
task of genome mapping, we recommend that researchers
not hesitate to use the more sophisticated approaches
described herein. In particular, the methods implemented
by Robinson et al. [120] (TMM) and Taslim et al. [156]
(two-step nonlinear regression) seem to account for many
flaws inherent in total count linear scaling, which has been
the predominant normalization method of choice. A study
comparing these two methods, as well as others, with each
other would help to provide a much-needed “gold stan-
dard” for normalizing sRNA data. We also recommend
using absolute counts, rather than log ratios, when per-
forming normalization, as log ratios fail to account for the
vast differences in magnitude evident in many sRNA data
sets but absent from microarray experiments.

Differential expression analysis

Once sRNA libraries have been normalized, there are
many different analyses that can be performed on them,
but most fall under some category of differential expres-
sion analysis. Differential expression analysis can be per-
formed on (1) individual sequences of interest, such as
miRNA; (2) genomic elements, such as genes or trans-
posons; or (3) discrete sSRNA-generating genomic loci,
also known as “clusters” or “bins.” Clustering or binning
involves dividing the genome into windows of equal size
and summing all normalized counts for tags mapping
each window. For experiments involving sSRNA data,
clustering is not ideal when comparing genomic ele-
ments with specific, singular mature sequences, such as
miRNA, but can be useful in identifying differentially
expressed regions in promoters, noncoding DNA or pre-
viously unannotated genes.

The methods for identifying genes expressed differen-
tially with statistical significance differ depending on
whether biological replicates were performed. The
approach to identifying differential expression between
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Figure 5 Example of two-step nonlinear normalization. An example of the normalization process applied to the binding quantity difference
regarding breast cancer data on human chromosome 1 between (1) MCF-7 control and (2) MCF-7 with E2 stimulation. (A) Raw data with clear
bias toward the positive direction. (B) Data normalized with respect to the mean. (C) Data normalized with respect to both mean and variance
(x-axis is zoomed in). Green dashed-dotted line and magenta dashed line represent the locally weighted linear regression line with respect to
the mean and variance, respectively. Red dotted line represents the zero difference line. Reproduced with permission from Oxford University
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digital tag counts first implemented by Audic and Clav-
erie [157] is particularly sensitive to small differences in
low tag counts and is useful for comparing data sets
without replicates. Their A-C statistic involves comput-
ing the probability that two independent digital mea-
surements of a particular sequence (or set of sequences)
come from similar populations. As the actual values
being compared increase, the minimum fold change
between them recognized as significant decreases.
Although this approach relies upon a single measure-
ment for establishing an assumed Poisson distribution

Table 2 Comparison of sSRNA normalization methods?®

for a given sequence, it has been shown that this
assumed distribution is never far from the true (but
unknown) Poisson distribution [158]. The original
implementations by Audic and Claverie [157] were for
relatively small data sets (< 10 K reads) and modern
sRNA data sets are several orders of magnitude bigger,
but the statistical principles guiding the approach
remain the same. Thus, the A-C statistic has become
popular among biologists seeking to perform compari-
sons between large RNA data sets [124,158-160]. There
has been at least one study, however, that demonstrated

Method Computational complexity

Control required Units normalized

Total count scaling Low
Quantile-based scaling Medium
TMM High
Linear regression High
Nonlinear regression Very high

No Reads
No Reads
Yes Reads
Yes Reads
Yes Genomic windows

?sRNA, small RNA; TMM, trimmed mean of M value.



McCormick et al. Silence 2011, 2:2
http://www.silencejournal.com/content/2/1/2

a poor fit between RNA-seq data and a Poisson distribu-
tion [161]. The nature of these types of data makes it
difficult to identify a “true” distribution, leaving
researchers to assume a distribution that they see most
fit. Other distributions assumed include binomial [123]
and negative binomial [120]. It should also be noted
that Audic and Claverie [157] provided an alternative
formula that allows for both normalization and differen-
tial expression analysis, but this alternative formula is
not recommended for normalization purposes as it
essentially implements a total count linear scaling and
does not exclude tRNA or nongenomic reads.

For differential expression analyses on data sets with
replicates, at least two approaches have been implemen-
ted recently. Bioconductor http://bioconductor.org/
offers a software package called edgeR (empirical analy-
sis of digital gene expression in R) that detects differen-
tially expressed genes in a replicated experiment using
an overdispersed Poisson model (a Poisson model allow-
ing for greater variability) and an empirical Bayes proce-
dure to moderate the degree of overdispersion [162]. By
using a parameter to estimate the dispersion between
replicates, the model can separate biological variation
from technical variation. The edgeR program takes raw
sequence counts and total library counts as input para-
meters, so the data do not have to be normalized first.
This approach was used by Eveland et al. [118] to iden-
tify differentially expressed genes from maize RNA-seq
libraries. Using qRT-PCR, significant differences were
validated for 80% of genes identified as differentially
expressed. Differential expression detection was possible
on tags found in more than 10 copies, but the statistical
strength increased with higher counts. The results of
analyzing individual tags also corresponded well with
the results of analyzing entire genes.

Fahlgren et al. [115] provided another approach for
identifying differentially expressed genes from sequen-
cing data sets with replicates by adapting the signifi-
cance analysis of microarrays (SAM) to sequencing data,
a method they call SAM-seq. The differential expression
score between the samples incorporates the average
abundance across each replicate set for a given sRNA as
well as the standard deviation across all samples (from
all replicate sets). It also incorporates a small but posi-
tive constant to minimize the coefficient of variation for
the data set. Therefore, the differential expression score
is essentially a ¢-statistic that has been modified to
increase inferential power. This approach also uses a
Q-value to allow for control of the false discovery rate.
The power to detect differentially expressed genes (1 -
false-negative rate) using this approach increases with
the number of replicates as well as with the number of
differentially expressed sRNA, but even with five repli-
cates, it still remained in the 75% to 95% range.
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Conversely, the false discovery rate remained under 5%,
even with as few as two replicates.

Conclusions

The use of next-generation sequencing to analyze small
RNA populations is driving a large number of discov-
eries in many different organisms. The digital nature
and the vast sequencing depth afforded by these
approaches provide data that is both qualitatively and
quantitatively highly informative. The technologies
themselves, including read lengths, sequencing depths,
cost and methods of library preparation, continue to
improve. While standards for these experiments are still
lacking, approaches for designing these experiments,
preprocessing and normalizing the data and identifying
differentially expressed genes continue to develop. To
date, most experiments still do not use biological repli-
cates because of cost. The application of the A-C statis-
tic can still allow statistically meaningful conclusions to
be drawn from such experiments, but replicates are still
ideal. The ability to multiplex samples in single lanes
combined with greater sequencing depths will make this
financially more feasible, and we expect that in the near
future replication will be required as it is for other
genomic approaches. While next-generation sequencing
is a vast improvement over microarrays for differential
gene expression studies, it is not free from bias; the rela-
tive levels of different sequences within the same sample
do not necessarily represent the biological situation,
owing to bias during library preparation. No method is
completely free of bias, but it can be reduced by using T4
RNA ligase 2 for adapter ligation, ligation-free library
preparation and/or amplification-free sequencing meth-
ods. To date, normalization primarily accounts for differ-
ences in sequencing depths between libraries, but further
experimental study of these biases may enable the biases
to be corrected for during normalization. Normalization
is still generally done by total linear count scaling, but
positive results from RNA-seq and ChIP-seq experiments
suggest that quantile-based or nonlinear scaling methods
may be more appropriate for sSRNA sequencing studies as
well because of the abundance of low copy number
reads. The issue of multireads complicates all of these
analyses. We have attempted to use probability mapping
in our studies, but we have found that a single, highly
abundant, distinct sequence within a highly conserved
region may throw off the apportioning between loci.
Probability mapping approaches are also likely affected
by sequencing biases, so both issues will need to be
accounted for in improved methods.
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