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Abstract

Background: Stem cell therapy holds a great promise for the repair of injured tissues and organs, including the
kidney. We studied the effect of mesenchymal stem cells (MSC) on experimental diabetic nephropathy (DN) in rats
and the possible paracrine signals that mediate their action.

Materials and methods: Rats were divided into controls, DN rats, DN rats receiving MSCs. MSCs were given in a dose
of (10%ells) by intravenous injection. After 4 weeks, 24 h urinary albumin, serum urea and creatinine concentrations,
transforming growth factor 3 (TGF ), tumor necrosis factor a (TNFa), B-cell lymphoma 2 (bcl2) and Bax gene
expression and vascular endothelial growth factor (VEGF) were assessed. Histopathology staining was performed.
Results: MSC therapy significantly improved 24 h urinary albumin, serum urea and creatinine concentrations, increased

angiogenic growth factor VEGF, and anti-apoptotic protein bcl2 while decreased the pro-inflammatory TNF-q, fibrogenic
growth factor TGF (3, and pro-apoptotic protein Bax. The histopathology examination showed patchy areas of minimal

necrosis and degeneration in renal tubules.

Keywords: Stem cells therapy, Mesenchymal stem cells, Diabetic nephropathy

Background
Diabetic nephropathy (DN) is the most common cause
of end-stage renal disease in the world, and could ac-
count for disability and high mortality rate in patients
with diabetes [1]. DN is thought to result from inter-
action between metabolic and hemodynamic factors.
The pathologic changes in DN include renal hypertrophy
and extracellular matrix accumulation, which contribute
to glomerular sclerosis, which leads to proteinuria and
renal failure through the tubular interstitial fibrosis [2].

The basic underlying mechanisms of DN involve high-
glucose (HG)-induced production of cytokines and growth
factors, which promote leukocyte infiltration, renal cell
proliferation, and matrix production [3,4].

Stem cell therapy holds a great promise for the repair of
injured tissues and organs, including the kidney. Stem
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cells are undifferentiated cells that undergo both self-
renewal and differentiation into one or more cell types [5].

Among stem cells, mesenchymal stem cells (MSCs)
have several advantages for therapeutic use such as abil-
ity to migrate to the sites of tissue injury, strong im-
munosuppressive effects [6,7], and better safety after
infusion of allogeneic MSCs [8,9].

Previous studies have shown that MSCs are able to
differentiate into several cell types, including cardio-
myocytes, vascular endothelial cells, neurons, hepato-
cytes, epithelial cells, and adipocytes, making them a
potentially important source for the treatment of debili-
tating human diseases. Such multipotent differentiation
characteristics coupled to their capacity for self-renewal
and capability for the regulation of immune responses,
described MSCs as potentially new therapeutic agents
for treatment of the complications of diabetes mellitus
(DM) [10].

An increasing number of data has showed that the
therapeutic effects of MSCs not only rely on their
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differentiation ability to repair damaged tissue, but also
depend on their potency to modulate local environment,
activate endogenous progenitor cells, and secrete various
factors [11,12].

The present study aims to detect the effect of mesen-
chymal stem cells on experimental DN in rats and to
identify the paracrine signals that mediate MSCs action.

Materials & methods
Preparation of the animal model
Experimental animals
The study was carried on 60 female albino rats, of an
average weight 150-200 gm. Rats were bred and main-
tained in an air-conditioned animal house with specific
pathogen free conditions, and were subjected to a 12:12-h
daylight/darkness and allowed unlimited access to chow
and water. All the ethical protocols for animal treatment
were followed and supervised by the Animal Facilities,
Faculty of Medicine, Cairo University. All animal experi-
ments received approval from the Institutional Animal
Care Committee.

Animals were divided into 2 groups as follows:

Group 1 (Control group): 20 healthy female albino rats.
Group 2 (Diabetic Nephropathy group): 40 female
albino rats in which typel diabetes was induced by a
single intra peritoneal injection of streptozotocin (STZ)
[60 mg/kg body weight dissolved immediately before
administration in freshly prepared 0.1 mol/L citrate
buffer (pH 4.5)]. Diabetes was defined as a random
blood glucose reading of >300 mg/dl in 3 continuous
days after 72 hours of STZ injection [13]. Diabetic
nephropathy was confirmed after 12 weeks by
measuring serum urea and creatinine in blood and also
by histopathological changes.

Group 2 (Diabetic Nephropathy group) was further
divided into two subgroups:

Group 2a: consisted of 20 DN rats which received IV PBS.
Group 2b: consisted of 20 DN rats which received
MSCs (which were processed and cultured for

14 days), in a single dose of (10°cells) per rat by
intravenous injection in rat tail vein [14].

Four weeks after MSCs injection, each group was sub-
jected to 24 hours urine collection for urinary albumin
concentration measurement, blood sampling through
the retro-orbital vein for blood glucose, urea and cre-
atinine concentration estimation.

This was followed by sacrifaction of all groups (by
CO, narcosis) to obtain renal tissue specimens. These
tissues were examined for:

— Quantitative analysis of TGF {3, TNF«, bcl2 and Bax
gene expression by real time PCR.
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— Histopathological examination of renal tissue by
haematoxylin and eosin and by differential stains
(massontrichrome MT and periodic acid shift PAS).

— Immunohistochemical examination of VEGF expression.

— Detection of the MSCs homing in kidney tissues
after its labeling with PKH26 dye by fluorescent
microscope to detect its red fluorescence.

Preparation of BM -derived mesenchymal stem cells from
rats

Bone marrow was harvested by flushing the tibiae and fe-
murs of 6-week-old male white albino rats with Dulbecco’s
modified Eagle’s medium (DMEM, GIBCO/BRL) supple-
mented with 10% fetal bovine serum (GIBCO/BRL). Nucle-
ated cells were isolated with a density gradient [Ficoll/
Paque (Pharmacia)] and resuspended in complete culture
medium supplemented with 1% penicillin—streptomycin
(GIBCO/BRL). Cells were incubated at 37°C in 5% humidi-
fied CO2 for 12—14 days as primary culture or upon forma-
tion of large colonies. When large colonies developed (80—
90% confluence), cultures were washed twice with phos-
phate buffer saline(PBS) and the cells were trypsinized with
0.25% trypsin in 1 mM EDTA (GIBCO/BRL) for 5 min at
37°C. After centrifugation, cells were resuspended in serum
supplemented medium and incubated in 50 ¢cm2 culture
flask (Falcon). The resulting cultures were referred to as
first-passage cultures [15]. Cells were identified as being
MSCs by their morphology, adherence, and their power to
differentiate into osteocytes and chondrocytes. Differenti-
ation into osteocytes was achieved by adding 1-1000 nM
dexamethasone, 0.25 mM ascorbic acid, and 1-10 mM beta
glycerophosphate to the medium. Differentiation of MSCs
into osteoblasts was confirmed by morphological changes,
Alzarin red staining of differentiated osteoblasts. Differenti-
ation into chondrocyte was achieved by adding 500 ng/mL
bone morphogenetic protein-2 (BMP-2;R&D Systems,
USA) and 10 ng/ml transforming growth factor b3 (TGFb3)
(Peprotech, London) for 3 weeks. In vitro differentiation
into chondrocytes was confirmed by morphological
changes, Alcian blue staining of differentiated chondrocytes.

Labeling of MSCs with PKH26

MSCs were labeled with PKH26 supplied by Sigma Com-
pany (Saint Louis, Missouri USA). Cells were centrifuged
and washed twice in serum free medium. Cells were pel-
leted and suspended in dye solution. Cells were injected
intravenously into rat tail vain. After one month, kidney
tissues were examined with a fluorescence microscope to
detect and trace the cells.

Real-time quantitative analyses for TNF-a, TGFB, bcl2 and
Bax gene expression

The relative abundance of mRNA species was assessed
using the SYBR Green method using an ABI prism 7500
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sequence detector system (Applied Biosystems, Foster
City, CA). PCR primers were designed with Gene Run-
ner Software (Hasting Software, Inc., Hasting, NY) from
RNA sequences from GenBank (Table 1). All primer sets
had a calculated annealing temperature of 60°. Quantita-
tive RT-PCR was performed in duplicate in a 50-pl reac-
tion volume consisting of 2x SYBR Green PCR Master
Mix (Applied Biosystems), 2 pl of each primer and 0.5 pl
of ¢cDNA. Amplification conditions were 2 min at 50°,
10 min at 95° and 40 cycles of denaturation for 15 s and
annealing/extension at 60° for 10 min. The real time-
PCR result was analyzed with the step one applied bio-
system software. Relative expression of TGF p, TNFq,
bcl2 and Bax gene mRNA was calculated using the Livak
method. The actual operation of these quantification
methods was performed by qPCR software.

Detection of VEGF by immunohistochemistry

— Unstained positively charged slides were prepared
from each paraffin block for immunostaining
using monoclonal rabbit anti-human antibody
(anti- VEGF, Lab vision, USA. Cat = RB-9072)
and ultra-vision detection system (HRP/DAB, Lab
vision, USA).

— DPositive immunoreactivity to VEGF shows a brown
staining in renal endothelial cells of interstitial tissue.

Biochemical analysis

— Blood was collected from the retro-orbital vein into
tubes containing fluoride. Plasma samples were
separated by centrifugation at 3000 rpm for 10 min.
Plasma glucose was measured by the glucose
oxidase method using a commercially available kit
(Diamond, Egypt).

— Serum urea and creatinine levels were measured
using the conventional colorimetric method using

Table 1 The oligonucleotide primers sequence of studied
genes

Primer sequence

TNFa gene Forward primer: 5'- GACCCTCACACTCAG ATC ATC TTC T -3’
Reverse primer: 5'- TIGTCTTTGAGATCCATGCCA TT -3’
TGFB gene Forward primer: 5’- AATGTCAGCTCAGGAACATCCA -3/
Reverse primer: 5'- GTTCCTGACACATGAACCCTTG -3/
Bcl2 gene Forward primer: 5'- GGAGGGCACTTCCTGAG -3/
Reverse primer: 5'- GCCTGGCATCACGACT -3/
Bax gene Forward primer: 5’- CTGAGCTGACCTTGGAGC -3’
Reverse primer: 5'- GACTCCAGCCACAAAGATG -3’
Beta actin Forward 5-TGTTGTCCCTGTATGCCTCT-3’

Reverse 3’-TAATGTCACGCACGATTTCC-5/
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QuantiChrom TM assay kit based on the improved
Jung and Jaffe methods, respectively (DIUR- 500 and
DICT-500).

— 24 h Urinary albumin was assessed by using Albu
well M Kit (Murine Microalbuminuria ELISA).

Analysis of kidney histopathology

Kidney samples were collected in PBS and fixed over-
night in 40 g/L paraformaldehyde in PBS at 4°C. Serial
5-um sections of the cortex and the medulla of the kid-
ney were stained with hematoxylin and eosin (H&E).

Statistical analysis

Data were expressed as mean + SD. Significant differ-
ences were determined by using ANOVA and post-hoc
tests for multiple comparisons using SPSS version 12
computer Software. Results were considered significant
at p<0.05.

Results

MSCs culture, identification & homing

Isolated and cultured undifferentiated MSCs reached
70-80% confluence at 14 days. In vitro osteogenic and
chondrogenic differentiation of MSCs were confirmed
by morphological changes and special stains (Figure 1A,
B,C) and (Figure 1E,F) respectively). In addition,
MSCs were identified by surface marker CD45 (-ve),
CD90 (+ve ) and CD29 (+ve) detected by flow cytometry
(Figure 2B,C and D) respectively. MSCs labeled with
PKH26 fluorescent dye were detected in the renal tissues
confirming that these cells homed into the kidney tissue
(Figure 3A,B).

MSCs improve the kidney function

The results of the present study show a significant im-
provement in kidney function. Serum urea and creatin-
ine were decreased in the DN/MSC group compared to
the DN group (P =0.001) as well as 24 h urinary albu-
min (Table 2).

Bcl2 and Bax gene expression

Bcl2 gene expression was significantly decreased while
Bax gene expression was significantly increased in DN
group (P =0.001) compared to control group, whereas
Bcl2 gene expression was significantly increase and Bax
gene expression was significantly decreased in the DN
group that received MSC compared to both control and
DN groups (Figure 4). The gene expressions of Bax&
Bcl2 were partially reversed following MSCs infusion.

TGFB and TNFa gene expression

Concerning gene expression, TGFf and TNFa genes
were significantly increased in the DN group (P =0.001)
compared to control group. Whereas their level was



Abdel Aziz et al. Diabetology & Metabolic Syndrome 2014, 6:34
http://www.dmsjournal.com/content/6/1/34

Page 4 of 10

chondrocytes stained with Alcian blue stain (E).

Figure 1 Morphological and histological staining of differentiated BM-MSCs into osteoblasts and chondrocytes. undifferentiated MSCs
(A), (x20) Arrows for differentiated MSCs osteoblasts after addition of growth factors (B), (x200) MSCs differentiated into osteoblasts stained with
Alizarin red stain (C), (x20) Arrows for differentiated MSCs chondrocytes after addition of growth factors (D), (x200) MSCs differentiated into

significantly decreased in the DN group that received
MSC compared to the DN groups (Figure 5). Also,
TGFP and TNFa gene expression showed a positive
correlation (P =0.001 and R value=0.844) and (P=
0.00land R value = 0.865) with serum creatinine con-
centration, respectively among the studied groups.

Histopathological changes

Histopathological examination of kidney tissues of the DN
group showed progressive glomerulosclerosis and tubular
damage associated with interstitial fibrosis (Figures 6A, B,
C, D). When MSCs were administered, there were small
collections of round to oval stem cells insinuating them-
selves between tubules at the corticomedullary junction
(Figure 6E). The glomeruli show decreased congestion
of capillary walls and increased mesangial cellularity with
diffuse hyaline thickening of glomerular capillary walls
(Figure 6F), but in general there were focal milder glom-
erular changes, absent sclerosis (Figure 6G) and regener-
ation of tubular epithelium.

Immunohistochemistry Results

VEGF was significantly decreased in the endothelial cells
of the interstitial tissues in the DN group compared to the
control group (7A, B). Following stem cells injection, there
was a significant increase in VEGF expression compared
to the diabetic nephropathy group (Figure 7C).

Discussion
Several different growth factors are known to be in-
volved in the development of diabetic complications.

Disturbed growth factor signaling adversely affects tissue
function and influences the extracellular matrix (ECM).
Changes in the amount and composition of ECM are
observed in all complications of diabetes and have a cen-
tral role in their progression [16].

Macrophages are key inflammatory cells mediating
kidney inflammation in experimental and human dia-
betes. Activated macrophages elaborate a host of proin-
flammatory, profibrotic, and antiangiogenic factors.
These macrophage-derived products include but are not
limited to TNF-a, IL-1, IL-6, reactive oxygen species
(ROS), plasminogen activator inhibitor-1 (PAI-1), matrix
metalloproteinases, TGF f, platelet-derived growth fac-
tor (PDGEF), angiotensin II, and endothelin [17]. In ex-
perimental diabetic mice, macrophage accumulation and
activation are associated with prolonged hyperglycaemia,
glomerular immune complex deposition, increased che-
mokine production, and progressive fibrosis [18]. In a
human study, interstitial macrophage accumulation cor-
related strongly with serum creatinine, proteinuria, and
interstitial fibrosis at the time of biopsy, and inversely
with the renal function decline (slope of 1/serum cre-
atinine) over the following 5 years [19]. These human
data support animal studies in suggesting a pathological
role for macrophages in DN.

TNFa is a potent proinflammatory cytokine and an
important mediator of inflammatory tissue damage.
TNFa also has an immunoregulatory role [20]. Reported
actions of TNF-a on renal cells include the activation of
second messenger systems, transcription factors, synthe-
sis of cytokines, growth factors, receptors, cell adhesion
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Figure 2 Characteristics of BM-MSCs. Cells were stained with the CD45, CD90 &CD29 antibody and analyzed by flow cytometry. BM-MSCs are
shown as a dot plot (A). The expression levels of CD45-ve (B), CD90 + ve (C) & CD29 + ve (D) of BM-MSCs are presented as a histogram. The
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molecules, enzymes involved in the synthesis of other in-
flammatory mediators, acute phase proteins, and MHC
proteins [21]. This variety of biologic activities results in
diverse effects with a significant role in the development
of renal damage in diabetes. TNF-a is cytotoxic to renal

cells and able to induce direct renal injury [22]. Also
TNF-a causes induction of apoptosis and necrotic cell
death [23,24], alterations of intraglomerular blood flow
and GFR as a result of the hemodynamic imbalance be-
tween vasoconstrictive and vasodilatory mediators [25]

A

distributed in glomeruli and tubules of kidney tissue (3B).

Figure 3 Detection of MSCs labeled with PKH26 fluorescent dye in whole kidney tissue (3A), with phase contrast showed that MSCs
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Table 2 Plasma glucose, serum urea, serum creatinine, urinary albumin and body weight in studied groups

Groups Urea mean = SD Creatinine mean + SD Urinary albumin conc. Glucose BW
(mg/dl) (mg/dl) (g/24 h) (mg/dl) (9)
Control 41.09+200 0.20+0.08 0.06 +0.02 86.74+ 642 206+ 620
DN 84.11 + 266" 0. 96 +0.05" 2806+ 1.92° 241.99 + 43604 154+ 9.60#
DN & MSC 55.79+2.30% 0.55+005% 6.11+ 160" 157.86 + 23.68#* 204.1 +4.43%

# Significant p as compared to control group (P < 0.05).
* Significant p as compared to DN group (P < 0.05).
BW = body weight.

as well as alterations of endothelial permeability. TNF-a
alters the distribution of adhesion receptors involved in
cell-cell adhesion (i.e., vascular endothelial-cadherin-
catenin complexes) and prevents the formation of F-
actin stress fibers. This results in restructuring of the
intercellular junction leading to loss of endothelial per-
meability [26]. On the other hand, TNF-a directly in-
duces reactive oxygen species (ROS) in diverse cells,
including mesangial cells [27]. In this study, there was a
significant increase in TNFa gene expression in the dia-
betic nephropathy group compared to the control group.
These results were in accordance with Sugimoto et al,
[28] who reported a significant rise in the expression of
TNEF-a in streptozotocin-induced diabetic rat glomeruli
after diabetes induction. Advanced glycation end prod-
ucts (AGE), stimulate TNF-a synthesis by renal cells
through binding to specific cell surface receptors
(RAGE) of the immunoglobulin superfamily identified
on several cell types, including renal cells [29,30]. This
interaction has been implicated in the development and
progression of DN [31], induce a range of biologically
important responses, including TNF-a synthesis and se-
cretion [32,33].

TGE-B is a fibrogenic growth factor involved in the
pathogenesis of kidney damage and is locally produced

in the kidney. It has been shown that TGF-$ induces
apoptosis of tubular epithelium cells and contributes to
progressive renal tubular atrophy [34].

Bone marrow—derived stem cells contribute to cell
turnover and repair in various tissue types, including the
kidneys [35,36]. MSCs are attractive candidates for renal
repair, because nephrons are of mesenchymal origin and
because stromal cells are of crucial importance for sig-
naling, leading to differentiation of both nephrons and
collecting ducts [37]. In the present study, bone marrow
derived mesenchymal stem cells were isolated from male
rats, grown and characterized by their adhesiveness and
fusiform shape and by detection of CD 29; one of the
surface markers of rat mesenchymal stem cells, and were
used to detect their possible anti-inflammatory, anti-
apoptotic and vascular role in amelioration of renal
function in experimental DN model. These cells were
actually insinuating themselves into the renal tissue as
detected by fluorescent microscope. Similar results have
been reported by Morigi et al. [38], who. injected labeled
human bone marrow MSCs with PKH 26 dye into mice
with induced acute renal failure. The red fluorescence of
the MSC was clearly detected in renal tissues.

The possible mechanism by which stem cells improve
the kidney function either by fusion or transdifferentiation
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Figure 5 Quantitave analysis of TGFf (A), TNFa (B) gene expression by real time PCR in different groups. # Significant p as compared to
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could not be answered in this study; however, both
techniques showed that those cells were able to main-
tain high population all through the study following
MSCs injection. Ling et al., [39] showed 50% replace-
ment of proximal tubular cells with donor cells. Also
Rookmaaker et al., [40] declared that bone-marrow-
derived cells may home to injured glomerular endothe-
lium, differentiate into endothelial cells, and participate
in regeneration of the highly specialized glomerular mi-
crovasculature. In addition, they confirmed previous
observations that bone-marrow-derived cells can re-
place injured mesangial cells [41]. Togel et al, [42]
stated that infused MSCs were detected in the kidney
only early after administration and were predominantly
in the glomeruli.

Duffield et al. [43] stated that BMDC contribute in a
regenerative cytokine environment in the resulting func-
tional repair. Similarly, bone marrow—derived stem cells
seemed to contribute to a relatively small numbers of
cells (3 to 22%) to regenerating renal tubular [44] and
glomerular cell populations [36]; that is, the majority of
reparative cells were derived from intrinsic kidney cells.
Regardless the cause, whether it's MSC differentiation,
fusion or merely cytokine induced renal improvement;
in this study following MSC injection, there was an im-
provement of kidney functions, decrease in TNFaq,
TGEp, Bax gene expression and increase in bcl2 gene
expression and VEGF expression (by immunohistochem-
istry) in renal tissues. Several studies stated that after
24 h of MSCs infusion, only exceptionally scarce

absence of sclerosis (MT x1000).

Figure 6 Histopathological examination of renal tissues in DN group (A, B, C and D) and DN + MSC (E, F and G): (A) Thickening of
glomerular capillary walls &early nodularity (arrow) (HE x1000, (B) Fibrin in Bowman's space (arrow) &green sclerosis of glomerular tuft (MT x1000),
(C) Atrophic changes in cortical tubules with dilatation of lumen & casts (MT x400), (D) Cast in collectingtubule (arrow) (MT x400), (E) Peritubularstem
cell collections (HE x1000), (F) Increased mesangial cells& no thickening of capillary wall (PAS x1000), (G) Increased cellularity of glomerular tuft &
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Figure 7 Immunohistochemistry detection of VEGF: VEGF expression in endothelial cells of interstitial tissue decreased in DN group
(7B) compared to the control group (7A). Following stem cells injection, there was an increase in VEGF expression compared to the diabetic
nephropathy group (Figure 7C).

numbers of MSCs were found in the kidney, a pattern
that essentially rules out the possibility that significant
numbers of infused MSCs are retained in the kidney
where they could physically replace lost kidney cells
by transdifferentiation. This conclusion is furthermore
supported by the fact that there was no intrarenal
transdifferentiation events of MSCs within 3 days of
administration, whereas occasional MSC-derived capil-
lary endothelial cells were identified only after 5-7 days.
From this, it could be deduced that the mechanisms that
mediate the protective effects of MSC must be primarily
paracrine. This is proved by their expression of several
growth and antiapoptotic factors such as VEGF [45,46]
and IGF-I, Bax protein [14], all known to improve renal
function in CRF, mediated by their antiapoptotic, mito-
genic and other cytokine actions. Collectively, these as
yet incompletely defined paracrine actions of MSCs re-
sult in the renal downregulation of proinflammatory cy-
tokines IL-1B, TNF-a, and IFN-y [47] and fibrogenic
growth factors TGF-p [48] as well as iNOS, and upregu-
lation of anti-inflammatory and organ-protective IL-10
[46,49], as well as bFGF, TGF-a, and Bcl- 2.

Histopathological examination of renal tissue samples
of DN & DN after MSCs injection groups supported
these results.

In conclusion, MSC are capable of improving the kid-
ney function and regenerating kidney tissues in DN rats
most probably through their paracrine action via differ-
ent growth factors such as VEGE, TGFp & TNFa and
antiapoptotic action via bcl2 & Bax genes.
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