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Abstract
Many experimental studies have been performed to evaluate mild diabetes effects. However, results are divergent 
regarding glycemia and insulin measurement, fetal macrossomia, and placental weights. The aim was to investigate 
repercussions of neonatally-induced mild diabetes on the maternal organism and presence of congenital defects in 
their offspring in other mild diabetes model. On the day of birth, female offspring were distributed into two groups: 
Group streptozotocin (STZ): received 100 mg STZ/kg body weight, and Control Group: received vehicle in a similar time 
period. Maternal weights and glycemias were determined at days 0, 7, 14 and 21 of pregnancy. At day 21 of pregnancy, 
the rats were anesthetized and a laparotomy was performed to weigh and analyze living fetuses and placentas. The 
fetuses were classified as small (SPA), appropriate (APA) and large (LPA) for pregnancy age. Fetuses were also analyzed 
for the presence of external anomalies and processed for skeletal anomaly and ossification sites analysis. Statistical 
significance was considered as p < 0.05. In STZ group, there was increased glycemia at 0 and 14 days of pregnancy, 
lower weights throughout pregnancy, higher placental weight and index, an increased proportion of fetuses classified 
as SPA and LPA, and their fetuses presented with an increased frequency of abnormal sternebra, and absent cervical 
nuclei, which were not enough to cause the emergence of skeletal anomalies. Thus, this study shows that mild 
diabetes altered fetal development, characterized by intrauterine growth restriction. Further, the reached glycemia 
does not lead to any major congenital defects in the fetuses of streptozotocin-induced mild diabetic rats.

Introduction
Diabetes mellitus (DM) is a metabolic disorder character-
ized by hyperglycemia, insufficient insulin secretion, and
receptor insensitivity to endogenous insulin. Its incidence
is associated with high morbidity and mortality rates [1].
In pregnancies complicated by diabetes, hyperglycemia
and alterations in lipid metabolism are associated with
both maternal and fetal complications [2,3], causing
reproductive abnormalities that enhance spontaneous
abortion, congenital anomalies, and neonatal morbidity
and mortality [4,5].

Congenital anomalies are more common in infants of
diabetic women than in children of nondiabetic women.
The etiology, pathogenesis and prevention of diabetes-
induced anomalies have spurred considerable clinical and
basic research efforts. The infant of the diabetic mother
also has increased risk for several neonatal complications,

such as macrosomia, hypoglycemia, hypocalcemia, poly-
cythemia and hyperbilirubinemia. Up to 25% of such off-
spring have been reported with these complications. It
also appears that early detection and subsequent strict
metabolic control of pregnant women with diabetes in
pregnancy should decrease the frequency and severity of
some of these short- and long-term complications in the
offspring of the diabetic mother [4].

Despite increased clinical efforts to improve glycemic
control during diabetic pregnancy, however, the rate of
congenital malformations remains increased in studies of
Diabetes mellitus (DM) of type 1 [6-9], DM type 2 [9-12],
and gestational diabetes (GDM) [10,13]. The prevalence
of major congenital malformations is approximately three
to five times higher in infants of diabetic mothers [14-17]
and is presently the most common cause of perinatal
death among these infants [18,19]. Diabetes is associated
with a variety of anomalies, primarily cardiovascular,
neurological, and musculoskeletal [20]. The malforma-
tion considered to be most pathognomic to the infants of
diabetic mothers - caudal regression syndrome or sacral
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agenesis - is claimed to be 200-400-fold more frequent
[21] but is still a rare anomaly.

Studies in humans that explore the responsible mecha-
nism for these alterations are limited not only by ethical
reasons but also by the multiplicity of uncontrolled vari-
ables that may modify the intrauterine environment and
cause potential effects on congenital malformations.
Therefore, there is a need for appropriate animal models
[22].

In order to reproduce the clinical status of uncontrolled
type 1 DM, experimental models are used to obtain
severe diabetes (glycemia > 300 mg/dL) [23-25]. The
complications that affect in mother and fetus that result
from this model are well-known. Besides, other models
were developed in laboratory animals to reproduce the
clinical conditions of the DM type 2 and GDM. Similarly,
the experimental model proposed is identified as mild or
moderate diabetes (glycemia between 120 and 300 mg/
dL). To obtain this glycemic level, several methodologies
may be used, such as administration of different doses of
a beta-cytotoxic agent (streptozotocin) during the period
neonatal [26,27] or streptozotocin injection during preg-
nancy [28-30]. However, many experimental studies have
been performed to evaluate the effects of mild diabetes,
with divergent results regarding glycemia and insulin
measurement, presence of fetal macrosomia and placen-
tal weights. In our laboratory, two streptozotocin admin-
istration (day 1 of birth and at day 7 of pregnancy of
Wistar rats) were performed and the results showed that
this mild diabetes model led a negative impact on mater-
nal reproductive performance and caused intrauterine
growth restriction and impaired fetal development (in
press). Due to negative effects of this diabetes model and
controversial information of the mild diabetes effects
about maternal and fetal repercussions. The present
study aimed to investigate the repercussions of mild dia-
betes in the maternal organism and the presence of con-
genital defects in their offspring.

Methods
Wistar rats were obtained from São Paulo State Univer-
sity (Unesp), Botucatu, São Paulo State, Brazil. They were
maintained in an experimental room under controlled
conditions of temperature (22 ± 2°C), humidity (50 ±
10%), and a 12 hour light/dark cycle. Protocols for animal
use and procedures necessary for the experiments
described here were approved through the Local Experi-
mental Ethical Committee for Research, which assures
adherence to the standards established by the Guide for
the Care and Use of Laboratory Animals.

Parental non-diabetic female rats were mated with non-
diabetic males to obtain newborns (NB). On day 0 of
birth, female NB were distributed into two groups: dia-
betic group (STZ, n = 102) and in the STZ group female

NB received a streptozotocin injection (STZ - Sigma
Chemical Company, St. Louis, Millstone, USA) adminis-
tered at a dose of 100 mg/kg (0.1 M, pH 4.5) subcutane-
ously (sc) according to modified procedures [26,27]; non-
diabetic group (control, n = 45). In the control group,
female NB received only citrate buffer administered sc.
NB rats remained with their mothers until day 21 of life
(weaning period). In adult life, the female rats were mated
overnight with non-diabetic male rats. The morning
when spermatozoa were found in the vaginal smear was
designated gestational day (GD) 0. STZ rats presenting
with glycemia between 120 and 300 mg/dL at GD 0 were
characterized as having mild diabetes, and non-diabetic
rats with glycemia below 119 mg/dL were considered
control and were included in this study. On days 0, 7, 14
and 21 of pregnancy, maternal body weights and glycemia
were determined. Blood glucose concentrations were
measured by a One-Touch Ultra glucometer (LifeScan,
Johnson and Johnson®). Values were expressed in mg/dL.

On day 21 of pregnancy, fed rats were anesthetized with
sodium thiopental (50 mg/kg). Following trichotomy of
the abdominal region, the animal was placed in the dorsal
decubitus position, and its libs were fixed to the surgery
table. The laparoscopy procedure was carried out by a
midline incision beginning at the xiphoid cartilage and
ending at the pubis. The intestinal loops were moved cra-
nially for uterus exposure. Immediately following explor-
atory laparotomy, all viable fetuses and placentas were
weighed for determination of placental index (placental
weight/fetal weight). The fetuses were classified by the
mean ± 1.7 SD according to the mean values of fetal
weights of the control group: as small for pregnancy age
(SPA) when weight was smaller than control mean - 1.7
SD; appropriate for pregnancy age (APA) when weight
was included in control mean ± 1.7 SD; and large for
pregnancy age (LPA) when weight was greater than con-
trol mean + 1.7 SD, and the data were presented as per-
centual values [3,31]. The fetuses were externally
evaluated by microscope with respect to the incidence of
external anomalies. After external analysis, half of the
fetuses were prepared for skeletal examination by the
staining procedure of Staples & Schnell [32]. In addition
to the skeletal analyses, the counting of the ossification
sites was performed according to methodology proposed
by Aliverti [33], which determines the degree of fetal
development. The remaining fetuses were prepared for
visceral examination into another study in our laboratory
(data not published).

The results were reported as mean ± standard error
(SEM) or standard deviation (SD) of mean. All data were
statistically analyzed using Student-Newman-Keuls test
[34]. For fetal weight classification, the Chi-square test
was used [35]. Statistical significance was considered as p
< 0.05.
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Results
In the present study, 102 female rats had diabetes induced
by STZ at the neonatal period. Of these, 82 rats reached
adult life and were mated, and 76 of these presented with
a positive vaginal smear. On GD 0, only 37 female rats
presented with glycemia between 120 and 300 mg/dL and
were included in the STZ group; only 28 rats reached
term pregnancy. In the control group, 45 female rats
received citrate buffer during the neonatal period. All of
the rats reached the reproductive phase and were mated.
Of the 45 mated female rats, 37 were pregnant with glyce-
mia less than to 119 mg/dL and were included in control
group. On day 21 of pregnancy, 28 rats had reached term
pregnancy.

3.1 Glycemia during pregnancy
In control rats, normoglycemia was confirmed with mean
glucose values below 119 mg/dL (day 0, 7, 14 and 21 of
pregnancy). In STZ rats, a significantly higher glycemia
(p < 0.05) was verified on days 0 and 14 of pregnancy
compared to control rats (Table 1).

3.2 Maternal weight gain during pregnancy
Throughout pregnancy, an increase in body weight in
STZ and control rats was observed. However, on days 0,
7, 14 and 21 of pregnancy, the STZ dams presented with
lower body weight (p < 0.05) and maternal weight gain
(day 21 - 0) compared to control rats (Table 2).

3.3 Fetal weight, placental weight and placental index
There was no significant difference in fetal weight
between STZ rats and control rats. STZ rats presented
with higher placental weight and index (p < 0.05) relative
to control group (Table 3).

3.4 Classification of fetal body weight
The fetuses from the STZ group presented with a signifi-
cant increase in the proportion of fetuses classified as
small (SPA) and large (LPA) for pregnancy age, and a sig-

nificant reduction in the proportion of APA (appropriate
for pregnancy age) fetuses compared the from control
group (Figure 1).

3.5 Analysis of the frequency of external and skeletal 
anomalies
Table 4 illustrates fetuses from STZ female rats that pre-
sented no significant difference in the rates of external
anomalies compared to the control group. Fetuses from
the STZ group presented with a higher number of abnor-
mal sternebra and absent cervical nuclei (p < 0.05).

3.6 Ossification sites
There was no significant difference (p>0.05) in the num-
ber of ossification sites in fetuses from STZ group in rela-
tion to the control group (Table 5).

Discussion
In the present study, it was verified that neonatally strep-
tozotocin-induced diabetic rats presented glycemia supe-
rior than 120 mg/dL on day 0 of pregnancy, confirming
the inclusion criterion for the diabetic group. On day 14
of pregnancy an increase in glycemic mean was also
observed in this group, which was accompanied by glu-
cose intolerance and insulin resistance (data submitted to
publication - not shown in this paper) as demonstrated by
the glucose and insulin tolerance tests, respectively,
reproducing the clinical state of gestational diabetes that
occurs at weeks 24-26 of human gestation [36,37]. The
literature shows conflicting results about glycemia and
insulin levels in the different models of mild diabetes
induction. However, the experimental model that pre-
sented more convincing results (glycemia between 120
and 300 mg/dL) was the induction performed during the
neonatal period [26,27,38,39].

Our results showed that STZ rats presented increased
maternal weights since the beginning of pregnancy.
There is a natural progressive increase in maternal weight
during gestation due to fetal growth apart from adapta-

Table 1: Glycemic levels on days 0, 7, 14 and 21 of pregnancy in mildly diabetic (STZ) and non-diabetic (control) rats.

Groups

Control
(n = 28)

STZ
(n = 28)

Maternal glycemia (mg/dL)

Day 0 105.00 ± 1.81 131.70 ± 1.87*

Day 7 102.80 ± 2.36 106.10 ± 2.56

Day 14 83.10 ± 1.45 92.90 ± 2.45*

Day 21 85.30 ± 1.92 83.70 ± 2.69

Data are reported as mean ± standard error of mean (SEM)
*p < 0.05 - statistically significant difference compared to control group (Student-Newman-KeulsTest).
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tions of the maternal organism [40,41]. However, the
weight gain of STZ rats during the pregnancy was lower
compared to control group. The lower gain of maternal
weight in the presence of mild diabetes may be related to
STZ administration at neonatal period. There were early
damages to the pancreatic β-cells, reducing insulin secre-
tion which is considered major growth factor, contribut-
ing to impaired perinatal development and leading to
consequences in the adult life of neonatally streptozoto-
cin-induced diabetic rats, as also confirmed by Kim et al.
(2006) [42]. These authors related the reduction of mater-
nal weight gain to alterations in growth hormone (GH)
and insulin-like growth factor (IGF-1) in the neonatally
streptozotocin-induced diabetic female rats.

Infants of diabetic or prediabetic women frequently
have increased birth weight and length [43]. They have
also been found to have enlarged islets of Langerhans and
β-cells [44] and higher than normal concentrations of
plasma insulin. Further, there is evidence that insulin
injection into rats during pregnancy results in larger than
normal fetuses. Experimental models of mild diabetes
induction (glycemia between 120 and 300 mg/dL)
showed increased rates of macrosomic fetuses (LPA)

[3,28,29]. In contrast with these studies, our study
revealed increased rates of fetuses classified as small for
pregnancy age in mildly diabetic dams. Similarly, Kervran
et al. (1978) [45] did not obtain macrosomic fetuses in the
offspring of rats with mild hyperglycemia during preg-
nancy. The difference between the findings in clinical and
experimental studies might be justified by the relatively
short pregnancy time in the rat, the difference in the per-
centage of adipose tissue in rat fetuses (1%) and human
offspring (16%), and the greater weight gain in the human
species. Our findings corroborate results found by Aerts
& Van Assche (2006) [46] and Holemans et al. (2003)
[47], which also observed fetuses with intrauterine
growth restriction (IUGR) originated from mildly dia-
betic rats. An epidemiological relationship between low
birth weight and impaired glucose tolerance in late life
has been shown [48,49] and evidence for both insulin
resistance and impaired function of the pancreatic β-cell
in adulthood has been presented [50-52]. The human
fetuses classified as small for gestational age (SGA) fetus
is hypoinsulinemic and hypoglycemic [53,54]. A glucose
challenge in the uterus provokes only a small insulin
secretory response [55], and this inability persists in the

Table 2: Body weight on days 0, 7, 14, 21 and maternal weight gain (day 21 - 0) in pregnant mildly diabetic (STZ) and non-
diabetic (control) rats.

Groups

Control
(n = 28)

STZ
(n = 28)

Day 0 284.19 ± 4.66 260.71 ± 7.99*

Day 7 305.29 ± 5.09 278.81 ± 7.90*

Day 14 330.96 ± 5.36 303.26 ± 8.71*

Day 21 407.22 ± 6.43 357.86 ± 11.67*

Maternal weight gain (day 21-0) 123.03 ± 2.91 97.81 ± 4.91*

Data are reported as mean ± standard error of mean (SEM)
*p < 0.05 - statistically significant difference compared to control group (Student-Newman-KeulsTest).

Table 3: Fetal weight, placental weight and placental index in mildly diabetic (STZ) and non-diabetic (control) rats at term 
pregnancy.

Groups

Control
(n = 28)

STZ
(n = 28)

Fetal weight 5.40 ± 0.05 5.34 ± 0.09

Placental weight 0.40 ± 0.01 0.46 ± 0.01*

Placental index 0.08 ± 0.00 0.09 ± 0.00*

Data are reported as mean ± standard error of mean (SEM)
*p < 0.05 - statistically significant difference compared to control group (Student-Newman-KeulsTest).
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neonate [56,57]. In the few cases which have been mor-
phologically investigated, there is evidence of a reduced
pancreatic β-cell mass [58]. This suggests reduced growth
and impaired functional development of the insulin-pro-
ducing β-cell in growth-retarded fetuses [49,50]. Fetal

growth is a complex process that depends on the geno-
type and epigenotype of the fetus, maternal nutrition, the
availability of nutrients and oxygen to the fetus, intrauter-
ine insults, and a variety of growth factor and proteins of
maternal, fetal and placental origin [59]. During the first

Figure 1 Proportion (%) of fetuses classified as small (SPA), appropriate (APA) and large (LPA) for pregnancy age from mildly diabetic (STZ) 
and non-diabetic (control) rats at term pregnancy. * p < 0.05 - statistically significant difference compared to control group (Chi Square Test).

 
 

 

 

 

 

 

 

 

 

 

 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

SPA APA LPA 

Classification of the fetuses

Control

STZ

* * 

* 

% 

Table 4: Frequency of external and skeletal anomalies in fetuses from mildly diabetic (STZ) and non-diabetic (control) rats 
at term pregnancy.

Groups

Control
(n= 15)

STZ
(n= 13)

Number of fetuses examined for external 
anomalies

198 138

Number of fetuses with external anomalies 0 0

Number of fetuses examined for skeletal 
anomalies

81 (100%) 55 (100%)

Abnormal shaped sternebrae 2/81 (2%) 5/55 (9%)*

Extra ossification site of sternebrae 0/81(0%) 1/55 (2%)

Incomplete ossification of vertebrae 1/81 (1%) 0/55 (0%)

Absent cervical nuclei 50/81 (62%) 57/55 (104%)*

Bipartite cervical nuclei 3/81 (4%) 1/55 (2%)

Incomplete ossification of cervical 
nuclei

5/81 (6%) 5/55 (9%)

*p < 0.05 - statistically significant difference compared to control group (Chi Square Test).
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trimester of pregnancy, embryonic growth might be con-
trolled at the level of the individual organs by nutrient
supply and by locally active growth factors. Later, fetal
growth depends essentially upon materno-placental
cooperation in delivering nutrients to the fetus. Fetal
growth seems to be regulated by fetal insulin, insulin-like
growth factor (IGF-1) and IGF-2, while growth hormone
(GH) has only a secondary hole to play [60]. During preg-
nancy placental growth hormone (PGH) is the prime reg-
ulator of maternal serum IGF-1. Therefore the major hole
of hormones in fetal growth is to mediate utilization of
available substrate. The alterations in the maternal GH/
IGF axis may lead to permanent pathological fetal pro-
gramming of the IGF axis [59], causing late consequences
of poor fetal environment reflected in intrauterine
growth restriction, as confirmed by our results.

It was observed in our study that the placentas of mildly
diabetic rats had a higher weight, which might represent
a compensatory mechanism to assure the maternal-fetal
exchanges contributing to fetal development. This justi-
fies the similar mean fetal weights between the two
groups (STZ and control). The increased weight of the
placentas also contributed to increased placental index in
the diabetic group. However, the increased placental
weight/index was not enough to improve fetal develop-
ment, as confirmed by increased rate of fetuses classified
as small for gestational age.

Maternal diabetes during pregnancy is known to
increase the risk of congenital malformation in offspring.
The malformations associated with diabetic pregnancy
affect many major organ systems, such as the central ner-
vous, cardiovascular, gastrointestinal, urogenital and
musculoskeletal systems [21,61]. The incidence of con-
genital malformations in diabetic pregnancies remains
two-to six-fold higher than in non-diabetic pregnancies
[8,18,19]. Although clinical studies have indicated that

the risk for congenital malformations is dependent on
blood glucose levels in early pregnancy, recent studies
show that even in diabetic pregnant women with near
optimal maternal glycemic control (HbA1c < 7%), the
incidence of congenital malformations is still high [8,62].

In this investigation was verified that the rates analysis
of external anomalies of the fetuses from mild diabetic
rats presented no significant abnormalities related to
mild maternal diabetes. It was observed that fetuses from
neonatally streptozotocin-induced mild diabetic rat pre-
sented an increased frequency of abnormal sternebra and
absent cervical nuclei. However, these skeletal abnormali-
ties are not considered to be major anomalies. In other
words, the alterations caused by mild diabetes were not
sufficient to cause the emergence of skeletal anomalies.
The number of ossification sites among the experimental
groups showed that there was not somatic immaturity in
the development of the fetuses of female rats with mild
diabetes, showing that the glycemic intensity did not
influence the studied variable.  In conclusion, mild diabe-
tes caused alterations in fetal development characterized
by intrauterine growth restriction, which was evidenced
by the increase of the proportions of fetuses classified as
small for pregnancy age. This glycemic intensity led no
major congenital defects in the fetuses of streptozotocin-
induced diabetic rats, thus it was associated no terato-
genic effect in these fetuses.
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