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Abstract

Background: Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an
important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the
discovery of either novel drugs or new tools for chemical biology.

Results: In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical
space. Through a process we term ‘molecular morphing’, Molpher produces a path of structurally-related
compounds. This path is generated by the iterative application of so-called ‘morphing operators’ that represent
simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized
parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its
feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity
measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can
be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug
discovery pipelines.

Conclusions: Molpher is an open-source software framework for the design of virtual chemical libraries focused
on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its
surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible
and can be easily incorporated into any existing computational drug design pipeline.

Keywords: Chemical space exploration, De-novo design, Lead discovery, Structure generation, In silico ligand design,
Chemical biology tools
Background
Chemical space is populated by all chemically meaning-
ful and stable organic compounds [1-3]. It is an import-
ant concept in contemporary chemoinformatics research
[4,5], and its exploration leads to the discovery of either
novel drugs [2] or new tools for chemical biology [6,7].
It is agreed that chemical space is huge, but no accurate
approximation of its size exists. Even if only drug-like
molecules are taken into account, size estimates vary [8]
between 1023 [9] and 10100 [10] compounds. However,
smaller numbers have also been reported. For example,
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based on the growth of a number of organic compounds
in chemical databases, Drew et al. [11] deduced the size
of chemical space to be 3.4 × 109. By assigning all pos-
sible combinations of atomic species to the same three-
dimensional geometry, Ogata et al. [12] estimated the
size of chemical space to be between 108 and 1019. Also,
by analyzing known organic substituents, the size of ac-
cessible chemical space was assessed as between 1020

and 1024 [9].
Such estimates have been put into context by Reymond

et al., who produced all molecules that can exist up to a
certain number of heavy atoms in their Chemical Universe
Databases: GDB-11 [13,14] (2.64 × 107 molecules with up
to 11 heavy atoms); GDB-13 [15] (9.7 × 108 molecules
with up to 13 heavy atoms); and GDB-17 [16] (1.7 × 1011

compounds with up to 17 heavy atoms). The GDB-17
database was then used to approximate the number of
possible drug-like molecules as 1033 [8].
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While virtual chemical space is very large, only a small
fraction of it has been reported in actual chemical data-
bases so far. For example, PubChem contains data for
49.1 million chemical compounds [17] and Chemical
Abstracts consists of over 84.3 million organic and inor-
ganic substances [18] (numbers as of 12. 3. 2014). Thus,
the navigation of chemical space is a very important area
of chemoinformatics research [19,20]. Because chemical
space is usually defined using various sets of descriptors
[21], a major problem is the lack of invariance of chem-
ical space [22,23]. Depending on the descriptors and dis-
tance measures used [24], different chemical spaces
show different compound distributions. Unfortunately,
no generally applicable representation of invariant chem-
ical space has yet been reported [25].
Approaches to chemical space navigation can be cate-

gorized by the way in which molecular structure and
properties are encoded [26]. The two main methods
used are descriptor vectors and graphs. In descriptor-
based chemical space, molecules are treated as multidi-
mensional vectors consisting of molecular descriptors
[21]. To analyze such multidimensional data, dimension-
ality reduction mapping techniques are used [27], mainly
Principal Component Analysis (PCA) [28] and/or Multi-
dimensional Scaling (MDS) [29]. For example, the chem-
ical global positioning system ChemGPS [30] utilizes
PCA to create a ‘navigation map’ in drug-like space. An-
other PCA-based system suitable for the comparison of
chemical libraries is Delimited Reference Chemical Sub-
space (DRCS) [31,32].
In graph-based chemical space, compounds are typic-

ally simplified into their molecular scaffolds [33]. In the
scaffold tree algorithm [34], large molecular data sets are
organized into a unique tree hierarchy by iterative re-
moval of rings from more complex scaffolds. The scaf-
fold tree has been successfully applied to the analysis of
chemical data [35,36] and to the identification of new
bioactive regions in chemical space [37]. Other scaffold-
capturing organization schemes include the molecular
equivalence number classification system [38], the re-
lated chemotype approach [39] and hierarchical scaffold
clustering (HierS) [40].
The computer-assisted de novo design of bioactive

molecules is another important way of navigating chem-
ical space. De novo design requires the assembly of can-
didate compounds, which are then used to search for
novel structures [41]. Because ‘combinatorial explosion’
[42] makes it impossible to consider all theoretically
conceivable compounds, this search space must first be
reduced by incorporating as much chemical knowledge
as possible. Two major approaches exist for assembling
candidate compounds: atom-based and fragment-based.
While atom-based techniques require molecules to be
built atom by atom [43], in fragment-based approaches
molecules are formed from predefined molecular building
blocks [44]. The key element in fragment-based assembly
is an adaptive scheme for virtual molecular evolution [45].
However, despite its advantages, fragment-based molecu-
lar structure evolution programs do not follow a structural
continuum [46]. Because of this, less coarse-grained ap-
proaches have been proposed. The median molecules
approach [47,48] generates structures similar to two dif-
ferent starting compounds by a graph-based genetic algo-
rithm. This algorithm uses multiobjective optimization
that applies a Pareto ranking scheme to the evolution of
candidate solutions. Molecule Evaluator [49] uses cross-
over and mutation operators to evolve a set of molecules,
the quality of which is assessed by the user. Bishop et al.
developed [50] an approach that uses chemical reactions
as structural mutations. van Duersen et al. [46] repre-
sented chemical space as a graph with molecules as nodes
and structural mutations as edges. Their SPACESHIP
program generates a structural continuum between two
molecules by the iterative application of mutation and se-
lection cycles. Yu devised a molecular enumerator that
produces a diverse set of natural-product-like [51] or
drug-like [52] molecules by attaching randomly selected
fragments to the molecular core. Algorithm for Chemical
Space Exploration with Stochastic Search (ACSESS)
combines molecular evolution and maximum diversity
methods to create libraries representative of various
chemical spaces [53].
For the systematic discovery of chemical space, we

proposed a method of ‘molecular morphing’ [54]. Our
method is inspired by the morphing effect used in ani-
mation films, in which one image morphs into another
through seamless transition. Similarly, a start molecule
is converted into a target molecule by the application of
morphing operators that correspond to simple structural
changes, such as the addition or removal of an atom or
a bond. If the start and target molecules belong to the
same mechanistic class of compounds (i.e. they are ac-
tive at the same receptor), the molecules encountered
along the morphing path and within its surroundings
represent a focused virtual library. Such a library pro-
vides valuable starting data for subsequent in silico ex-
periments that aim to identify more potentially active
leads. The predicted leads can be further optimized and
their biological activity subsequently assessed in in vivo
experiments.
Molpher is a freely-available client–server application

that includes the following features: a user-friendly graph-
ical interface; a wide range of molecular representations
and similarity measures; the interactive modification of
the algorithm’s parameters; the visualization and inspec-
tion of explored space; and the export of generated
structures. In addition, Molpher is designed to be used
as a software framework that can easily incorporate
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new molecular representations, similarity measures and
visualization techniques.

Implementation
Molpher is written in C++, is open source and can be
freely downloaded (GNU Public License v3). For standard
tasks, it uses Boost C++ Libraries [55]. Chemical function-
ality is provided by the open source chemoinformatics
toolkit RDKit [56], which offers a reasonable level of thread-
safety, a native C++ application programming interface,
and a vast number of fingerprints and similarity co-
efficients. Molpher leverages the computational power of
modern CPUs by dividing chemical space exploration be-
tween individual CPU cores. This parallelization is imple-
mented by employing the Intel® Thread Building Block
Library (TBB) [57].

Algorithm
In this section, we briefly describe Molpher’s molecular
morphing algorithm. A more detailed description of the
algorithm and its parameters is given in Additional file 1.
The main task of molecular morphing is to find a path

in chemical space between a start molecule MS and a
Figure 1 Principles of the molecular morphing approach. Molecular m
(referred to as morphs) lying between a start molecule MS and a target mo
randomly applying morphing operators (see Figure 2) at molecules from th
candidates for the iteration i + 1 with the probability derived from their dis
algorithm is given in Additional file 1.
target molecule MT. The principles of our algorithm for
doing this are illustrated in Figure 1. This algorithm is
based on an iterative process where, in each iteration i +
1, a set of molecules (referred to as morphs) Mi + 1 is
generated from the previous set Mi. The morphs are
formed by the application of randomly selected morph-
ing operators (see Figure 2) acting at randomly selected
molecular positions. Each morph formed must comply
with basic valency rules. The resulting morphs can be
filtered by their molecular weight or by their synthetic
accessibility, SAScore [58]. Once filtered, they are sorted
by their distance from MT. This produces a list, from
which the required number of morphs, Mi + 1, is selected.
Some of the molecules from Mi may not generate any
offspring during the i + 1 iteration. If this happens over
several iterations, these molecules are discarded from
the exploration process. The process ends when the tar-
get molecule is located; namely, when one of the morphs
is identical with the MT. The sequence of morphs from
MS to MT defines the path in chemical space. The run-
time required for path identification can be limited to a
specific number of iterations, in which case the solution
is partial.
orphing generates a path in chemical space consisting of structures
lecule MT. In each iteration i + 1 a set of morphs is generated by
e iteration i. The morphs from the iteration i are accepted as
tance to the target molecule. A more detailed description of the



Figure 2 Morphing operators. Morphing operators represent simple structural changes (mutations) that lead to the transformation of the
‘reactant’ molecule (left) to the ‘product’ molecule (right).
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Software architecture
Molpher is a client–server application where data inten-
sive tasks, such as chemical space exploration, are dele-
gated to the server. The client graphical user interface,
developed using the Qt library [59], provides the only
means of changing the server settings. From the client,
the user can create and manage jobs, change their set-
tings and display their results. The client–server archi-
tecture also enables the exploration process to be
divided among multiple clients, any of which can be dis-
connected from a running job and, if necessary, later
reconnected. Both client and server can reside on the
same machine or be used as separate components de-
signed to communicate over a network. The server is a
command line application that listens for client connec-
tions on a specific port. Whenever new results are avail-
able, the server broadcasts them to all connected clients.
There is no ‘master client’ instance with exclusive rights
to control the server; all clients are equal. Any client can
create jobs (exploration tasks) on the server and adjust
the properties of the currently running jobs. Jobs can be
password protected to prevent other clients from modifying
them. In addition, the server can be run in batch mode, in
which it behaves as a non-interactive program with jobs
passed as command line arguments. After performing the
specified jobs and storing their results, the server termi-
nates. With its overall functionality, Molpher users can
easily incorporate molecular morphing into their drug
discovery pipelines.

Graphical user interface and its capabilities
In the following paragraphs, we briefly describe the
graphical user interface (GUI) of the Molpher client. For
a more detailed description, the reader is referred to the
Molpher User manual [60].
Molpher’s main window consists of a menu, detachable

toolbar, Bookmarks pane, Jobs queue pane and viewer area
(see Figure 3). The viewer area is subdivided into
Visualization and Iteration panes. The user starts an ex-
ploration task by clicking the Create job button, which in-
vokes the Create job dialog box (see Figure 4). In this
dialog box, the user can specify a start/target molecule
pair and one or more of the following parameters: finger-
printing method, similarity coefficient method, visualization



Figure 3 Graphical user interface of the Molpher client. Display of the Job queue and Bookmarks panes can be turned off from the
detachable toolbar. Viewer area consists of the Visualization and Iteration panes.
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method, set of morphing operators (see Figure 2) and
decoy set (see later). Both start and target molecules must
be imported from an external SDF file. They may be
imported from different files or from a single file; in the
latter case, the user must select the start/target molecule
pair from the drop-down menu.
The molecular morphing algorithm is controlled by

parameters accessed by clicking the Choose algorithm
parameters button (see Additional file 1). The two most
important parameters influencing the exploration process
are Fingerprint representation and Similarity coefficient.
Morgan fingerprints, which belong to the family of circu-
lar fingerprints [61], and the Tanimoto coefficient are set
as defaults because, in our experience, they offer reason-
able performance in the vast majority of cases. However,
many other fingerprints and similarity coefficients are im-
plemented (see Additional file 2). Also, it is possible to
limit a morph’s molecular weight (default is 500 Da) so
that the algorithm does not produce overly complex mole-
cules. From the same dialog, a prediction of the morph’s
synthetic feasibility [58] can be switched off. When the pa-
rameters have been setup, the client’s configuration can be
saved in an SNP (snapshot) file and restored as required
by using the Save and Load buttons, respectively, in the
Create job dialog box.
Typically, Molpher explores relatively direct paths be-

tween the start/target molecule pair, but the user may
request the process to explore remoter areas of chemical
space. This is done by defining additional ‘decoy mole-
cules’ via the Create job dialog box. The presence of
these decoys modifies the calculation of the morph’s dis-
tance to the target molecule. In this case, the program
averages two distances: the distance of the morph to the
target molecule, and the distance of the morph to the



Figure 4 Create job dialog box.
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decoy molecule. In these calculations, only the distance
to the closest decoy is considered.
The user can also specify molecules referred to as

bookmarks in the Create job dialog box. Bookmarks can
be shared between individual jobs during a client ses-
sion. Bookmarked molecules can be made available for
reuse in later sessions by being stored in a user defined
group and exported into an SDF file. Bookmarks are
most useful when a job is having difficulty in identifying
the path. In such a case, it can be helpful to setup a dif-
ferently configured job using the same start and target
molecules. The user can then bookmark promising candi-
dates in the original job and load them as decoys into the
new job, thereby facilitating faster algorithm convergence.
A morphing process can be inspected in the Visualization

pane (see Figure 3). The visualization of chemical space
depends on both the molecular representation and on the
visualization technique used to reduce a multidimensional
space to two or three dimensions [27,62]. Currently, two
visualization techniques are implemented in Molpher: Prin-
cipal Component Analysis (PCA), a linear dimension re-
duction method, and Kamada-Kawai, a graph-layout-based
method. The visualization method is selected in the Cre-
ate job dialog box and may be changed later, even for a
running job. Each new iteration, the visualization is recal-
culated using all present morphs. Because the visualization
method has such an impact on the user’s experience, Mol-
pher’s modular architecture enables users to implement
additional visualization techniques.
PCA transforms correlated variables into uncorre-

lated ones [63]. The uncorrelated variables, termed
principal components, are constructed as linear com-
binations of the original variables. The dimension of
the original data can be reduced by retaining only a
small number of principal components that describe
the predefined amount of variability. In Molpher, PCA
is used to reduce the original chemical space to two
dimensions.
Morphing space can also be considered as a graph, in

which each pair of nodes represents two molecules sepa-
rated by a single morphing operator, which is assigned
to the connecting edge. Several graph-based layout algo-
rithms exist for the visualization of graphs in an aesthet-
ically pleasing way [64]. In Molpher, we implemented
the force-directed-based Kamada-Kawai (KK) method
[65]. Using this method, nodes are positioned in 2D
space so that the number of edge crossings is minimized,
and both nodes and edges are distributed uniformly. In
KK, every pair of nodes is assigned a value dij that corre-
sponds to the shortest path between these nodes. However,
in Molpher dij corresponds to the structural similarity be-
tween morphs. In addition, each node pair is also charac-
terized by its Euclidean distance in 2D space. Each layout
is characterized by its energy E, which is derived from the
difference between the dij and Euclidean distances of all
node pairs. The KK algorithm iteratively generates a layout
with the lowest value of E.
When the job is created, it is immediately run, re-

ceiving a unique ID number. The job can be checked
in the Job queue (see Figure 3), in which it will appear
in one of four possible statuses: Running, Live, Sleeping
and Finished. Live status means that the job is waiting
in a queue and is scheduled to run as soon as free re-
sources appear. Both Running and Live jobs can be put
into Sleeping mode by selecting Set parameters from
the Action column of a job’s entry in the Job queue. In
addition, the Action column (see Figure 3) enables the
user to make on-the-fly modifications to the algorithm’s
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parameters, as well as to select morphing operators, finger-
prints, similarity coefficients and visualization methods.
Three different tabs can be used to visualize a job:

1. The Live tab is invoked by clicking the Live button
in the Job queue for the relevant job. Visualization in
this tab is refreshed after each iteration. For each
job, only one Live tab can be opened at a time. The
Live tab is indicated in the tab caption by the job’s
ID (e.g. ‘1’).

2. The Detached tab is invoked by clicking the
Visualization-Detach button in the Job queue for the
relevant job. This displays a graphical snapshot of
the job at the time at which the tab is opened. There
is no limit to how many of these tabs can be
detached from a particular job. The Detached tab is
indicated in the tab caption by backslash followed by
the job’s ID (e.g. ‘\1’).

3. The Adhoc tab is invoked by double-clicking a job
iteration in the Iteration pane in the Job queue
(see Figure 3). This tab can display multiple
snapshots of iterations from different jobs at any one
time. The Adhoc tab is indicated in the tab caption
by the job’s ID and iteration number separated by a
colon (e.g. ‘1 : 51’ means the 51st iteration of job 1).
Figure 5 Depiction of a structure in Molpher. An orange line is the high
Molecules in the explored space are represented using
the following colored symbols: a start molecule as a ma-
genta circle; a target molecule as a red circle; an inner
tree node as a cyan circle; a tree leaf as a green circle; a
decoy as an orange circle; and a new morph in the actual
iteration as a green triangle (see Figure 3). A list of these
symbols and what they signify is available by pressing
the F1 key. If the user hovers the mouse over any of
these symbols, the corresponding molecular structure is
depicted (see Figure 5) by the external utility indigo-
depict, which is part of the Indigo Toolkit [66].
Holding the left mouse button and dragging enables the

user to select only the required area of chemical space.
Morphs can be added or removed from the selection by
clicking the left mouse button while holding the Ctrl key.
More specific selections, such as selecting all new candi-
dates or all inner tree leaves, can be made via the Select
button from the Iteration pane. Among other things, se-
lected morphs can be exported into an SDF file.
Clicking the middle mouse button on any node highlights

the path from the start molecule to the selected morph
(see Figure 5). The user can then inspect all morphs lying
on this path. The user can move the whole view by hold-
ing the right mouse button and zoom it by turning the
mouse wheel.
lighted path from the start molecule to the particular morph.
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Clicking the right mouse button on any node invokes
a context menu, from which the active morph can be
bookmarked. In addition, molecules lying on the path
between the active morph and the start molecule can be
selected, and the whole path easily exported into an SDF
file. The active morph can also be copied onto a clip-
board as a SMILES string or as a summary formula.
When Marvin suite from ChemAxon [67] is installed,
the active morph can be opened externally in Marvin
Sketch, Marvin Space or Marvin View. The last two
items in the context menu enable the user to perform
either an exact match search or a similarity search in the
Pubchem [68], ZINC [69] or ChEMBL [70] databases.
Another rich set of features is available on the Action

menu, which is accessed by clicking the Action button
on the Iteration pane. To expand chemical space cover-
age in the vicinity of a potentially interesting molecule,
its near neighbourhood can be explored. A neighbour-
hood is defined by its origin molecule, by its maximum
size (i.e., the maximum number of neighbour mole-
cules), by its maximum radius given as a similarity coef-
ficient distance, and by its maximum depth in terms of
the number of morphing operations (see Figure 6). A
neighbourhood can be visualized by right-clicking the
origin molecule in the Visualization pane and by select-
ing Toggle neighborhood origin from the menu. In the
visualization, identified neighbours will be placed at po-
sitions given by the so-called visualization context (VC).
The VC contains molecules selected by dragging the left
mouse button (or by Ctrl + left mouse button) in the
Visualization pane. If no molecules are selected, the VC
remains empty and neighbours are placed in the 2D
visualization at random positions. When VC is not
Figure 6 Generate neighborhood settings.
empty, the visualization is calculated from the VC and
the identified neighbourhood molecules. To position
neighbours with respect to the whole exploration tree,
all molecules must be dragged into the VC.
The set of selected molecules can be further limited by

identifying those with specific or similar structures. This
feature is available by clicking the Action button on the
Iteration pane and selecting Filter molecules (see Figure 7).
The user can query using either SMILES [71] or SMARTS
[72] strings. Selected molecules can be bookmarked for
further use by invoking Create molecule bookmarks from
the Action menu.
The final item in the Action menu, Pubchem, enables

the Pubchem database to be searched for an exact match
or for neighbourhood generation. Neighbourhood mole-
cules are depicted as yellow circles. If an exact match is
found in Pubchem for any of the selected molecules,
that molecule changes its shape to a rhombus.

Results and discussion
Molpher is designed to propose new candidates for bio-
logical testing by the controlled exploration of chemical
space. A focused chemical library is represented by a
morphing path and its surroundings. To assess the abil-
ity of Molpher to find such a path, we selected three sets
of start/target molecule pairs from the PubChem database
[68] (all structures can be found in Additional file 3).
These sets differed only in terms of their similarities,
which were evaluated using the PubChem fingerprint
structural key [73] and Tanimoto similarity coefficient.
Each set consisted of 20 start/target pairs. Molecules in
the D1 set shared 70-80% similarity; molecules in the
D2 set 50-60% similarity; and molecules in the D3 set



Figure 7 Filter molecules dialog.
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30-40% similarity. To test Molpher’s speed, we used a
machine with 4 Intel® Xeon® E5450 3GHz processors
running Windows Server 2008 R2. We restricted the ex-
periments to a single CPU thread and limited the explor-
ation process to 1000 iterations. To perform additional
computations and further fine tune Molpher’s parameters,
we also used the Czech National Grid Infrastructure,
Figure 8 Ability of Molpher to find a path in chemical space. Each set
morphing for each start/target pair was run 5 times. The number of iteratio
molecule pair is shown as a bar with height reflecting an average number
was identified before reaching the upper limit of 1000 iterations). Each bar
number of successfully finished runs given in parentheses. If the bar’s heigh
the limit of 1000 iterations. Exploration was run with synthetic feasibility filt
MetaCentrum. To accommodate the non-deterministic
character of molecular morphing, we ran each start/target
exploration five times using the default Morgan fingerprint
and Tanimoto distance settings. The molecular weight of
morphs was limited to 500 Daltons. Each exploration was
run five times with the synthetic feasibility filter turned on
and five times with it turned off.
(D1, D2, D3) contains 20 start/target molecule pairs. Molecular
ns was limited to 1000 for each run. A result for each start/target
of iterations in successfully finished jobs (i.e., jobs in which the path
is annotated by the start/target pair’s numerical ID followed by the
t equals to 1000 neither of five exploration tasks was finished within
er turned off (graphs on the left) and on (graphs on the right).



Table 1 Median number of iterations needed to generate
the path

Dataset Synthesizability off Synthesizability on

D1 6.5 6.6

D2 10.4 10.5

D3 23.8 25.4
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Figure 8 shows Molpher’s ability to find a path for the
D1, D2 and D3 datasets. Each bar represents the average
number of iterations needed to find the path between
the given start/target molecule pair. This average was
computed over runs in which the path was found in less
than 1000 iterations. If during any individual run the
Figure 9 An example of the path between pentamidine (CID 4735) an
dataset D3. The path was generated using Morgan fingerprint, Tanimoto c
show the used morphing operators (see Figure 2). The depiction of the pa
path was not found, the value for that run was set to
1000.
As expected, the number of iterations increased as the

similarity decreased between the start/target structures
(see Table 1). In some cases, when the synthetic accessibility
filter was on, the average number of iterations decreased
(e.g., pair 20 in the D1 dataset, see Figure 8) and the num-
ber of successfully completed runs increased (e.g., pair 7
in D3 dataset, see Figure 8). However, in a few cases
(pair 1 in the D1 dataset or pair 19 in the D2 dataset,
see Figure 8), having the filter on led to a slight deterior-
ation in the exploration process. Thus, we conclude that
restricting the chemical space explored to only those
molecules amenable to chemical synthesis does not
d 2-imino-3-(1H-indol-3-yl)propanoic acid (CID 5599) from
oefficient, and synthetic accessibility filter turned on. The arrows’ labels
th was done by OpenBabel [74].
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significantly influence the ability of Molpher to find the
path (see Table 1).
We found that the runtime of the algorithm is influ-

enced by the following factors: the similarity of the start/
target molecule pair; the settings of parameters (primar-
ily similarity coefficient and molecular fingerprint); and
the hardware on which the calculation is run. Using the
default parameters (Tanimoto coefficient and circular
ECFP-like Morgan fingerprint), the path was generated
in 9.5 minutes on average (averaged over all start/target
pairs from all datasets) using a single processor core.
However, when Molpher was run on multiple cores,
every path was identified within 5 minutes. Such speeds
makes Molpher highly suitable for data intensive tasks.
Figure 9 displays an example of the path for molecu-

lar pair 17 [pentamidine (CID 4735) and 2-imino-3-
(1H-indol-3-yl)propanoic acid (CID 5599)] from D3.
Additional file 4 shows all five paths for this pair. Close
inspection of these paths reveals that the operators
used did not increase the size or complexity of the
morphs. Specifically, many bond contraction (BC) and
remove atom (RA) operations were used, together with
operations that preserved the size of the molecule and
only modified the atom or bond types [mutate atom
(MA) and bond reroute (BR)]. Such a distribution of
operators can be explained by the start molecule being
more complex than the target one. The breadth of the
chemical space explored is a function of the morphing
operators available. Currently, unless decoy molecules
are used, these operators generate local chemical sub-
space. Coarser operators (e.g., add/remove ring) would
generate chemical space containing more chemotypes,
and we are considering expanding the set of morphing
operators in future versions of the software.
Indeed, Molpher is undergoing continuous develop-

ment, with several other new features planned for future
releases. These include an enhanced graphical user inter-
face, an improved Bayesian synthetic feasibility filter, new
visualization methods, the inclusion of various drug-like,
lead-like and unwanted substructure filters [75], and the
possibility of generating morphs containing only user-
defined substructures. To facilitate predictive compound
design in a better way than it is currently possible via di-
rected structural modifications, we also plan to incorpo-
rate biological activities and ADME/Tox properties into
the morphing process. Furthermore, the algorithm will be
modified to implement the multiobjective optimization
approach [76], which will enable the morphing process to
be driven by several properties (high activity, low toxicity,
etc.) simultaneously.

Conclusions
We have described a molecular morphing tool, Molpher,
which, to the best of our knowledge, is the first freely
available implementation of the concept also known as
‘chemical space travel’ [46]. Molecular morphing is a
computational strategy for the systematic exploration of
chemical space. Given a start/target molecule pair, the
algorithm iteratively produces a path covering a struc-
tural continuum between them. This is done by the it-
erative application of simple structural changes, such as
adding or removing an atom or bond. Molpher can be
used via a fully-fledged desktop application or run in
batch mode. Molpher’s modular architecture guarantees
easy extensibility, thereby enabling the simple adoption
of new features in the future. Our results show that Mol-
pher is capable of rapidly finding a path in chemical
space, even for relatively distant molecules. The molecules
forming the resulting path are restricted to subspace laid
out by the start/target molecule pair. Restricting the ex-
plored chemical space to those compounds amenable to
chemical synthesis does not lead to a significant increase
in computational demands.
In our opinion, the compounds encountered on and

around a morphing path could provide valuable starting
points for future in silico or in vitro experiments aimed
at assessing the biological activities of such compounds.
We believe that Molpher is a useful software component
that could be easily incorporated into any existing com-
putational drug design pipeline.
Availability and requirements
Project name: Molpher.
Project home page: http://siret.cz/molpher/.
Operating system(s): MS Windows (client and server),

Linux (server).
Programming language: C++.
Other requirements: MS Windows client and server

are provided both as pre-compiled binaries, as well as
C++ source code. Linux server is provided as C++ source
code only. Precompiled binaries have no other require-
ments. To compile Molpher, several dependencies must
be satisfied. These are listed in readme files in the source
code distribution.
License: GNU General Public License Version 3, 29

June 2007.
Any restrictions to use by non-academics: None.
Additional files

Additional file 1: A detailed description of the molecular morphing
algorithm.

Additional file 2: A list of molecular fingerprints and molecular
similarity coefficients available in Molpher.

Additional file 3: D1, D2, and D3 datasets. Each line consists of
SMILES representation of the structure and its Pubchem ID. Each odd line
contains the start structure, its corresponding target structure is given in
the next line.

http://siret.cz/molpher/
http://www.biomedcentral.com/content/supplementary/1758-2946-6-7-S1.pdf
http://www.biomedcentral.com/content/supplementary/1758-2946-6-7-S2.docx
http://www.biomedcentral.com/content/supplementary/1758-2946-6-7-S3.zip
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