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Abstract

The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a
“fragrance-like” (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S)≤ 3, Hydrogen Bond Donor ≤ 1)
and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules),
ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13
atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a
set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and
interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications
freely available at www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule
families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance
chemical space.
Background
Fragrance molecules are relatively small, lipophilic and
volatile organic compounds that trigger the sense of smell
by interacting with olfactory receptor neurons in the upper
part of the nose which display a diverse array of olfactory
G-protein coupled receptors [1-7]. These molecules are es-
sential ingredient in foods, perfumes, soaps, shampoos or
lotions, and can be classified according to their perceived
smell into tens to hundreds of families [8]. Fragrance mole-
cules form an important class of compounds, [9,10] and a
sizable number of them have recently been collected in the
public databases SuperScent [11] and Flavornet, [12] which
list almost two thousand documented fragrance molecules
and their properties.
However, global chemical space analyses of fragrance mol-

ecules have only been very limited so far [13,14]. Chemical
space is understood as the ensemble of all organic molecules
in the context of drug discovery, [15-27] and comprises mil-
lions of known molecules collected in public databases such
as PubChem, [28] ChemSpider, [29] ZINC, [30]or ChEMBL,
[31] and an even much larger number of theoretically pos-
sible molecules such as the Chemical Universe Databases
GDB-11, [32,33] GDB-13 [34] and GDB-17, [35] listing all
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organic molecules possible up to 11, 13, and 17 atoms obey-
ing simple rules for chemical stability and synthetic feasibil-
ity [30-33]. Herein we used the concept of chemical space to
analyse and visualize fragrance molecules. Starting from the
public databases Superscent and Flavornet, a “fragrance-like”
property range was defined, and used to expand the
fragrance chemical space by extracting fragrance-like
molecules from the public databases ChEMBL, Pub-
Chem, ZINC and GDB-13 to form the corresponding
fragrance-like subsets ChEMBL.FL, PubChem.FL, ZINC.
FL and GDB-13.FL. The resulting fragrance-like chemical
space was then analyzed using Molecular Quantum Num-
bers (MQN), a set of 42 simple integer value descriptors
that count atoms, bonds, polar groups and topological fea-
tures such as cycles. MQN provide a simple classification
system for large databases with good performance in pro-
spective virtual screening [36,37] as well as for database
visualization [38,39]. The MQN-space approach was used
to classify and represent the fragrance-like chemical space
in form of an interactive application, the FL-mapplet,
which is adapted from a previously reported MQN-
mapplet application for the focused FL chemical space
(freely available from www.gdb.unibe.ch) [40,41]. FL-
molecules stand out from this visualization as being
relatively simple due to the low number of hetero-
atoms and functional groups, and therefore appealing
from the point of view of organic synthesis.
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Fragrance chemistry is constantly searching for new
fragrance molecules. A series of 15 different subsets of
fragrance molecules were extracted from the SuperScent
database and used to test ligand-based virtual screening
(LBVS). MQN-similarity sorting enabled the efficient re-
covery of these known fragrance molecule families from
the various FL subsets with equal or better performance
that binary substructure fingerprints (Sfp) or extended
connectivity fingerprints (ECfp4), illustrating the rele-
vance of the MQN-classification with regards to fragrance
molecule properties. The search for MQN-nearest neigh-
bours is enabled by the FL-browser, which might serve as
as a guide to identify new fragrance molecules.

Results and discussion
Property profiles
Molecules from the public databases SuperScent [11]
and Flavornet [12] were assembled to form a collection
of 1760 different fragrance molecules, here named Fra-
granceDB. For comparison the databases BitterDB [42]
listing 606 molecules with documented bitter taste and
SuperSweet [43] listing 342 molecules with proven or
likely sweet taste were combined to 806 taste molecules
here named TasteDB, a diverse set of molecules whose
diversity can be explained by the different types of re-
ceptors involved in recognition of sweet and bitter taste
[44]. The molecular properties of FragranceDB and Tas-
teDB was then analyzed in comparison to PubChem, [26]
ChEMBL, [29] ZINC, [28] and GDB-13 [31] as represen-
tative databases of the broader chemical space (Table 1).
Table 1 Databases of molecules used in this work

Database Description

SuperScent Database of scents from literature

Flavornet Volatile compounds from literature based on GC-MS

SuperSweet Database of carbohydrates and artificial sweeteners

BitterDB Database of bitter Cpds from literature and Merck index

PubChem NIH repository of molecules

ZINC Commercial small molecules

ChEMBL Bioactive drug-like small molecules annotated with experime
data

GDB-13 possible small molecules up to 13 atoms of C, N, O, S, Cl

FragranceDB SuperScent + Flavornet

TasteDB SuperSweet + BitterDB

FragranceDB.FL Fragrance-like subset of FragranceDB

ChEMBL.FL Fragrance-like subset of ChEMBL

PubChem.FL Fragrance-like subset of PubChem

ZINC.FL Fragrance-like subset of ZINC

GDB-13.FL Fragrance-like subset of GDB-13
The heavy-atom count (HAC) profile showed that Fra-
granceDB comprised mostly fragment-sized [45] organic
molecules with an upper boundary at approximately 21
atoms (Figure 1A). Most of the FragranceDB molecules
were in the range of 5–17 heavy atoms. In contrast the
molecules in PubChem, ChEMBL and ZINC peaked at
the size of 20–30 heavy atoms, and TasteDB covered a
broad size range. FragranceDB also stood out by a very
low number of heteroatoms peaking at just two hetero-
atoms, mostly oxygens in volatiles aldehydes and ke-
tones, alcohols, carboxylic esters and acids (Figure 1B).
PubChem, ChEMBL and ZINC molecules contained more
heteroatoms than FragranceDB molecules due to their lar-
ger size and high density of nitrogen-rich functional
groups which are almost entirely absent in fragrance
molecules. GDB-13 molecules also displayed more het-
eroatoms than FragranceDB molecules despite of their
smaller size due to a combinatorial enumeration favor-
ing highly functionalized molecules. The heteroatom
profile of TasteDB was much broader, in line with the
broader range of molecular weights, mostly as a conse-
quence of the abundance of sweet tasting oligosaccha-
rides including the steviol glycosides with a high density
of hydroxyl groups [46].
In terms of polarity as estimated by the calculated octa-

nol/water partition coefficient clogP, FragranceDB over-
lapped nicely with PubChem, ChEMBL and ZINC by
covering the range 0 < clogP < 5, which is a polarity range
suitable for rapid diffusion in biological media (Figure 1C).
This probably reflects the necessity of fragrance molecules
Size Web addresses

1,591 http://bioinf-applied.charite.de/superscent/

738 http://flavornet.org

342 http://bioinf-applied.charite.de/sweet/index.php?
site=home

606 http://bitterdb.agri.huji.ac.il/bitterdb/
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Figure 1 Property histograms of various databases (A-D) and their fragrance-like subsets (E-H). The frequency peak in FragranceDB at
9-11 heavy atoms corresponds to a diverse constellation comprising aliphatic linear and branched alkenes, aldehydes, alcohols, ketones and esters,
various simple benzene, phenol and benzaldehyde analogs, furanones, monoterpenes. The frequency peaks in TasteDB at 10-12 atoms corresponds to
various hexoses and their reduced hexitols, monoterpenes, coumarins, anisols, and amino acids.
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to diffuse from the gas phase to the olfactory neurons to
reach their receptors, which requires properties similar to
those necessary for drugs to reach their site of action. This
property was also shared by the majority of TasteDB,
however in this case a significant fraction of the data-
base extended into negative clogP values, comprising
mono-saccharides, disaccharides and related polyols,
steviol glycosides, and amino acids and peptides such
as aspartame. GDB-13, which reflects the combinator-
ial enumeration of the entire chemical space, peaked at
clogP = 0 due to the large fraction of cationic poly-
amines in the database which extend into negative clogP
values. Due to its size GDB-13 however still contained an
extremely large number of molecules in the polarity range
of fragrance molecules compared to the other databases.
FragranceDB further stood out as a collection of acyclic

and structurally flexible molecules, with an abundance of
acyclic aliphatic alcohols, aldehydes, acids and esters found
for example in butter and fruit aroma (Figure 1D). Mono-
cyclic molecules were also abundant, in particular cyclic
terpenes such as limonene or menthol and aromatics such
as cinnamaldehyde. By comparison PubChem, ChEMBL
and ZINC were more abundant in polycyclic molecules
due to the larger size of their molecules and the tendency
to use rigid molecules for medicinal chemistry. On the
other hand the combinatorial enumeration in GDB-13,
which corresponds to the size-range of fragrance mole-
cules, featured bicyclic molecules as the most frequent top-
ology. TasteDB contained mostly monocyclic molecules,
many of which were mono-saccharides, but also extended
into polycyclic molecules due to the presence of oligosac-
charides and steroids in the collection.

Fragrance-likeness and fragrance-like subsets
The property profiles above indicated that fragrance
molecules formed a family of relatively small molecules
with a low number of heteroatoms and few cycles, in
contrast to taste molecules in TasteDB and drug-like
molecules which covered a much broader range of struc-
tural properties. A simple “fragrance-like” (FL) property
range was defined as molecules with HAC ≤ 21 contain-
ing only carbon, hydrogen, oxygen or sulfur atoms, with
a maximum of three heteroatoms (S + O ≤ 3) and max-
imum one hydrogen-bond donor atom (HBD ≤ 1). These
FL criteria retained 84% of the molecules listed in the
combined database (FragranceDB) and were used to define
the fragrance like subsets PubChem.FL (1.2% of PubChem),
ChEMBL.FL (0.68% of ChEMBL), ZINC.FL (0.28% of
ZINC) and GDB-13.FL (6.1% of GDB-13) (Table 1). Note
that excluding nitrogen containing molecules from FL cri-
teria eliminated important fragrance molecules such as
pyrazines, however the extremely large number of nitro-
gen containing molecules in the reference databases
rendered any nitrogen-containing subsets too strongly
enriched in this molecule class which forms only a
minor fraction of fragrance molecules.
The property profiles of the FL-subsets showed that

FL criteria brought the subsets within the range of Fra-
granceDB. In the HAC profile however, PubChem.FL,
ChEMBL.FL and ZINC.FL peaked in the range 15–21
atoms following the abundance of larger molecules in
the parent databases, which is substantially higher than
the abundance peak of FragranceDB. GDB-13.FL had a
sharp abundance peak at HAC = 13 like its parent data-
base GDB-13 (Figure 1E). Most FL molecules from these
databases contained three heteroatoms (S +O) while Fra-
granceDB peaked at only two heteroatoms (Figure 1F).
Nevertheless FL molecules from PubChem.FL, ChEMBL.
FL and ZINC.FL had a somewhat higher clogP indicating
higher lipophilicity reflecting their somewhat larger size at
similar number of heteroatoms (Figure 1G). GDB-13.FL
had a lower clogP value distribution due to the combina-
torial enumeration of heteroatom substitutions giving a
larger number of possibilities at high numbers of hetero-
atoms. In contrast to FragranceDB which contains mostly
acyclic molecules, the FL subsets were most abundant in
monocyclic and bicyclic molecules, again reflecting either
the larger molecular size in PubChem.FL, ChEMBL.FL
and ZINC.FL, or the larger diversity of cyclic struc-
tures formed by combinatorial enumeration in GDB-
13.FL (Figure 1H).

Interactive visualization of the fragrance chemical space
Visualization and understanding of implicit features of
high-dimensional property spaces often require use of
dimensionality reduction techniques, which project the
data on a 2D plane, while keeping most of geometric in-
formation from the original space. One such technique is
a Principal Component Analysis (PCA), which we have
used in previous studies for visualization of large data-
bases [40]. Here, FragranceDB and the corresponding FL
subsets of larger databases defined above were analyzed by
MQN for visualisation. In the PCA of FragranceDB,
PC1 covered 67.97% of the variance with positive load-
ings in all descriptors, corresponding to molecular size
(Figure 2A). PC2 covered 15.54% of the variance with
negative loadings for counts of acyclic atoms and bonds
and positive loadings for descriptors of cyclic atoms and
bonds. PC3 accounted for a further 9.62% of variance
representing polarity descriptors such as H-bond donor
atoms. The loadings were similar for the other FL subsets.
To provide a uniform visualization all FL subsets were

represented in the (PC1, PC2)-plane corresponding to
the PCA of FragranceDB. As illustrated for GDB-13.FL
(Figure 2B) and ZINC.FL (Figure 2C), the layout was
similar to that observed previously with MQN datasets
of a variety of small molecule databases [40]. The MQN-
maps appeared as a left-point triangle containing parallel



A. PC loadings

Figure 2 Color-coded MQN-maps of subsets GDB-13-FL and ZINC.FL. A. Loadings of PC1, PC2 and PC3 for PCA of FragranceDB. The 42 MQNs are
defined as follows: atom counts: c, f, cl, br, i, s, p = elements, an/cn = acyclic/cyclic nitrogens, ao/co = acyclic/cyclic oxygens, hac = heavy atom count,
bond counts: asb/adb/atb = acyclic single/double/triple bonds, csb/cdb/ctb = cyclic single/double/triple bonds, rbc = rotatable bond count, polarity counts:
hba/hbd/hbam/hbdm=H-bond acceptor/donor atoms/sites, pos/neg=positive/negative charges at pH 7.4, topology counts: asv/adv/atv/aqv= acyclic
monovalent/divalent/trivalent/tetravalent nodes, cdv/ctv/cqv= cyclic divalent/trivalent/tetravalent nodes, ri= i-membered rings (i=3-9), rg10 = ≥10-membered
rings, afr/bfr = atoms/bonds shared by fused rings. ri, rg10 and afr/bfr are counted in the smallest set of smallest rings.B. Color-coded maps for GDB-13.
FL. Note that the carbon count decreases at right because heteroatom rich compounds take over. C. Color-coded maps for ZINC.FL. Color-coding
represents the increasing value of the indicated property in the scale blue-cyan-green-yellow-orange-red-magenta. Interactive color-coded MQN-maps
for all FL subsets can be accessed with the FL-mapplet at gdb.unibe.ch.
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diagonal stripes corresponding to groups of molecules
with an increasing number of cycles. In these maps small
molecules appeared at left and large molecules at right,
acyclic molecules at bottom and polycyclic molecules at
the top. Due to the heteroatom restrictions imposed in
the FL criteria, the depth of the FL subsets in the PC3
dimension spanning polarity was rather limited.
An interactive FL-mapplet was then generated by modi-

fying the data in the previously reported MQN-mapplet
application [40]. This Java application allows to directly
view the structural formulae of compounds in each pixel of
color-coded MQN-maps, and to subsequently access the
compound information at the source database (e.g. Drug-
Bank, ChEMBL, ZINC, PubChem). The FL-mapplet was
also linked to the MQN-browser for fragrance molecules
to enable MQN-nearest neighbour searches (see below).
Similarly to the MQN-mapplet, the FL-mapplet can be
downloaded as a Java application from gdb.unibe.ch, and
contains a link to the same help page providing detailed ex-
planations on how to use the application.
The main advantage of the interactive FL-mapplet is

that one can rapidly inspect the structural formulae of
the molecules in the various FL-subsets prearranged in
the logical layout of the MQN based PCA maps. One of
the striking aspects seen by inspecting the FL subsets is
that FL-molecules are relatively simple due to the low
number of heteroatoms and functional groups. FL com-
pounds are clearly appealing from the point of view of
organic synthesis because of their low number of polar
functional groups which draws attention to the carbon
skeletons classically at the center of synthesis planning.
Concerning the FL-subsets presented here, inspecting
GDB-13.FL where almost all molecules are novel might
prove particularly inspiring for designing new yet tractable
synthetic targets in the fragrance chemical space [47,48].

Ligand-based virtual screening in the FL chemical space
Although fragrance molecules interact simultaneously
with hundreds of different olfactory receptors, structure-
activity relationships (SAR) in these compounds are not
fundamentally different from those of drug-receptor in-
teractions [13,14]. Certain compound classes are well
correlated with fragrance types, e.g. short chain aliphatic
esters with fruity flavors. On the other hand completely
different compound classes may elicit the same smell,
for example the very different types of musks. Further-
more subtle differences such as chirality may erase the
fragrant property or completely switch the fragrance
type, e.g. the classical case of (−)- and (+)-carvone dis-
playing spearmint respectively caraway flavor [49]. Des-
pite of many such cases of extreme sensitivity of activity
to structural alterations representing activity cliffs in the
SAR landscape, [50] we asked the question whether
ligand-based virtual screening (LBVS) in the FL subsets,
as is used to identify drug analogs, might also by useful
to identify fragrance molecule analogs. To the best of
our knowledge a systematic study of LBVS in the fra-
grance chemical space is unprecedented [51,52].
To test this hypothesis, fragrance molecule families

were retrieved from the Superscent tree with the condi-
tion that they contained at least 10 molecules after re-
moval of molecules listed in more than five different
families and those not following FL criteria, which elimi-
nated promiscuous compounds such as dimethyl disul-
phide, cyclopentanethiol or 3-ethyl pyridine, and nitrogen
containing compounds such as ethyl antranilate or pyr-
azine. This procedure gave 15 sets of fragrance molecules
containing between 10 and 122 compounds each, consist-
ing mostly of alcohols, aldehydes and esters (Table 2 and
Additional files 1, 2 and 3). LBVS by MQN-similarity was
performed for FragranceDB and the various FL subsets
and compared with recovery using a Daylight-type 1024
bit substructure fingerprint (Sfp), [53] the extended con-
nectivity fingerprint ECfp4, [54] and the molecular weight
(MW). The city-block distance (CBD) was used for all
similarity calculations since CBD performs as well as the
Tanimoto similarity but is much easier to compute, en-
ables rapid browsing (see below), and directly relates to
the concept of chemical space [39,41]. For each finger-
print, the compound closest to all other compounds in
the family was chosen as reference compound, and the re-
ceiver operator characteristic (ROC) curve was calculated.
MQN, Sfp, ECfp4 and MW gave comparable perform-

ance in terms of the area under the curve (AUC), which
was only slightly above the random selection value
(AUC = 50%) for the very small FragranceDB collection
but generally above 80% in the larger databases, indicat-
ing in particular that MW was a defining parameter in
the selected fragrance molecule series (Figure 3A). Ana-
lysis of the recovery of actives as a function of the per-
centage of database screened however showed that
MQN, Sfp and ECfp4 were much better at recovering
the fragrance molecule series compared to MW in the
early phase of recovery, which is most decisive in an
LBVS application (Table 2, Figure 3B). This was the case
at 10% screening of FragranceDB (corresponding to 148
nearest neighbours of each reference compound), 1%
screening of PubChem.FL (5669 nearest neighbours),
ChEMBL.FL (104 nearest neighbours) or ZINC.FL (377
nearest neighbours), and 0.1% screening of GDB-13.FL
(595,000 nearest neighbours). MQN gave the highest
recovery from FragranceDB in 12 of the 15 series, with
an average of 35% recovery at 10% database screening.
MQN also surpassed the other fingerprints in 11 series
for recovery from ChEMBL.FL, with an average of 29%
recovery at 1% database screening, and performed
comparably well to ECfp4 and Sfp in PubChem.FL and
ZINC.FL with an average of 26% and 18% recovery at



Table 2 Recovery of fragrance molecule families from various databases

Fragrance Cpds nr. HAC av. FragranceDB
recov. at 10%

PubChem.FL
recov. at 1%

ChEMBL.FL
recov. at 1%

ZINC.FL
recov. at 1%

GDB-13.FL
recov. at 0.1%

Vegetable 10 7.20 45/0/22/45 56/0/44/11 45/0/11/0 33/0/22/0 78/22/67/56

Fishy 11 8.64 40/20/40/0 40/30/40/0 50/20/20/0 10/20/40/0 67/44/78/33

Chemical 23 8.87 14/14/9/9 14/18/9/0 5/5/9/0 5/9/9/0 37/37/63/21

Ethereal 14 8.93 46/46/23/8 36/62/23/8 46/54/15/8 23/46/15/8 55/82/55/45

Medicinal 12 9.58 55/64/55/9 55/64/55/9 55/46/37/9 55/55/36/9 67/89/89/56

Nutty 28 10.14 37/30/4/15 33/37/4/4 22/19/9/4 19/19/4/4 42/54/13/21

Fatty 42 10.36 17/22/15/12 10/27/20/7 17/17/5/7 7/22/5/2 33/45/48/3

Smoky 12 11.42 18/18/36/9 18/18/27/8 9/9/18/0 9/9/18/0 -

Fruity 122 11.56 23/23/5/16 17/33/8/2 19/22/1/8 11/21/2/2 35/49/36/0

Minty 13 11.92 58/8/50/33 42/0/42/8 42/0/34/8 42/0/42/8 44/0/22/22

Citrus 35 12.06 29/15/12/18 9/18/18/0 36/15/12/0 9/15/18/0 9/30/43/13

Balsamic 64 12.25 30/6/5/13 19/6/8/2 14/2/2/2 5/5/0/2 39/10/29/0

Floral 69 12.81 22/0/16/21 7/0/12/6 9/0/6/6 6/0/6/6 18/0/43/7

Herbaceous 13 12.92 33/17/8/17 8/0/0/8 8/0/0/8 8/0/0/8 -

Waxy 11 14.18 60/40/40/30 30/40/90/10 50/40/40/10 30/40/70/10 -

Average 32 10.86 35/22/23/17 26/24/27/5 29/17/14/5 18/17/19/4 44/39/49/23

No. of best scores per series 12/5/2/1 5/6/6/1 11/3/2/1 7/7/7/2 3/4/6/0

For each database the % actives found is given for the indicated % database screened by sorting with MQN/Sfp/ECfp4/MW similarity to the most average
molecule in the set. The highest value in each entry is highlighted in bold. Fragrance families were collected from the Superscent database website. Compounds
appearing in more than 5 different families and those not following FL criteria were removed. Data was not computed for GDB-13.FL if the families were smaller
than 10 compounds after removal of HAC > 13 compounds. The city-block distance was used as similarity measure (results were comparable using Tanimoto).
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1% screening respectively. In the case of GDB-13.FL
ECfp4 (average 49% recovery at 0.1% screening) was
slightly better than MQN (average 44% recovery at 0.1%
screening), while Sfp was somewhat less efficient (average
39% recovery at 0.1% screening).
The performance of LBVS for fragrance molecule ana-

logs was further illustrated by displaying the average re-
covery of actives and of the various databases from the
corresponding references as a function of the city-block
distance (Figure 3C-F). MQN stood out from the other
fingerprints by its ability to differentiate fragrance mol-
ecule analogs at low CBD over the other databases includ-
ing FragranceDB. The sigmoidal shape of the recovery
curve for MQN, Sfp and ECfp4, which was absent in the
case of MW, illustrates why these fingerprints provide
high enrichment factors of actives at low percentage
coverage of the various databases.
Overall MQN performed as well as and sometimes

better than ECfp4 and Sfp in LBVS for fragrance mole-
cules despite the fact that Sfp and ECfp4 contain much
more detailed representations of the molecular structure
than MQN, suggesting that the MQN-based analysis
and visualization presented above were relevant in terms
of fragrance molecule properties. This observation con-
firmed our previous reports that MQN-similarity pre-
forms quite well in LBVS of drug analogs such as the
recovery of actives from decoys in the directory of useful
decoys (DUD), [39,55] and the recovery of shape and
pharmacophore analogs from GDB-13 [36,56].

The FL-browser
Nearest neighbour searching by city-block distance in
MQN-space can be carried out extremely fast even in
extremely large databases when these are pre-organized
by the sum of all MQN-values as hash-function [57]. A
series of web-based MQN-browser applications are freely
accessible at www.gdb.unibe.ch to perform such searches
in various public databases by MQN-similarity [58]. To
complement these applications the various FL subsets
were formatted for CBDMQN searches in a common web-
based tool. In the resulting FL-browser, one can search in
one or several of the various FL subsets simultaneously.
As an example of MQN-similarity searching, we searched
the MQN-space of ZINC.FL as a source of commercially
available analogs, and of GDB-13.FL as a source of new
compounds. The search was also carried out in the parent
databases ZINC and GDB-13 using the corresponding
MQN-browsers. Nearest neighbours searches were per-
formed for 13 different classical fragrance molecules
falling in the size-range of GDB-13, which are mostly
monoterpenes (Table 3 and Additional file 4). The dis-
tance boundary CBDMQN ≤ 12 was used because it was
found to narrow the search to useful bioactive analogs in
previous virtual screening studies [57]. A further limitation

http://www.gdb.unibe.ch/
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Figure 3 LBVS of fragrance molecule analogs (15 sets from Table 2). A. Average AUC ± σ for recovery of the 15 fragrance molecule sets
from the corresponding reference using MQN, Sfp, ECfp4 or MW. B. Average percentage of actives recovered ± σ at the indicated database
coverage. C-F. Average cumulative recovery of actives and average coverage of each database as a function city-block distance from the
reference compound of each active set, in MQN-space (CBDMQN, C), Sfp-space (CBDSfp, D), ECfp4-space (CBDECfp4, E), and MW-space (CBDMW, F).
ROC-curves for each fragrance molecule family are available in the Additional file 1.
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to isomers within the preset CBDMQN distance boundary
was also considered because isomerism further constrains
the functional group and molecular size similarity, which
are very important parameters in fragrance molecule prop-
erties. The MQN-browser for fragrance molecules offers
options to search for isomers as well as to keep the number
of H-bond donor atoms and H-bond acceptor atoms con-
stant, which helps narrowing the search.
The MQN-neighbours of the peppermint fragrance com-
ponent menthone are shown as an example (Figure 4).
From the 424 commercially available compounds in ZINC.
FL within CBDMQN ≤ 12, we used the browser option to
lock the number of H-bond donor atoms (0) and H-bond
acceptor atoms (1) to restrict this selection further to 262
compounds, 27 of which were isomers of menthone. These
analogs contained menthone itself (hit no. 1), a regioisomer



Table 3 Number of fragrance molecule analogs found by nearest-neighbour searches in the MQN-space of ZINC,
ZINC.FL, GDB-13 and GDB-13.FL within the distance boundary CBDMQN ≤ 12

Fragrance molecule Formula ZINC ZINC.FL Isomers GDB-13 GDB-13.FL Isomers

Furaneol C6H8O3 200 66 3 14412 2108 41

Isoamyl acetate C7H14O2 3025 1332 38 164151 64056 540

Caprylic acid C8H16O2 1437 735 14 427990 130781 28

Vanillin C8H8O3 4771 614 18 397263 42394 899

Cinnamaldehyde C9H8O 1403 446 13 26249 9160 223

Limonene C10H16 773 323 18 112817 68672 2074

α-Pinene C10H16 64 54 9 65614 158131 1549

Camphor C10H16O 200 116 11 243162 158131 8397

Menthone C10H18O 1147 424 43 605667 269391 5566

Rose oxide C10H18O 889 402 44 624293 89209 7774

Menthol C10H20O 734 282 26 383641 189579 1460

Citronellol C10H20O 1642 621 38 2927465 910666 4674

Lauraldehyde C12H24O 260 169 4 93700 50993 4748
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(hit no. 2), but also various other cyclohexanones with the
same number of acyclic carbon atom substituents (hits no.
3 to 9). Cycloheptanones (hit no. 13 – 15) and cyclopenta-
nones (hit no. 26–27) were also proposed by the MQN-
similarity search. When a similar search was carried out
with GDB-13.FL, 4589 of the 5556 isomers had preserved
H-bond donor and H-bond acceptor atom counts. The
structural types encountered corresponded to those seen
in ZINC but with exhaustive regiochemical enumeration
Figure 4 MQN-nearest neighbour isomers of menthone (hit no. 1) in
atoms (0) and H-bond acceptor atoms (1).
and the addition of other scaffolds such as cyclobutanones
and various cyclopropane containing scaffolds, most of
which are not available in public domain as having physical
samples.

Conclusion
The general properties of fragrance molecules, which are
relatively small organic compounds with few polar func-
tional group such as to be volatile, were used to define a
the ZINC database preserving the same number of H-bond donor
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“fragrance-like” subset of the chemical space which was
extracted from the public databases PubChem, ChEMBL,
ZINC and GDB-13. The FL chemical space contains
fragment-size, relatively non-polar molecules, and is
clearly separate from the well-known drug-like chemical
space [59]. The representation of the FL chemical space
using interactive color-coded MQN- maps illustrates the
extent of the structural diversity at hand. The correspond-
ing FL-mapplet for interactive visualization (Java applica-
tion to download) and FL-browser for fast MQN-similarity
searching of the various FL subsets are freely accessible at
gdb.unibe.ch. Inspecting fragrance molecules through these
interactive tools shows that FL-molecules appear as
particularly appealing from the point of view of or-
ganic synthesis due to the low number of heteroatoms
and functional groups.
The fragrance chemical space, although relatively nar-

rowly defined, is currently only relatively sparsely populated
compared to its potential, implying that many millions of
additional fragrance molecules remain to be discovered.
Here we showed the MQN-similarity searching efficiently
recovers known fragrance molecule families collected from
SuperScent from the various FL subsets, with equal or bet-
ter performance than substructure fingerprints Sfp of the
extended connectivity fingerprint ECfp4. The ability to per-
form efficient LBVS by MQN-proximity searching as en-
abled by the FL-browser suggests that this resource might
facilitate the identification of new fragrance molecules by
rapidly pointing to compound series to be evaluated.

Methods
FragranceDB and TasteDB
Structure representations from SuperScent [11] were re-
trieved from their chemical classes’ folder. The list was
inspected visually and in some few cases corrected.
Names from Flavornet [12] were retrieved and converted
by Molconvert from ChemAxon Pvt. Ltd (http://www.
chemaxon.com/). Furthermore, in some cases Msketch
(from ChemAxon) was used. Both datasets were com-
bined and checked for duplicates to a final list of 1760
fragrance molecule structures. For TasteDB structure
representations were retrieved from the browsing option
of BitterDB [42] and from the Sweet-tree of SuperSweet
[43]. Both datasets were combined and checked for du-
plicates to a final list of 806 taste structures.

FL-mapplet and MQN-browser for fragrance molecules
The FL-mapplet has been adapted from our previously
published MQN-mapplet [40] by mapping the various
FL-subsets (Table 1) on the (PC1,PC2)-plane of the PCA
calculated for FragranceDB (see Figure 2), creating the
corresponding color-coded maps, and importing the
data into the MQN-mapplet. For the PCA maps and as-
sembly of FL-mapplet, PC1-PC2 plane was represented
by 1000x1000 grid points (pixels), followed by the as-
signment of the each of the database molecule on to the
grid. Each of the point (pixel) was colour coded accord-
ing to the average and standard deviation of property
(for e.g. heavy atom count) of molecules residing in that
pixel. HSL colour space was used for the colour coding.
Base colour (H) changes from blue-cyan-green-yellow-
red-magenta with increasing average value of property
in the pixel, while base colour fades towards the grey
with increasing standard deviation. The average mol-
ecule for each of the pixel was the determined as follows:
a) 42 average MQN values were determined considering
MQNs of all of the molecules in given pixel b) City block
distance was calculated between 42 MQN values of each
of the molecule in the pixel and the 42 average MQN
values c) molecule with lowest city block distance to aver-
age MQN values was considered as “average molecule” for
the pixel.
FL-mapplet is a Java application. Details of the applica-

tion usage are available on the help page accessible from
within the application.
The MQN-browser for fragrance molecules is a web-

based application which is accessible from within the
FL-mapplet or directly at gdb.unibe.ch. This browser
was programmed as previously described for the MQN-
browser for other databases to allow nearest neighbour
searching of any query molecules within the FL-subsets
using CBDMQN as similarity measure [57]. Searching in
database space is enabled by use of bit mask values to
store the database information of the structures. Bits were
assigned to each database. During similarity searching,
choice of databases made by user defined as “wanted bit
mask” using Bitwise OR operation.

Ligand-based virtual screening
Enrichment studies for the recovery of various fragrance
molecule classes (actives) from the fragrance like data-
bases (decoys) ChEMBL.FL, FragranceDB, PubChem.FL,
ZINC.FL and GDB-13.FL were carried out using a java
program written in-house using the JChem chemistry li-
brary from ChemAxon Ltd. as starting point. Fragrance
classes were collected from the SuperScent database
(http://bioinf-applied.charite.de/superscent/). Later, mol-
ecules within each of the fragrance class were filtered for
duplicates and FL criteria. After processing, 15 fragrance
classes containing at least 10 molecules in each, were
retain for further study. In case of enrichment against
GDB-13.FL, fragrance classes were additionally filtered
to contain molecules with maximum of 13 heavy atoms.
This results in the 12 fragrance classes with at least of 10
molecules in each of them.
Following the ionization of molecules at pH 7.4, Mo-

lecular Quantum Numbers (MQN, 42 dimensions), Day-
light type binary substructure fingerprint (Sfp, 1024 bits,

http://www.chemaxon.com/
http://www.chemaxon.com/
http://bioinf-applied.charite.de/superscent/
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path length 7), circular Extended Connectivity finger-
print with bond diameter of 4 (ECfp4, 1024 bits) and
Molecular weight (MW) were calculated for fragrance
molecule classes and database molecules. Computation
of molecular properties and fingerprints were enabled
by JChem 5.4.1 Chemistry library from ChemAxon Pvt.
Ltd. City block distance (CBD) was used as scoring func-
tion for virtual screening. Within each of the fingerprint
space, enrichment studies were carried as follows: a) for
each of the 15 fragrance molecule classes (defined above,
12 in case of GDB-13.FL) reference/query molecule was
defined as compound which is most similar to all the
other compounds (molecule with lowest CBD to all the
other compounds) in the given fragrance molecule class.
b) Each of the 15 fragrance molecule classes (12 in case of
GDB-13.FL) was separately diluted in five FL like data-
bases ((4*15) + 12 = 72 databases) c) diluted databases
were screened against respective query molecule using city
block distance as scoring function d) each of the screened
database was sorted with increasing CBD to the query
molecule, which was followed by the computation of ROC
(receiver operator characteristic) curve, EF at 0.1%, 1%
and 10%. Data in Figure 3A was obtained by averaging
AUC values for 15 fragrance classes (12 in case of GDB-
13.FL) within each of the fingerprint space.

Additional files

Additional file 1: SMILES of fragrance molecules in each of the
family in Table 2.
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Additional file 3: ROC curves for the LBVS examples in Table 2.

Additional file 4: SMILES for the MQN-browser search examples in
Table 3.
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