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Abstract

Background: ‘Phylogenetic trees’ are commonly used for the analysis of chemogenomics datasets and to relate
protein targets to each other, based on the (shared) bioactivities of their ligands. However, no real assessment as to
the suitability of this representation has been performed yet in this area. We aimed to address this shortcoming in
the current work, as exemplified by a kinase data set, given the importance of kinases in many diseases as well as
the availability of large-scale datasets for analysis. In this work, we analyzed a dataset comprising 157 compounds,
which have been tested at concentrations of 1 μM and 10 μM against a panel of 225 human protein kinases in
full-matrix experiments, aiming to explain kinase promiscuity and selectivity against inhibitors. Compounds were
described by chemical features, which were used to represent kinases (i.e. each kinase had an active set of features
and an inactive set).

Results: Using this representation, a bioactivity-based classification was made of the kinome, which partially
resembles previous sequence-based classifications, where particularly kinases from the TK, CDK, CLK and AGC
branches cluster together. However, we were also able to show that in approximately 57% of cases, on average
6 kinase inhibitors exhibit activity against kinases which are located at a large distance in the sequence-based
classification (at a relative distance of 0.6 – 0.8 on a scale from 0 to 1), but are correctly located closer to each
other in our bioactivity-based tree (distance 0 – 0.4). Despite this improvement on sequence-based classification,
also the bioactivity-based classification needed further attention: for approximately 80% of all analyzed kinases,
kinases classified as neighbors according to the bioactivity-based classification also show high SAR similarity
(i.e. a high fraction of shared active compounds and therefore, interaction with similar inhibitors). However, in
the remaining ~20% of cases a clear relationship between kinase bioactivity profile similarity and shared active
compounds could not be established, which is in agreement with previously published atypical SAR
(such as for LCK, FGFR1, AKT2, DAPK1, TGFR1, MK12 and AKT1).
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Conclusions: In this work we were hence able to show that (1) targets (here kinases) with few shared
activities are difficult to establish neighborhood relationships for, and (2) phylogenetic tree representations
make implicit assumptions (i.e. that neighboring kinases exhibit similar interaction profiles with inhibitors) that
are not always suitable for analyses of bioactivity space. While both points have been implicitly alluded to
before, this is to the information of the authors the first study that explores both points on a comprehensive
basis. Excluding kinases with few shared activities improved the situation greatly (the percentage of kinases
for which no neighborhood relationship could be established dropped from 20% to only 4%). We can
conclude that all of the above findings need to be taken into account when performing chemogenomics
analyses, also for other target classes.

Keywords: Kinase inhibitor, Selectivity, Phylogenetics, Chemogenomics, Polypharmacology
Background
Protein kinases are an important class of proteins which are
involved in various essential cellular functions, including
signaling, growth, development and homeostasis [1-3]. They
exert their regulatory effects by phosphorylating serine,
threonine or tyrosine residues on substrates which in turn
regulates protein activity, localization and function. This is
achieved by inducing conformational changes in the
substrate protein, leading to events such as the activation
of signaling cascades [1]. Counteracting kinases are
phosphatases, which generally lead to deactivation of
a phosphorylated protein [4], and for normal development
of a cell (and hence a healthy state of the organism) fine-
tuning of phosphorylation and dephosphorylation processes
is of crucial importance [4]. The human kinome contains
an estimated 518 protein kinases (Figure 1), as determined
by sequence analysis of the human genome via a Hidden
Markov Model (HMM) [5,6].
Deregulations of kinases as a consequence of mutations

as well as over- or underexpression can cause abnormal
changes in cellular signaling and, as a consequence, have
implications for the progression of diseases such as cancer,
diabetes and inflammation [1]. In case of cancer, the kinases
involved are often over-activated, generally leading to
excessive cell proliferation (and decreased response to
apoptotic signals). Therefore, kinases are common targets of
anti-cancer drugs and cancer treatment by kinase inhibition
has been one of the most active areas across the
pharmaceutical industry in the last decade [1,7]. An
example of a highly successful drug in this area is the kinase
inhibitor Gleevec which was first developed as a selective
Bcr-Abl inhibitor for treatment of chronic myelogenous
leukemia (CML) [8-10]. Later, also its secondary activities
against KIT were exploited for treating gastrointes-
tinal stromal tumors [11]. Other anti-cancer drugs that
were the result of approvals in the last decade include
Iressa (indicated in case of EGFR upregulation) [12] and
Tykerb (indicated in case of ERBB2 overexpression) [13].
While kinases are involved in various signaling processes,

they are still structurally very similar when it comes to their
ATP binding sites, which are highly conserved [14,15].
Despite the success of type I kinase inhibitors on the
market (i.e. inhibitors that target the ATP binding site),
virtually no kinase inhibitor is truly selective (although this
promiscuity might very well be tolerated in the clinic)
[16]. Whilst the promiscuity of kinase inhibitors may
hence not necessarily be a problem and may even be
beneficial in some cases (such as in case of repurposing
Gleevec as described above), it is generally important to
understand the inhibition profile of kinase inhibitors early
on in the drug discovery process in order to be able to
assess efficacy, off-target effects and to anticipate possible
safety problems [17-20].
In an attempt to understand the inhibition profile of

kinase inhibitors and drug candidates in general, various
chemogenomics methods have been employed to analyze
compound activity against a series of targets in recent
years [21-29]. Many of those studies have indicated that
sequence similarity between kinases does not always
correlate with kinase inhibitor interaction (i.e. kinases
with dissimilar sequences can also bind to the same
compound). One such example is a study by Karaman et al.,
where the bioactivity profiles of 38 kinase inhibitors
tested against 317 kinases was analyzed. The authors found
that for the 317 kinases analyzed, compounds originally
described as tyrosine kinase inhibitors indeed bound tyro-
sine kinases more frequently than serine/threonine kinases;
however many of the serine/threonine kinase inhibitors
were found to interact with tyrosine kinases more fre-
quently [30]. Fabian et al. showed that BIRB-796 was able
to bind the serine-threonine kinase p38, and the tyrosine
kinase ABL(T315I) rather tightly (at around 40 nM), des-
pite both kinases having only a 23% sequence identity [3].
Similarly, the tyrosine kinase inhibitor dasatinib [31]
also interacts with serine/threonine kinases, albeit
with a 2.9-fold lower selectivity at a concentration of
3 μM than for tyrosine kinases (i.e. dasatinib bound
to 2.9 times as many tyrosine kinases as it did to
serine/threonine kinases) [30]. Also surprising cases of
relative selectivity exist, however: while imatinib inhibits



Figure 1 The human kinome as described by Manning et al. [5] on the basis of sequence similarity. Outlier kinases (marked in green) will
be discussed later in the text. In our revised analysis, kinases showed much better agreement with respect to the expected negative relationship
between SAC score (a score based on the fraction of shared active compounds between kinases) and bioactivity distance: only 7 kinases (VEGFR3,
ACK1, LYN, CSK21, CSK22, IGF1R and WNK2) were classified as outliers. CSK21 and CSK22 are represented by the same kinase in the tree above
and therefore, there are only 6 distinct kinases marked.
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LCK, it is selective over the closely related kinase SRC, as
shown in the analysis by Fabian et al [3].
While above methods did not consider the spatial

structure of the ligand binding pocket, also structure-
based studies have been performed on kinases, such as
by Kuhn et al. [32] as well as others [33]. The approach
by Kuhn et al., which incorporates the comparison of
3D binding site descriptors across kinases via Cavbase,
has shown that kinase binding site properties can be
used to predict kinase interaction with inhibitors, such
as the cross-reactivity of Gleevec. The model showed
separation of serine/threonine and tyrosine kinases and
a clustering on the subfamily level could be achieved,
where 12 out of the 16 subfamily clusters formed
included at most one member from another kinase class.
Moreover, the sequence-based similarity of kinases
was compared to their Cavbase similarity: in many
cases kinase pairs exhibit a sequence identity below
50%, while possessing a Cavbase R1 similarity score of 22 or
above (i.e. high predicted SAR similarity, where SAR similar-
ity specifically refers to similarity in terms of the compounds
target proteins bind to). Also in the area of predictive
modeling, Martin et al. [34] developed Bayesian QSAR
models on 92 kinases that were diverse in terms of sequence,
covering most of kinase sequence space. Subsequently,
activities of compounds on previously untested kinases
could be predicted as a weighted average of prediction of
the same compounds from neighboring models, allowing
for assessment of compound promiscuity within the kinome
[34]. Whilst this approach has generally proven useful for
prediction of bioactivity profiles (an R2 value of 0.48 was
obtained when tested on validation data from 18 assays)
[34], the assumption that kinases that are similar in terms of
protein sequence have a similar interaction profile with
inhibitors has not been verified thoroughly in this previous
work (which is one of the foci of the current work).
As an extension of the work mentioned above and

complementary to sequence-based analysis of kinases,
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Bamborough et al. analyzed kinase bioactivity data based
on inhibitor affinity fingerprints, and used this approach
to rationalize cross-reactivity of compounds [21]. The
kinome tree was reclassified using affinity fingerprints,
and the relationship between domain sequence identity
and kinase SAR similarity was analyzed. The main finding
was that there was no linear relationship between kinase
sequence similarity and SAR similarity. However, two
groups of distinct kinase-pair relationships were observed:
pairs of kinases with below 40-50% sequence identity in
their kinase domains were found to exhibit significantly
lower SAR similarity than kinase pairs with more
than 40-50% sequence identity. A similar analysis was
performed on another kinase panel by Davis et al.
[35] where selectivity scores were computed for each
kinase by dividing the number of compounds bound
with Kd < 3 μM by the total number of compounds
screened. The results primarily illustrated kinase
promiscuity: 60% of the kinases interacted with 10-40% of
the compounds and most compounds had interactions
with kinases from multiple groups, which was in line with
the analysis by Bamborough et al. [21].
We will now outline how the current study extends

previous approaches. In both the preceding analyses,
binary affinity fingerprints were used; i.e. inhibitors were
classified as either ‘active’ or ‘inactive’. In this work, we
extend that approach by incorporating the analysis of
chemical features of the inhibitors (i.e. by classifying
inhibitors as a collection of chemical features), which
considerably enhances the statistical power of models
(since there are many more features that can be
matched than entire compounds). Kinase-pair distance
were calculated based on the presence and absence of
these chemical features in active and inactive inhibitors,
hereby adding more chemical information to the data-
set for better comparison of inhibitor cross-reactivity
(actual percentage inhibition values were not used for
this purpose, because in this case it would not be possible
to incorporate the information of chemical features). We
set out to analyze a dataset of 157 kinase inhibitors,
selected on basis of structural diversity, cell permeability,
reversibility and potency [36] and assayed at concentrations
of 1 μM and 10 μM against a panel of 225 human protein
kinases (this dataset has been made publicly available via
ChEMBL recently) [37]. The classification of the kinome
was revised, based on bioactivity data and chemical feature
enrichments with the aim to rationalize (and predict)
cross-reactivity of compounds within the kinome. We
show that this classification will more accurately define
kinase neighbors in terms of bioactivity similarity in
response to inhibitors, and will therefore be more
valuable in predicting kinase inhibitor promiscuity. In
particular, we will analyze the influence of data density on
chemogenomics analyses (which was found to be very
important, to the extent that part of the data effectively
needs to be removed), as well as revisit the assumptions
that phylogenetic trees make when representing similarities
between proteins according to ligand similarity (where the
assumption that close neighbors exhibit similar compound
interaction is invalid in some cases).

Results and discussion
Bioactivity dataset
We firstly aimed to understand the nature of our dataset by
analyzing physicochemical property diversity and scaffold
diversity. The chemical diversity of the kinase inhibitor
library analyzed here, compared to 11,577 protein kinase
inhibitors retrieved from ChEMBL exhibiting IC50 values
lower than 10 μM, is shown in Additional file 1: Figure S1
with diverse structures being visualized. PC1 (principal
component 1) and PC2 (principal component 2) capture
46% of all variance in the dataset and are related to
molecular size (PC1) and charge and lipophilicity
(PC2). The Calbiochem library used in the current
study covers the left hand side of the PCA space
(representing smaller compounds) rather well, whereas
the right hand side (representing larger compounds) is
not covered as well. The frequency of the top 10
most prevalent scaffolds in the inhibitors is shown in
Additional file 2: Figure S2. Given that there were over
110 scaffolds present in a dataset with only 157 inhibitors,
we consider this dataset to be highly diverse, which was
also one of its original design principles.
The bioactivity matrix of 157 compounds against

225 kinases is shown in Additional file 3: Figure S3
and given the importance of the data structure and
density (as we will see later) this will be discussed
here in some detail. This dataset very much resembles
the slightly larger dataset (178 compounds) analyzed by
Anastassiadis et al. [38], which contains 88% of the
compounds used in our dataset. Of all data present in
the dataset, 16.1% of all compound-target interactions
represent inhibition by at least 50% (which makes this
a relatively ‘dense’ dataset, compared to hit rates in
typical HTS campaigns) and only 2% represent inhibition
between 40% and 60% (the exact distribution is shown in
Additional file 4: Figure S4). Hence, the loss of information
involved when using a binary cut-off for the classification of
active and inactive compounds is minimal [39]. On average,
the compounds inhibited 39 kinases, with four structures
inhibiting more than 183 kinases (μ + 3SD), namely the
known pan-kinase inhibitor Staurosporine (at 1 μM and
10 μM), a compound primarily annotated as a Cdk1/2
inhibitor, the structure K-252a and a PKR inhibitor (10 μM).
Overall, kinases in the dataset showed a large variation in
their associated number of inhibitors: 76% of kinases were
inhibited by 10 to 70 compounds, only a single kinase
(NEK7) was not inhibited by any compound, and the
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remaining kinases were inhibited by 71 or more compounds
(for a visualization see Figure 2). This indicates that our
kinome dataset contains both kinases that are promiscuous
to multiple compounds (e.g. > 40) as well as selective
kinases (e.g. < 20). Furthermore, 180 kinases (80% of
all kinases) share at least 20 activities with other kinases, with
the average number of shared activities being 51 (+/− 34).
The average number of kinases with which active
compounds were shared was 101 (+/− 25, corresponding to
45% of all kinases). The distribution for shared activities
both in terms of the number of compounds shared
(same compounds at different concentrations are consid-
ered unique in this case), as well as the number of kinases
these compounds are shared with, is shown for each kinase
in Figure 3. As mentioned earlier, only a single kinase,
namely NEK7, was not inhibited by any compound, and
therefore did not share any active compounds either.
These data suggest that the compounds in the dataset
overall show sufficient shared activities between kinases
(and large enough a number of active data points in the
first place). While we will discuss later that this was
overall indeed found to be true, we will also show the
limitations of this statement in detail later in this Results
and discussion section.

Bioactivity-based classification of kinases compared to
earlier classifications
The phylogenetic tree generated from the bioactivity matrix
(for details see Methods section) is shown in Figure 4. The
revised classification of the kinome tree (limited to
the kinases in our dataset), based on bioactivity profiles, is
overall in good agreement with the sequence-based kinase
classification by Manning et al. [5], where a Hidden
Markov Model of the eukaryotic protein kinase domain
was first used to scan the human proteome for kinases,
after which sequence alignment between kinases was
Figure 2 Distribution of the number of kinases as a function of comp
that lowered bioactivity of the kinase in question by 50% or more were co
70 compounds in most cases. This indicates that our kinome dataset conta
multiple compounds as well as selective kinases.
extended to full-length gene predictions using a combination
of EST and cDNA data. Generally, kinases from the
same phylogenetic group as defined by Manning et al.
tend to group in the same cluster in our revised tree based
on bioactivity profiles. CDK and CLK kinases from the
CMGC group are grouped together, as are the protein C
kinases from the AGC group (e.g. KPCA and KPCB).
Tyrosine kinases also tend to cluster together, of which
particularly the Ephrin kinases do so: only 14% of the tyro-
sine kinases in the dataset were not placed near other
tyrosine kinases, compared to 27% of CMGC and 29% of
AGC kinases. These findings are in accordance with the
analysis by Bamborough et al. [21], where Ephrin kinases,
and kinases in the TK, AGC and CMGC branches tend to
group together. However, kinases from the same family or
group do not always cluster, as for example is the case
with MK12 (p38γ) and MK13 (p38δ), which are both at a
large distance from each other in the bioactivity-based
phylogenetic tree. On the other hand, the very similar
proteins MK14 (p38α) and MK11 (p38β) are located
close to each other. This pattern has also been described
earlier in the analysis by Bamborough et al. [21], where
the difference in activity of MK12 was explained by the
presence of a different gatekeeper in its active site as
compared to MK14 and MK11.
In addition, we examined an earlier evaluation of

interaction maps of 37 known kinase inhibitors [30] against
a panel of 317 kinases in more detail. For six of the existing
inhibitors (Gefitinib, SU-14813, BIRB-796, Staurosporine,
Dasatinib and Sunitinib) the sequence-based kinase distance
[5] was plotted against the bioactivity distance for
pairs of kinases (shown in Additional file 5: Figure S5).
In approximately 57% of the cases, kinases inhibited
by the same compound are quite distant according to
the sequence-based classification (distance 0.6 – 0.8),
but rather close according to the bioactivity-based
ounds inhibiting the respective number of kinases. Compounds
nsidered active. Overall, kinases in the dataset were inhibited by 1 to
ins a wide range of kinases, including those that are promiscuous to



Figure 3 Compound promiscuity. The number of shared active compounds with other (1 or more) kinases is shown in dark gray, whereas the
average number of kinases these active compounds are shared with for each kinase is shown in light gray. Only 1 kinase (NEK7) does not share
any active compounds with other kinases. Of all kinases, 80% share over 20 active compounds which is of importance for establishing meaningful
kinase SAR relationships. These compounds are shared with 51 kinases on average, suggesting the compouunds in the dataset to be relatively
promiscuous on average.
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classification employed in the current work (distance 0 –
0.4). Furthermore, it is known that the gatekeeper residue
in kinases is important for determining selectivity against
inhibitors [40]. Hence, we also examined whether kinase
pairs sharing the same gatekeeper residue were close in
bioactivity distance. The results are shown in Additional
file 6: Figure S6, where it can be seen that kinase pairs
with the same gatekeeper residue occur much more often
in the lower pairwise bioactivity distance ranges, than they
do in the higher ranges: the occurrence of kinase pairs
with the same gatekeeper residue averaged over the
first 5 bins (distance range 0 to 0.50) is 23%, whereas
it is only 13% for the last 5 bins (distance range > 0.50).
These results suggest that the bioactivity-based classi-
fication may be more useful globally in predicting kinase
inhibitor cross-reactivity than the previous sequence-based
classification [5].
Relationship between SAR similarity and bioactivity
distance
Next, the integrity of the kinase tree was examined, which
also puts those points into a statistically meaningful
context. In this part of the analysis, we attempted to
determine to what extent the tree in question was
useful for predicting promiscuity of kinase inhibitors; i.e.
whether kinases which share a similar bioactivity profile
and hence are close in bioactivity space are also represented
as close neighbors in the tree (and vice versa). We hence
assessed the number of shared active compounds between
each pair of kinases as a measure for SAR similarity and
compared this number to the distance based on the
bioactivity profiles (shown in Additional file 7: Figure S7).
For each kinase, except for NEK7, which was not inhibited
by any compound, this pairwise comparison was carried
out against all 224 kinases in the dataset.
Given that a larger distance in the phylogenetic tree

indicates less similarity between the kinase pair, a negative
relationship between the percentage of shared active
compounds and distance of kinases in bioactivity
space was expected: In other words, distant kinases are
expected to have a relatively low percentage of shared
active compounds, whereas neighboring kinases are
expected to have a relatively high percentage of shared
active compounds. After mean centering of both variables
(see Methods section for details) the resulting series are
shown in Figure 5, where the percentage of shared active
compounds is referred to as ‘SAC score’ (Shared Active
Compound score) after mean centering. As expected, a
negative relationship was observed between increasing
distance in bioactivity space and SAC score, with 60% of
the data points clustered between SAC score ranges of 40
and 100 and distance ranges of 0.2 and 0.6. Extreme SAC
score values above 200 were observed for distances smaller
than 0.3. Data points with distances larger than 1.0 were
less common (representing only 4% of the dataset), and
compared to the variation in SAC score observed for data
points in distance ranges below 0.5 (between SAC scores
of 0 and 200), relatively little variation in SAC score was
observed for these data points (between SAC scores of 20
and 40). These results suggest that SAR similarity between
kinases decreases with higher distance of bioactivity
profiles, with changes in the percentage of shared active
compounds being the highest for bioactivity profile
distances smaller than 0.5.
However, there are a number of factors that deserve

attention in this type of analysis: the number of kinases
exhibiting a negative relationship between SAC score



Figure 4 Kinome tree constructed with a distance matrix based on fingerprint enrichments. Kinases were colored based on the
classification of kinase groups as defined by Manning et al. [5] Overall, kinases from the same group (with the same color) tend to group in the
same cluster. CDK and CLK kinases from the CMGC group and AGC kinases are clearly grouped together. However, kinases from the same family
or group do not always cluster together, as for example is the case with MK12 (p38γ) and MK13 (p38δ), which are both isolated from each other.
On the other hand, the very similar proteins MK14 (p38α) and MK11 (p38β) are located close to each other.

Paricharak et al. Journal of Cheminformatics 2013, 5:49 Page 7 of 20
http://www.jcheminf.com/content/5/1/49
and bioactivity distance changes drastically, depending
on the normalization method used. When the number
of shared active compounds was normalized by the total
number of active compounds against the common kinase
in the pairwise comparison (i.e. the kinase which does not
change in the pairwise comparisons: when kinase 1 is
compared to itself and all other 224 kinases, kinase 1 is
referred to as the ‘common’ kinase), the expected negative
relationship between SAC score and bioactivity distance
(distant kinases having a relatively low percentage of
shared active compounds and neighboring kinases having
a relatively high percentage of shared active compounds)
was only observed in 25% of all kinases (55 out of 224).
When the number of shared active compounds was
normalized by the total number of compounds active,
against both the common kinase and the variable kinase



Figure 5 Mean-centered SAC score versus distance plot. Mean centering was performed with respect to both axes in order to better visualize
the collection of data points: the average distance was set to 0.5 and the average percentage of shared active compounds was set to 50%, and
was called ‘SAC score’ after scaling. A clear, negative relationship was observed with most data points (60%) clustered between SAC score ranges
of 40 and 100 and distance ranges of 0.2 and 0.6. Extreme SAC score values above 200 were observed for distances smaller than 0.3.
Data points with distances larger than 1.0 were less common (only 4%) and compared to the variation in SAC score observed for data
points in distance ranges below 0.5 (between SAC score values of 0 and 200), relatively little variation in SAC scores was observed for
these data points (between SAC score values of 20 and 40).
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(i.e. the other kinase in the comparison), the expected
negative relationship was already observed in 46% of all
kinases (103 out of 224). When normalized against the
total number of compounds active against the variable
kinase however, the expected relationship was observed in
up to 81% of all kinases (181 out of 224). This can likely
be explained as follows: when normalizing by the total
number of active compounds against the common kinase,
all data points in the series are normalized by the same
value, and therefore, variable kinases with a high total
number of active compounds are more likely to have
higher SAC scores (more chances of having shared
active compounds), compared to kinases with a lower
total number of active compounds. This bias leads to
incorrect comparisons, for example in the situation
where the variable kinase has a low total number of
active compounds, of which a higher percentage is shared
with the common kinase, where normalizing by the total
number of active compounds against the common kinase
would underestimate SAR similarity due to a lower
count in shared active compounds (despite a high
percentage). Therefore, this percentage, which is the
result of normalization by the total number of compounds
active against the variable kinase, was used in subsequent
analyses, also since it was consistent with the SAR trend
in the highest number of kinases (81%) included in the
analysis. Examples of series showing the expected negative
relationship between SAC score and bioactivity distance
and series not showing this relationship (kinase outliers)
are shown in Additional file 8: Figure S8.
Alternative method of assessing kinase bioactivity

distance as described by Bamborough et al. [21].
In a second calculation, an alternative method of

calculating kinase bioactivity distance was employed
for comparison, as described by Bamborough et al. [21],
(see Methods section for details). Using this bioactivity
distance, based on Tanimoto comparison between bio-
activity fingerprints of kinases (i.e. inhibitors were either
considered ‘active’ or ‘inactive’ against kinases and chemical
features of inhibitors were not taken into account),
185 kinases (83%, so a similar number to the 81% identified
above) showed a negative relationship between SAC score
and bioactivity distance. Kinase outliers not showing this
expected relationship from both analyses are shown in
Additional file 9: Table S1 and are highlighted in Figure 6.
Whilst the number of outliers is approximately the same
for both analyses, they only have 2 outliers in common
(namely NEK6 and KPCI). Next, we investigated the
outliers in more detail and found that the kinase outliers
resulting from the analysis based on fingerprint enrichment
profiles (kinase outlier group 1) and those from Tanimoto
coefficients on bioactivity profiles (kinase outlier group 2)
differ significantly with regard to the distribution of
shared bioactivities between kinases: compounds from
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kinase outlier group 1 share a much higher number
of active compounds with other kinases in the dataset
(on average 85.77 compounds shared with other kinases),
compared to kinase outlier group 2, where on average
only 12.03 compounds are shared with other kinases. The
distribution of shared activities both in terms of the
number of compounds shared, as well as number of
kinases the activities are shared with, is shown for the
two groups of kinase outliers in Figure 7. Hence, the
reasons for both groups of kinases forming outliers is
very different: given that the kinases in outlier group
1 share over 7 times as many active compounds with
other kinases in the dataset as compared to kinases
from outlier group 2, kinase outliers from group 1
have far more robust data for SAR similarity comparison,
but they are at the same time much less likely to be placed
Figure 6 Kinases that do not show the expected, negative relationshi
Kinase outlier group 1 is based on distances generated from fingerprint en
based on distances generated from Tanimoto comparison between bioact
(shown in green) [21]. Whilst the number of outliers is approximately the s
NEK6 and KPCI (shown in red). Interestingly, kinases from outlier group 1 sh
(85.77) as compared to kinases from kinase outlier group 2 (12.03) and few
analyses such as the one performed here (see main text for details). The kin
branch (group 1) and the AGC branch (group 2).
into a metric space (i.e. in a reasonable location with
meaningful distances to all other kinases in the dataset).
For kinases from outlier group 2 the reason that they form
outliers is more likely that there is not sufficient infor-
mation about their location in ‘bioactivity space’ available
in the first place, since their inhibitors are not shared with
a sufficient number of other kinases in the dataset.
The SAC scores for all 181 kinases which followed the

expected relationship between SAC score and bioactivity
distance according to our fingerprint enrichment
analysis were binned and averaged, the result of which is
shown in Figure 8. Interestingly, the highest SAR
similarity for kinases is not at the lowest distances:
kinases show a lower degree of SAR similarity at distances
smaller than 0.03, while the highest SAR similarity is only
seen at a distance of approximately 0.03. This observation
p between SAC score and bioactivity distance (kinase outliers).
richment profiles (shown in orange) whereas kinase outlier group 2 is
ivity fingerprints of kinases, as performed earlier by Bamborough et al.
ame for both analyses, they only have 2 kinase outliers in common,
are a much higher number of active compounds within the dataset
shared activities have been found to be one of the limitations of
ases are distributed in multiple branches, but especially in the TK



Figure 7 Compound promiscuity for kinase outlier group 1 and kinase outlier group 2. Kinase outlier group 1 is based on distances
generated from fingerprint enrichment profiles, whereas kinase outlier group 2 is based on distances generated from Tanimoto comparison
between bioactivity fingerprints of kinases, as performed earlier by Bamborough et al. [21]. Given that the kinases in outlier group 1 share over 7
times as many active compounds with other kinases in the dataset as compared to kinases from outlier group 2, kinase outliers from group 1
have more robust data for SAR similarity comparison and are therefore more likely to be genuine outliers (since their character as outliers is
based on more comprehensive underlying data).
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is most likely an artifact introduced by mean centering of
SAC score and distance, but could potentially also be
observed as a result of the lack of data points for distance
values below 0.03 (as described earlier, the majority of
data points (60%) lie outside this range, namely between
distance values of 0.2 and 0.6). Thereafter, SAR similarity
declines steadily with increasing distance. Another
important observation is that also the standard deviations
Figure 8 Average trend of SAR similarity based on shared active com
relationship between SAR similarity and bioactivity distance (excludin
deviation. The number of shared active compounds was normalized by the
Interestingly, the optimum in SAR similarity for kinases is not at the lowest
smaller than 0.03 than the optimum which is at a distance of approximate
with increasing bioactivity distance (after distance is approximately 0.03), su
than for closely related kinases.
of SAC score values steadily decrease with increasing
distance (depicted as error bars). This indicates that there
is more variance in kinase SAR similarity for more closely
related kinases (i.e. kinase pairs with distance < 0.01),
than there is for more distant or very distant kinases
(i.e. distances above this threshold), making prediction of
SAR similarity easier for distant kinase pairs. In order to
compare our results, we relate our results to previous
pounds for all kinases (181) showing the expected negative
g kinases from outlier group 1). Error bars indicate 1 standard
total number of active compounds in the variable kinase.
distances: kinases show a lower degree of SAR similarity at distances
ly 0.03. Furthermore, variance in shared active compounds decreases
ggesting that it is easier to predict SAR similarity for distant kinases
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work based on binding pocket similarity in the following
section.

Comparison to 3D methods
An earlier study by Kuhn et al. [32] described a 3D
protein binding pocket description and comparison
method (Cavbase), which has been utilized to predict
kinase inhibitor interaction profiles [41]. In this previous
study, the sequence-based similarity of kinases was com-
pared to their Cavbase (i.e. three-dimensional similarity)
similarity: in many cases kinase pairs exhibit a sequence
identity below 50%, while possessing a Cavbase R1 similarity
score of 22 or above (i.e. a high similarity in binding site
properties, and hence, a high predicted SAR similarity)
[32]. Of the kinase outliers detected in our analysis,
Kuhn et al. also discovered that the kinases LCK,
FGFR1, AKT2, DAPK1 and TGFR1 have unexpected
binding site similarities (and hence, unexpected predicted
SAR similarities) with sequence-wise distant kinases, which
is in accordance with our analysis [32]. In addition, the
kinase MK12 (outlier from group 2) also showed low
Cavbase predicted SAR similarity against closely related
kinases. Similarly, Vieth et al. have also shown that the
kinases AKT1 (outlier from group 2) and LCK (outlier from
group 1) have unexpected SAR similarity with one or more
other kinases (which may represent either high SAR simi-
larity despite low sequence similarity, or low SAR similarity
despite high sequence similarity) [23]. Our findings show
that whilst the majority of kinases (approximately 80% of
the kinases in the dataset) exhibit consistent SAR with
their neighbors, a subset of kinases does not. Therefore,
accurately extrapolating compound activities to these
‘atypical’ kinases, as performed in the study by Martin
et al. [34], poses an even larger challenge than is generally
the case in the area of structure-activity modeling.

Limitations of phylogenetic clustering of the kinome
Hence, based on the data used in this study, the kinome
tree may not be an entirely accurate representation of the
information at hand when analyzing and representing che-
mogenomics relationships between receptors. Both cases
with too little data and those that show inconsistent SAR
with neighboring kinases are the root of those problems:
some kinases show SAR that is similar to other kinases,
but not to kinases nearby, and they can thus not be
assigned a proper position in a phylogenetic tree. Apart
from the problem mentioned earlier – that outliers in
bioactivity space can be caused by kinases with insufficient
number of shared active compounds (care needs to be
taken with respect to data density) – the assumption that
kinase SAR can be projected into a metric space represents
in our view the second widely used, but still not entirely
correct way to represent chemogenomic relationships
between targets and their similarities in SAR space.
The latter assumption is made by phylogenetic kinome
trees and should be reconsidered when conducting
chemogenomics analyses.

Visualization of kinases using multi-dimensional
scaling (MDS)
In order to alleviate this problem, we next performed
multi-dimensional scaling (MDS) of the kinases based
on bioactivity fingerprints (shown in Figure 9 and
Additional file 10: Figure S9; see Methods section for
details). Interestingly, the kinase outliers (as determined
by both methods) have 2 distinct distributions. Firstly,
kinase outliers resulting from the analysis based on
fingerprint enrichment profiles are sparsely distributed
and are clearly separated from the non-outlier kinases
(group 1 – shown in red); however, kinases within this
group are rather dissimilar to each other. Secondly, kinase
outliers resulting from the analysis based on the Tanimoto
comparison between bioactivity fingerprints of kinases are
densely scattered in a small area (group 2 – shown in
green). This suggests that kinases in a certain - rather
large - area of the kinome (comprising of both group 1
and 2 outliers) space do not show the expected negative
relationship between SAC score and bioactivity distance.
In contrast to members of the first group, members of the
second group of kinase outliers are very similar to each
other in terms of bioactivity with an average distance of
0.15 within the group, but quite distinct from the non-
outliers (the average distance in the entire dataset is 0.50).
However, a closer look at the dataset reveals that the
kinases in outlier group 2 do tend to cluster together,
but simply due to the fact that most of these kinases
share few activities with the other kinases in the dataset
(less than approximately 12.03 activities compared to
85.77 activities for kinases from outlier group 1, and to on
average 51 activities for all kinases in the dataset), making
accurate comparison in terms of SAR similarities more
difficult. For example, NEK_6 shares only one active
compound with other kinases and therefore, can only have
either 0% or 100% shared active compounds (before scaling)
with other kinases, which introduces unreliable bio-
activity relationships in the SAC score-distance plots.
Given this finding we repeated the analysis described
above for a subset of the original dataset that
excluded kinases that had 16 or fewer shared activities
(which represents approximately 10% of the maximum
number of shared activities for all kinase). The excluded
kinases (37 out of 225) are listed in Additional file 11:
Table S2.

Analyses for subset excluding kinases with few shared
activities
The resulting phylogenetic tree excluding kinases with
too few data points is shown in Figure 10, and the



Figure 9 Multi-dimensional scaling (MDS) of kinases in bioactivity space. A low average signed relative stress level of 0.28 was obtained,
meaning that the 2D representation of the kinases involves a low loss of information. Gray lines connect similar kinases. Kinases in outlier group 1
(shown in red) are clearly separated from the non-outliers, but vary amongst each other in terms of SAR similarity. In contrast, members of the
second group of kinase outliers are densely scattered in a small area, indicating that these kinases are very similar to each other in terms of SAR
similarity, but are apparently quite distinct from the non-outliers (shown in green). However, it is likely that the kinases in outlier group 2 tend to
cluster together, due to the fact that most of these kinases share few active compounds with the other kinases in the dataset, making accurate
comparison in terms of SAR similarities more difficult.
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corresponding MDS plot based on bioactivity fingerprints
is shown in Figure 11. The phylogenetic tree visualized in
Figure 10 is more robust than the tree shown earlier, with
only 4% of the kinases being outliers (as opposed to ~20%
in our earlier analysis). As kinases with too few data points
are omitted, this tree therefore significantly improves
upon previous analyses that also included rather unreli-
able data points. However, the overall structure still shows
good agreement with that of the tree constructed earlier
(as the data for the kinases which were not omitted did
not change). In particular, CDK and CLK kinases are
grouped together (with only CDK6 being out of the cluster).



Figure 10 (See legend on next page.)
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(See figure on previous page.)
Figure 10 Kinome tree constructed with a distance matrix based on fingerprint enrichment profiles after exclusion of kinases with 16
or fewer shared activities. Kinases were colored based on the classification of kinase groups as defined by Manning et al [5]. The new tree
shows good agreement with the tree constructed earlier. In particular, CDK and CLK kinases are grouped together (with only CDK6 being out of
the cluster). Protein C kinases are slightly more spread over 2 small clusters, but as a whole still remain close in the new tree as well. Tyrosine
kinases remain clustered together, in particular the Ephrin kinases.
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Isoforms of Protein Kinase C are slightly more spread over
2 small clusters, but as a whole still remain close in the new
tree as well. Tyrosine kinases remain clustered together, in
particular the Ephrin kinases (which are part of the RTK
family of kinases). CAMK kinases, on the other hand, show
better clustering in the new tree: only 20% of CAMK
kinases were not placed near other CAMK kinases,
compared to 31% in the earlier tree. These observations
show that exclusion of kinases with few shared activities
does not alter the tree drastically: main observations with
regards to kinase classification made earlier still apply
(but there is still an improvement in clustering). On the
other hand, it is known that kinase subtypes (e.g. FGFR1
and FGFR2) have similar SAR and tyrosine kinases such
as the FGFR, VEGFR, PDGFR and ABL kinases show high
cross-reactivity [42]. Still, our revised phylogenetic tree is
unable to cluster the 2 groups of kinases mentioned above.
In the case of the kinase subtypes this is most likely due to
the fact that despite being subtypes of each other, these
kinases (FGFR1 and FGFR2) differ across 14% of all
bioactivity data points. In the case of the tyrosine
kinases it is most likely due to the fact that despite being
promiscuous, these kinases still have very different
bioactivity profiles.
In our revised analysis, kinases showed much better

agreement with respect to the expected relationship in
SAC score-distance plots: according to the analysis
based on fingerprint enrichment profiles, only 7 kinases
(VEGFR3, ACK1, LYN, CSK21, CSK22, IGF1R and WNK2)
were classified as outliers (see Methods section for
more details on assessment of relationships in SAC
score-distance plots), mainly in the tyrosine kinase branch
(see Figure 1). Previously, 43 kinases were classified as
outliers, of which only 8 were omitted due to lack of
shared activities with other kinases in the panel. Hence,
based on the data analyzed in this study, our revision of
the kinome phylogenetic tree shows that omission of
kinases with 16 or less shared activities with other kinases
in the panel leads to the construction of a more reliable
ligand-based kinome tree, which is more consistent with
the observed SAR than previous efforts.
The MDS plot (Figure 11) shows that the outliers are

grouped in 2 clusters, located far away from each other
in bioactivity space, rather than in a large one. The
kinases VEGFR3, ACK1 and LYN are located far away
from the non-outlier kinases, whereas the kinases CSK21,
CSK22, IGF1R and WNK2 are located much closer to the
non-outliers. After closer inspection of the SAC score-
distance relationships of the outlier kinases, we observed
2 different types of outlier trends (see Figure 12), which
possibly explain the formation of 2 clusters of outliers.
VEGFR3, ACK1 and LYN show consistently high SAR
similarity with other kinases at both low and high dis-
tances, with lower SAR similarity against some kinases at
high distances. On the other hand, CSK21, CSK22, IGF1R
and WNK2 show significantly higher SAR similarity with
other kinases at low distances than at higher distances,
but with very high variance of the data points: in many
cases, neighboring kinases show low SAR similarity or
distant kinases show high SAR similarity.
Hence, while our removal of kinases with too few

data points led to improvement in the reliability of
the ligand-based kinome tree produced, there are still
structure-activity relationships that are intrinsically
difficult to transfer between kinases (bioactivity similarity
is after all a local concept [43], not a global one), however
on a much smaller scale than before. The main purpose of
this work is to draw particular attention to this fact, which
is here applied to the chemogenomics analysis of kinase
inhibitors, but which is also transferable to other target
families. In addition, while it is possible that different assay
types (e.g. a binding assay instead of a functional assay)
may influence the conclusions drawn here, we believe this
is unlikely due to the fact that the dataset did not consist
of agonists (in which case binding assays and functional
assays may not correlate well in every case), but only of
antagonists.

Conclusions
Understanding kinase inhibitor promiscuity still remains
a great challenge within the field of drug discovery [44]. In
this work, we introduced a revised kinome classification
of 225 kinases, based on a complete bioactivity matrix.
While kinases from the same group generally tend to
arrange in the same cluster, we also observed inconsisten-
cies in the SAR-based kinome trees generated: 80% of
all kinases exhibit an expected negative relationship
between SAR similarity and bioactivity distance, whilst
approximately 20% do not. Two groups of kinase outliers
were observed. The first group of outliers resulted from
the analysis based on fingerprint enrichment profiles, and
show inconsistent SAR similarity to neighboring kinases.



Figure 11 Multi-dimensional scaling (MDS) of kinases in bioactivity space after omission of kinases with too few shared activities.
Kinases are colored according to their sequence-based classification [5]. A low average signed relative stress level of 0.28 was obtained, meaning
that the 2D representation of the kinases involves a low loss of information. Gray lines connect similar kinases. The outliers, based on fingerprint
enrichment profiles, are grouped in 2 clusters (indicated by a red line), located far away from each other in bioactivity space, rather than a large
one. The kinases VEGFR3, ACK1 and LYN are located far away from the non-outlier kinases, whereas the kinases CSK21, CSK22, IGF1R and WNK2
are located much closer to the non-outliers.
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The second group of outliers resulted from the analysis
based on the Tanimoto comparison between bioactivity
fingerprints of kinases, and were observed because these
kinases have too few shared activities (data points) to reli-
ably include in the analysis. Exclusion of kinases with a
low number of shared activities across the kinase panel
(16 or fewer activities) resulted in more robust data with
less noise (i.e. no kinases with too few data points) and is
therefore an improvement on our earlier analysis. This
analysis resulted in only 7 out of 188 kinases (4%) being
classified as outliers. Interestingly, these outliers were
grouped together in 2 clusters in an MDS plot based on
bioactivity. Further investigation of their SAR-distance
relationships showed that each cluster showed a different



Figure 12 Two different types of outlier trends, which are likely to explain the formation of 2 clusters of outliers. VEGFR3, ACK1 and LYN
show consistently high SAR similarity with other kinases at both low and high distances, with lower SAR similarity against some kinases at high
distances (see graphs below). CSK21, CSK22, IGF1R and WNK2 show significantly higher SAR similarity with other kinases at low distances than at
higher distances, but with very high variance of the data points: in many cases, neighboring kinases show low SAR similarity or distant kinases
show high SAR similarity (see graphs above). Regardless, 2 different types of outlier trends were observed, possibly explaining the grouping of
the outliers in 2 different clusters in the MDS plot.
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relationship between SAR similarity and distance, explain-
ing their MDS classification into 2 groups. Our findings
show that while the phylogenetic tree based on bioactivity
data shows a good overview of kinases in terms of
SAR similarity, it does not explain kinase SAR in all
cases (~4% of kinases do not exhibit global SAR
similarity to other kinases which share local SAR simi-
larity). Some kinases still need to be repositioned from
both the sequence-based kinome tree [5] as well as from
previous bioactivity-based kinome classifications, as tree-
like structures do not always truly resemble the distance
between kinases in SAR space. Hence, based on the data
analyzed here, we are able to show that (1) kinases with
few shared activities are difficult to establish neigh-
borhood relationships for, and (2) phylogenetic tree
representations make implicit assumptions regarding
kinase similarities (i.e. that neighboring kinases exhibit
similar interaction profiles with inhibitors) that are not
always suitable for chemogenomics analyses of bioactivity
space. These findings are conceptually transferable to
other target families.

Methods
Dataset
The dataset consists of 157 inhibitors (Calbiochem
InhibitorSelect™ Protein Kinase inhibitor library, Cat#
539743-1EA) assayed at concentrations of 1 μM and 10 μM
against a panel of 225 kinases (which is publicly available
via ChEMBL). Bioactivity values are displayed as percentage
inhibition, relative to native kinase activity. Compounds that
inhibited kinase activity by 50% or more at the concentra-
tion screened were considered active. Moreover, same com-
pounds at different concentrations were considered unique
for the generation of bioactivity enrichment profiles and the
assessment of shared activities (which is elaborated below).
Given that all inhibitors were assayed at 2 concentrations,
we were able to differentiate between e.g. linking kinases by
one strong inhibitor and two weak inhibitors. In the former
case, features that are present in the inhibitor are counted
twice (as the strong inhibitor is active at both concentra-
tions), whereas in the latter case, the features are only
present in the active set once per inhibitor (as the weak
inhibitors are active only at the higher concentration), and
therefore, lead to a different bioactivity profile than in the
former case. Using 2 concentrations, we hence emphasize
the importance of features present in strong inhibitors.

Assays
The dataset analyzed was generated at Merck Millipore
using the KinaseProfiler service [45]. Kinases were diluted
in buffers of different composition, depending on the kinase
assay, consisting of one or more of the following chemicals:
MOPS, EDTA, Brij-35, Glycerol, NaCl, β-mercaptoethanol,
BSA, HEPES, Triton X-100, DTT, Triton Surfactant,
Glycerol, TRIS, EGTA, Tween 20, Na-β-glycerophosphate
and Na3VO4. Kinase assays involved incubation of the
kinase in a buffered solution, followed by the initiation of
reaction by addition of an MgATP mix. Reactions were



Paricharak et al. Journal of Cheminformatics 2013, 5:49 Page 17 of 20
http://www.jcheminf.com/content/5/1/49
terminated by the addition of a 3% phosphoric acid solu-
tion (for some kinases, other solutions were used) after an
incubation period (time dependent on kinase) at room
temperature. For most kinase assays, 10 μL of the reaction
mixes were spotted onto a P30 filtermat and washed
thrice for 5 minutes in phosphoric acid (concentration
dependent on kinase) and once in methanol prior to
drying and scintillation counting [45]. More details on
the buffer concentrations used and the specific procedure
for each specific kinase assay can be found in the
KinaseProfiler Service Assay Protocols [45].

Chemical diversity assessment of inhibitors
MOE version 2011.10 [46] was used to wash and to assign
partial charges (the Gasteiger PEOE force field was used)
to both the protein kinase inhibitors from ChEMBL
(IC50 < 10 μM) as well as the inhibitors from Calbiochem
InhibitorSelect™ Protein Kinase inhibitor library, Cat#
539743-1EA. Subsequently, principal components of 186
2D molecular descriptors were calculated for all inhibitors.

Generation of bioactivity-based fingerprint enrichment
profiles
Extended connectivity fingerprints with a diameter of 4
bonds (ECFP_4) [47] were used to describe inhibitors, since
they were found to capture chemical information correlated
with bioactivity in previous studies [48,49]. SMILES string
patterns of ECFP_4 features were generated using
jCompoundMapper [50]. An active set and an inactive
set of compounds (same compounds at different assay
concentrations were considered unique) was derived
for every kinase with compounds inhibiting kinase activity
by 50% or more being considered as active, whilst
compounds showing an inhibition of less than 50% being
considered as inactive. The enrichment Ei of each ith

ECFP_4 feature was determined for each kinase by
dividing the frequency of the feature in question in
the active set of inhibitors (fA) by the frequency in
the inactive set (fI):

Ei ¼ f A
f I

The Laplacian correction was applied to correct for
zero counts in both the nominator and the denominator
of the fraction when either of these was equal to zero:

Ei ¼ f A þ 1
f I þ 2

This resulted in a bioactivity-based fingerprint enrich-
ment profile for each kinase (kinase vector), referred to
as ‘fingerprint enrichment profile’ in the main text. This
representation of kinases is somewhat similar to the
FragSim similarity measure used by Sutherland et al.
[51] due to the fact that both measures assess protein
similarity by the structures of their inhibitors, but differs
in two important aspects. Firstly, the FragSim similarity
measure uses larger fragments consisting of 4 to 17 heavy
atoms to describe the inhibitors, whereas our fingerprint
enrichment profile uses smaller ECFP_4 features.
Secondly, the FragSim similarity measure does not take
into account the presence of its fragments in the inactive
set of compounds, hereby not distinguishing between
features which are present only in the active set of
inhibitors and features which are present in both the
active set as well as the inactive set of inhibitors. This is
taken into account in our ‘fingerprint enrichment profile’.
Generation of distance matrices and kinase inhibitor
response-distance relationships
Two types of distance matrices were used for analysis.
Firstly, and novel to this work, a distance matrix was
constructed based on the fingerprint enrichment profile.
The Manhattan distance was calculated between each
kinase vector and was normalized by the number of
dimensions (i.e. features) in the vector, which were
obtained using feature counts. Secondly, as shown earlier
by Bamborough et al. [21], each kinase was represented as
a bit-string and each bit represented the activity of a
compound (either ‘0’ for inactive compounds or ‘1’
for active compounds). The Tanimoto coefficient was
used to assess distances between kinases based on the
bioactivity fingerprints. As described in Bamborough et al.
[21], the distance D was calculated from the Tanimoto
coefficient TC as follows:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−TCð Þ

p

Each kinase was compared pairwise against all other
kinases using both of the above measures. The percentage
of shared active compounds was normalized by the total
number of active compounds in either the ‘common’
kinase (i.e. the kinase which does not change in the
pairwise comparisons: when kinase 1 is compared to
itself and all other 224 kinases, kinase 1 is referred to
as the ‘common’ kinase), the ‘variable’ kinase (i.e. the other
kinase in the comparison) or in both the kinases. The nor-
malized values were converted to percentages and were
plotted against the distance, resulting in a trend series for
every kinase. In order to better visualize the collection of
data points, mean centering was performed on the series
with respect to each axis: the average distance was set to
0.5 and the average percentage was set to 50% and was
called ‘SAC score’ after mean centering.
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Assessment of sequence-based similarity distance-bioactivity
distance plots
The sequence-based kinase distance matrix was calculated
using T-Rex [52] from the tree file obtained from the
human kinome project [53]. Kinase pairs targeted by
the inhibitor were automatically extracted from the
supplementary material provided by Karaman et al. [30]
and looked up in the sequence-based distance matrix [5].

Kinase gatekeeper analysis
The kinase gatekeepers were determined by performing
a multiple sequence alignment on the kinases using
MEGA version 5 [54], using the default parameters
(Protein Weight Matrix: Gonnet, Gap Open penalty: 10,
Gap Extension penalty: 0.20 and Gap Distances: 5). Subse-
quently, bioactivity distance between kinases pairs was
compared to their gatekeeper residues.

Generation of phylogenetic trees
PHYLIP was used to create tree files from the distance
matrix using the neighbor-joining method (no outgroup
root was specified) [55] and Archaeopteryx and iTOL
were used for visualization [56-58]. In addition, the
Merck Millipore DART tool [59] was used to vis-
ualize the sequence-based kinome tree as defined by
Manning et al. [5] Kinases were colored based on
the classification of kinase groups as defined by the
sequence-based tree [5].

Assessment of relationship between SAC score and
bioactivity distance
In order to assess the relationship of the 224 SAC
score-distance, a second degree polynomial function was
fitted through the data points of each series using R [60].
Series with a negative slope at distance = 0.40 and
distance = 0.67 (with the highest distance being approxi-
mately 1.9), and an R2 value greater than 0.2 were considered
to be exhibiting neighborhood behavior.

Generation of multidimensional-scaling (MDS) plots
The Hamming distance was calculated between kinases
based on their binary bioactivity fingerprints (compounds
inhibiting kinase activity by 50% or more were considered
active and compounds inhibiting kinase activity by less
than 50% were considered inactive) and an MDS plot was
generated using Orange Canvas [61]. Signed relative stress
levels were minimized (with stopping conditions being a
minimum stress change of 0.00005 and a maximum
number of steps of 5000) and kinases were colored
either according to their group as determined by
sequence-based classification [5] (for Figure 11) or by class
(i.e. outlier group 1, outlier group 2 or non-outlier – for
Figure 9 and Additional file 8: Figure S8).
Additional files

Additional file 1: Figure S1. Chemical diversity assessment of the
Calbiochem inhibitor library employed in the current work relative to
ChEMBL protein kinase inhibitors with IC50 < 10 μM. PC1 (principal
component 1) and PC2 (principal component 2) capture 46% of all variance
in the dataset and are related to molecular size (PC1) and charge and
lipophilicity (PC2). While this dataset hence does not represent all kinase
inhibitor space, it places more of an emphasis on the usually more
desired smaller compounds, such as Docetaxel (MW of 808 Da).

Additional file 2: Figure S2. Frequency of the 10 most frequent
scaffolds present in the dataset used. Given the presence of 110 different
scaffolds in the dataset, we consider this dataset to be chemically diverse.

Additional file 3: Figure S3. Heat map for the dataset employed here
comprising 225 kinases assayed against 157 inhibitors at concentrations of
1 μM and 10 μM. Gray dots indicate potent kinase-inhibitor interaction
(i.e. active compounds), with darker shades of gray corresponding to stron-
ger kinase-inhibitor interaction. 16.1% of all inhibitor-kinase pairs in the data
matrix show 50% or more inhibition (which were defined as ‘active’ in the
current study).

Additional file 4: Figure S4. Distribution of compound-target interactions
in the dataset. Of all data present in the dataset, 16.1% of all compound-target
interactions represent inhibition by at least 50% and only 2% represent
inhibition between 40% and 60%.

Additional file 5: Figure S5. Sequence-based [5] distance-bioactivity dis-
tance plots for kinase pairs targeted by known inhibitors SU-14813, Gefitinib,
Staurosporine, BIRB-796, Dasatinib and Sunitinib. Inhibitor data was acquired
from Karaman et al. [30]. In most cases, it is clear that there is a big cluster of
data points on the left side of the y = x partition, meaning that kinases
inhibited by the same compound are quite distant according to the
sequence-based classification (distance 0.6 – 0.8), but rather close according
to our fingerprint enrichment-based classification (distance 0 – 0.4). These
results suggest that the fingerprint enrichment-based classification ismore
useful in predicting kinase inhibitor cross-reactivity than the sequence-
based classification by Manning et al. [5].

Additional file 6: Figure S6. Comparison of gatekeeper residue
similarity with bioactivity distance. Kinase pairs with the same gatekeeper
residue occur much more often in the lower pairwise bioactivity distance
ranges, than they do in the higher ranges, with the occurrence of kinase
pairs with the same gatekeeper residue averaged over the first 5 bins
(distance range 0 to 0.50) being 23%, whereas it is only 13% for the last 5
bins (distance range > 0.50).

Additional file 7: Figure S7. Non-scaled percentage activity versus
distance plot for all (224) kinases. Prior to normalization, the raw data is
very difficult to interpret.

Additional file 8: Figure S8. Examples of kinase SAC score-distance
series. The upper two series (kinases KPCD and PIM1) show a negative
relationship between SAC score and bioactivity distance, whereas the
lower 2 series (kinases MK14 and ACK1) do not.

Additional file 9: Table S1. Kinase outliers not showing the expected
negative relationship between SAC score and bioactivity distance
according to preliminary analysis. Outlier group 1 consists of 43 kinases
and outlier group 2 consist of 39 kinases. Both groups only have 2 kinase
outliers in common (NEK6 and KPCI).

Additional file 10: Figure S9. MDS of kinases, zoomed in on outlier
group 2. Kinases from this group show high similarity to each other.
However, this apparent similarity is most likely due to the absence of
information (i.e. shared active compounds), and therefore does not
represent true similarity.

Additional file 11: Table S2. Kinases with 16 or fewer shared activities
with other kinases in the panel. These kinases were excluded from the
dataset after a preliminary analysis showed that they had too few shared
activities to be able to compare SAR similarities of kinases accurately.
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homologue 1; AKT2: V-akt murine thymoma viral oncogene homologue 2;
ATP: Adenosine triphosphate; BCR: Breakpoint cluster region protein;
CDK: Cyclin-dependent kinase; CDK6: Cell division protein kinase 6; CLK:
CDC-like kinase 1; CML: Chronic myelogenous leukemia; CSK21: Casein kinase
II subunit alpha; CSK22: Casein kinase II subunit alpha’; DAPK1: Death-
associated protein kinase 1; ECFP: Extended connectivity fingerprints;
FGFR1: Fibroblast growth factor receptor 1; IGF1R: Insulin-like growth factor 1
receptor; KIT: Mast/stem cell growth factor receptor; KPCA: Protein kinase C
alpha type; KPCB: Protein kinase C beta type; KPCI: Protein kinase C iota type;
LCK: Lymphocyte cell-specific protein-tyrosine kinase; LYN: V-yes-1
Yamaguchi sarcoma viral related oncogene homolog; MDS: Multi-
dimensional scaling; MK11: Mitogen-activated protein kinase p38 beta;
MK12: Mitogen-activated protein kinase p38 gamma; MK13: Mitogen-
activated protein kinase p38 delta; MK14: Mitogen-activated protein kinase
p38 alpha; NEK6: Never in mitosis A-related kinase 6; NEK7: Never in mitosis
A-related kinase 7; QSAR: Quantitative structure-activity relationship;
SAR: Structure-activity relationship; SMILE: Simplified molecular-input
line-entry; SRC: Proto-oncogene tyrosine-protein kinase Src; TC: Tanimoto
coefficient; TGFR1: Transforming growth factor-beta receptor type I;
VEGFR3: Vascular endothelial growth factor receptor 3; WNK2: Serologically
defined colon cancer antigen 43.
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