
Smith et al. Journal of Cheminformatics 2013, 5:35
http://www.jcheminf.com/content/5/1/35

SOFTWARE Open Access

Rubabel: wrapping open Babel with Ruby
Rob Smith1*, Ryan Williamson1, Dan Ventura1 and John T Prince2*

Abstract

Background: The number and diversity of wrappers for chemoinformatic toolkits suggests the diverse needs of the
chemoinformatic community. While existing chemoinformatics libraries provide a broad range of utilities, many
chemoinformaticians find compiled language libraries intimidating, time-consuming, arcane, and verbose. Although
high-level language wrappers have been implemented, more can be done to leverage the intuitiveness of
object-orientation, the paradigms of high-level languages, and the extensibility of languages such as Ruby. We
introduce Rubabel, an intuitive, object-oriented suite of functionality that substantially increases the accessibily of the
tools in the Open Babel chemoinformatics library.

Results: Rubabel requires fewer lines of code than any other actively developed wrapper, providing better object
organization and navigation, and more intuitive object behavior than extant solutions. Moreover, Rubabel provides a
convenient interface to the many extensions currently available in Ruby, greatly streamlining otherwise onerous tasks
such as creating web applications that serve up Rubabel functionality.

Conclusions: Rubabel is powerful, intuitive, concise, freely available, cross-platform, and easy to install. We expect it
to be a platform of choice for new users, Ruby users, and some users of current solutions.

Keywords: Chemoinformatics, Open Babel, Ruby

Background
Despite the fact that chemoinformatics tools have been
developed since the late 1990s [1], the field has yet to
rally in support of a single library. The intricacies of
the libraries combined with the low-level programming
prowess required for these languages present a consid-
erable barrier to adoption by less programming-oriented
practitioners. What’s more, the competing libraries don’t
share complete coverage of implemented tasks, mean-
ing that the practitioner, who may be struggling with
the language barrier, has to shoulder the additional bur-
den of being well versed in the differences between the
libraries, including different APIs, different IO interfaces
and different data type standards.
The Cinfony project [2] is an attempt to offer high level

access to three major existing chemoinformatics libraries
from Python [3], a high-level scripting language [4]. Cin-
fony’s use of Python greatly reduces the number of lines
of code required for a broad range of chemoinformatics

*Correspondence: 2robsmith@gmail.com; jtprince@chem.byu.edu
1Department of Computer Science, Brigham Young University, Provo, Utah,
USA
2Department of Chemistry, Brigham Young University, Provo, Utah, USA

tasks. Though it allows the user to access the functionality
of the component libraries from one Python script, Cin-
fony does not automatically manage underlying data types
nor the choice of which library to use for which func-
tion. This allows users more control over how Cinfony
works. However, as the authors acknowledge, it requires
users to have an intimate knowledge of the component
libraries in order to manage what data types, conventions,
and operations can be performed by each of the three
libraries it wraps. Despite the success of Cinfony, there is
still a need for simplified, high level access to common
chemoinformatics tasks.
Since most common tasks are available in any single

chemoinformatics library, wrappers for single tool kits are
widely used. Because these wrappers interface into a sin-
gle library, they have the potential for simpler interfaces
and easier extension.
Pybel [5,6], a Python toolkit inspired by the Daylight

project [7,8], wraps the chemoinformatics library Open
Babel [9]. Pybel has an active user base and is an actively
developed high-level solution to the accessibility problem
of the available chemoinformatics libraries. Still, Pybel’s
implementation in Python may not be the most intuitive

© 2013 Smith et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 2 of 10
http://www.jcheminf.com/content/5/1/35

interface for new users, who may not be strong program-
mers, or for Rubyists, who will miss multi-lined lambdas,
simple extension (i.e, open-classes), and Rubygems, Ruby’s
streamlined add-on installation tool [10].
In addition to Pybel, other attempts have been made to

make open source chemoinformatics libraries more acces-
sible. Indigo Python, a Python wrapper bundled with the
Indigo open source chemoinformatics library [11], is a
substantial improvement over the C++ library it wraps
in terms of reduction of lines of code (LOC) needed to
implement common tasks. RDKit [12] is a C++ library that
has a Python wrapper and provides substantial reduction
of LOC over direct access to the underlying C++ library.
Most other available toolkits are either proprietary (such
as OpenEye [13] and CACTVS [14]) or have not yet been
documented and developed to maturity.
Ruby has penetrated the applied sciences where the

need for a concise but powerful language meets appre-
ciation for an easy learning curve [15,16]. A minimal
learning curve, concise coding, and powerful language
paradigm have made Ruby an attractive option for coding
bioinformatics tools, such as BioRuby [17].
For those who are not comfortable enough with pro-

gramming to use the current tools, for those who prefer
the Ruby way, and for those who want to do more with
fewer lines of code, we present Rubabel. Rubabel offers a
convenient, intuitive molecule-centric interface and facile
intra-molecular navigation with minimal lines of code per
task. It is an easily installed, actively developed project
with a substantial amount of implemented functional-
ity and an arbitrarily accessible extension mechanism for
customization.

Implementation
Rubabel’s architecture interfaces with Open Babel
through its Ruby SWIG bindings (see Figure 1). Open
Babel is an established chemoinformatics library written
in C++ that provides a wide array of chemoinformatics
functionality for programmatic or command line usage.
Open Babel supports 111 chemical file formats, including
SMILES, SMARTS [18], and InChI. It has fingerprint sup-
port, bond perception, atom typing, image representation
capabilities, stereochemistry recognition, and forcefields
management, among other features. Its wide use is evi-
denced by its adoption by over 65 software applications,
libraries, web applications, and databases [11].
Open Babel’s acceptance rests at least partly on its

SWIG bindings [19] which allow it to be accessed from
languages other than C++. The bindings provide handles
for accessing the internals of Open Babel.

Ruby SWIG bindings
For those who are less confident in C++ programming
or aren’t familiar enough with the code base to know the

command line composition for their desired task, Open
Babel’s Ruby SWIG bindings provide an alternative solu-
tion. Although the bindings technically allow access to
Open Babel from Ruby, it quickly becomes evident that
the user is not convincingly spared from C++. An intimate
understanding of Open Babel’s implementation architec-
ture is required for many if not most tasks, and in some
cases an almost line-for-line translation fromC++ to Ruby
is necessary. For example, Listing 1 shows how to instan-
tiate a molecule from a SMILES string with the Ruby
bindings.

Listing 1 Creating a molecule from a SMILES string with
Open Babel Ruby bindings
obmol = OpenBabel::OBMol.new

obconv = OpenBabel::OBConversion.new

obconv.set_in_format("smi")

obconv.read_string(obmol,

"CN2C(=O)N(C)C(=O)C1=C2N=CN1C")

Rubyists will notice that this code seems strikingly more
like C++ than Ruby. Moreover, note that despite the
uncharacteristic simplicity of this example, the user still
needs to understand explicit details of the Open Babel
architecture including the OBMol and OBConversion
objects and modification methods for OBConversion. For
more complex but typical examples, such as highlight-
ing a substructure within a molecule in an image, the
LOC required are comparable to C++. Adding Ruby-style
objects and idioms to the SWIG bindings is the obvious
next step toward improving upon the Ruby SWIG.
Rubabel is much more than a wrapper that ports Open

Babel functionality to Ruby. Rubabel organizes the Open
Babel objects into a more intuitive structure and extends
the available behavior in a manner consistent with Ruby
idioms, which is beneficial to experienced Rubyists and
non-programmers alike, who both will find the interface
intuitive and straightforward.

Rubabel: augmentations to open babel
Rubabel’s objects are designed to be intuitive. Table 1 lists
the Rubabel objects which wrap Open Babel functional-
ity. Although the names for these objects correspond to
similarly named objects in Open Babel, Rubabel augments
Open Babel functionality substantially. Figure 2 lists some
of the novel methods offered by Rubabel, some of which
are not available in any other chemoinformatics toolkit.
Additionally, every Rubabel object has full access to the
behavior provided by the underlying Open Babel object.

Rubabel: Ruby idioms for concise and convenient code
Ruby is a language designed to be easy to use, intuitive,
and fun.We designed Rubabel to embody asmany of these

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 3 of 10
http://www.jcheminf.com/content/5/1/35

Figure 1 Rubabel Architecture. Rubabel reorganizes Open Babel functionality in an object-oriented architecture via the Ruby SWIG bindings and
adds significant novel functionality. Additionally, Rubabel facilitates the integration of Ruby’s substantial library of extensions. These include
debugging tools (Ruby Debugger), code testing (Rspec), graphic visualizations (Rubyvis), rapid dissemination of tools (Rubygems), web interfaces
(Sinatra), and scientific libraries (Sciruby).

admittedly subjective qualities as possible by designing
Rubabel object behavior in ways consistent with estab-
lished Ruby idioms for object behavior.

Object orientation
Rubabel’s object-oriented paradigm defines behaviors for
the objects with which they interact. For example, Open
Babel’s Tanimoto coefficient logic will always apply to

molecules, so in Rubabel that functionality is built into
a method on the Molecule object. Similarly, in Open
Babel, write methods for drawing molecules in image
files are located in the code base as discrete functions.
However, object-oriented methodology dictates that the
objects themselves—not external modules—should define
how they are printed. In Rubabel, write methods are
defined for Molecule. Another example of linking

Table 1 Rubabel objects

Molecule Wraps Open Babel’s OBmol object. Adds the ability to intelligently manipulate molecules as strings, transfer to and from
lists of atoms and bonds, add and modify atoms, explicit and general molecular matching, iterate over bonds or atoms,
copy molecules, png representation of the molecule, and fingerprinting.

Atom Wraps Open Babel’s OBatom object. Adds accessibility conveniences such as the ability to seamlessly create or access an
atom as an atomic number, the ability to intrinsically iterate through bonds and pass blocks to iterating loops, and the
ability to iterate through and optionally execute a block of code for each atom bonded to the current one.

Bond Wraps Open Babel’s OBBond object. Adds an accessor for a list of attached atoms, a seamless enumerator for attached
atoms, the ability to execute a block of code for each attached atom, and the ability to easily check if a given atom is
connected with this bond.

Smarts Wraps Open Babel’s smarts pattern object.

Rubabel’s object organization is an intuitive restructuring of Open Babel’s architecture. For example, molecule printing logic found in an external object in Open Babel
is moved inside the Molecule object. Rubabel’s objects have extended novel capabilities (detailed below).

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 4 of 10
http://www.jcheminf.com/content/5/1/35

Figure 2 Novel functionality in Rubabel. Besides providing access to native Open Babel functions, Rubabel provides a host of novel functionality.

behavior to the objects modified can be found in Rubabel
iterators. In Open Babel, each object has its own iterator
type as a separate object. In Ruby, iterators are implicit and
connected to the object iterated over. There is no need to
look up behavior because Rubabel’s iterators work exactly
like iterators over native Ruby objects.
By following the object-oriented paradigm, users can

instantly know what behavior is defined on any object by
simply typing <object name>.methods in an inter-
active Ruby console. Non-object-oriented code requires
digging through documentation or, if there isn’t any,
sourcecode. Both options are unappealing due to the time
commitment, while the latter option is inaccessible to
non-programmers.
Listing 2 is illustrative of how object-orientation facil-

itates more intuitive code. Through Rubabel’s explicit
Bond object, one can access a bond (line 3), upgrade its
order (line 3), and downgrade its order (line 4). One would
expect that the plus andminus operators to define the syn-
tax to increase or decrease a bond’s order. With Rubabel,
they are.

Listing 2 Ad-hoc bond modification
require "rubabel"

mol = Rubabel["CC"]

bond = mol[0].get_bond(mol[1]) + 1

now it is a double bond

bond -= 1

bond.order # => 1

Object-orientation reduces lines of code. When consid-
ering an SD file, it seems reasonable to think about each
entry in the file as a Molecule object. With Rubabel, you

can do exactly that by iterating through each Molecule
object in a file. Listing 3 shows how to open an SD file
and print out each molecule whose weight is in the range
(300,400) in just one line of code.

Listing 3 Report how many SD file records are within a
certain molecular weight range
require ‘rubabel’

puts Rubabel.foreach("benzodiazepine.sdf.

gz").count {|mol| (300..400)

=== mol.mol_wt }

String idiom
To assist in convenience and minimize syntax lookup
time, the Ruby idiom for strings is engineered for frequent
exposure in Rubabel. For example, the Molecule object
can be implicitly treated as a string, allowing splitting and
matching operations that are concise and intuitive. For
example, the user can collect all atoms with two bonds
(excluding implicit hydrogen atoms) and append a carbon
to the first atom in the filtered collection (see Listing 4).

Listing 4 Matching in Rubabel
require "rubabel"

Rubabel["C1CC12C3(C24CC4)CC3"].each_match

("[D2][D2]") {|match| match[0] << :C }

Additionally, Rubabel implements both split and append
methods for the Bond object that mirror the same behav-
ior defined in Ruby strings. Listing 5 shows an example
of splitting bonds. Lines 2-4 create a molecule, find each
single bond that links a carbon atom to an oxygen atom,

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 5 of 10
http://www.jcheminf.com/content/5/1/35

then splits those bonds. Line 5 appends a carbon and
an oxygen atom to mol using atomic numbers with the
append function. Line 6 does the same using the element
name.

Listing 5 Splitting and appending Molecule objects
require "rubabel"

mol = Rubabel["OCC"]

bonds = mol.matches("CO").map

{|c, o| c.get_bond(o) }

mol.split(*bonds)

mol << 6 << 8

mol << :C << :O

Because molecules are treated as lists of atoms, you can
quickly and easily access and modify specific atoms in a
molecule. Listing 6 demonstrates adding an ethyl group
atom-by-atom to the first carbon atom by indexing into
the Molecule (line 3).

Listing 6 Constructing a molecule atom-by-atom with the
Ruby string idiom in Rubabel
require "rubabel"

mol = Rubabel["OCC"]

mol[1] << :C << :C

No other toolkits have equivalent functions to the string
idiom in Rubabel.

Accessmethods
Rubabel is designed to simplify common IO tasks to pro-
vide the shortest path to chemoinformatics functionality.
Rubabel allows creation of Molecule objects from every
format Open Babel accepts, including SMILES strings (see
Listing 7). Note that Rubabel requires only one line where
the SWIG code requires 4 (compare with Listing 1).

7 Creating a molecule from a SMILES string with Rubabel
mol = Rubabel["CN2C(=O)N(C)C(=O)

C1=C2N=CN1C"]

Efficiency in accessing objects is very important to
reducing LOC and increasing intuition. Listing 8 gives
some examples of object traversal in Rubabel, highlight-
ing the amount of processing that can be done with very
few lines of code in Rubabel. With very few lines of code
and intuitive method names (select, find, reject), the user
is able to conduct significant operations on newly cre-
ated molecules. Lines 2-3 create a molecule then find the
atom(s) that contain a double bond. Line 4 finds all the
single- and double-bonded oxygen atoms in the molecule.
Line 5 first finds all oxygen atoms, then removes from that
list those that are bound to a carbon atom, yielding the
peroxy oxygen.

Listing 8 of objects in Rubabel
require "rubabel"

mol = Rubabel["NCC(O)CC(=O)CC"]

mol.find {|atom| atom.el == :O &&

atom.bonds.first.bond_order == 2 }

(two_bond_oxys, single_bond_oxys) =

mol.select(&:oxygen?).partition

(&:double_bond?)

mol.select {|atom| atom.el == :O }.reject

{|atom| atom.any? {|at| at.el == :C}}

Building
Rubabel offers multiple novel methods that assist in build-
ing and modifying molecules and bonds. Several, includ-
ing the bond order increment/decrement operator, split,
and match functions were already highlighted. Addition-
ally, the Molecule object defines adding and removing
atoms, as well as a mass method that calculates the mass
of the molecule taking into account the charge state.

Blocks
Blocks are dynamic sections of code with open scope,
sometimes several lines long, that allow injection of spe-
cific behavior into otherwise generic methods. This allows
greater code reuse, concise code, and places custom logic
next to the object it modifies instead of in a separate
function or an external library. Consider Listing 9. By
using find parameters in a block, Rubabel obtains a spe-
cific molecule in an SDF file in a more concise manner
than RDKit, a Python chemoinformatics toolkit, which
requires more control structure and logic (see Listing 10).

Listing 9 Finding a certain molecule in an SDF file in
Rubabel
require "rubabel"

mol = Rubabel.foreach("benzodiazepine.

sdf.gz").find {|mol| mol.title ==

"3016" }

Listing 10 Finding a certain molecule in an SDF file in
RDKit/Python
from rdkit import Chem

suppl = Chem.SDMolSupplier

(‘benzodiazepine.sdf’)

tgt=None

for mol in suppl:

if not mol: continue

if mol.GetProp(‘_Name’)==‘3016’:

tgt=mol

break

Additionally, blocksmake for easier synonymous code—
code that is different syntactically but equivalent func-

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 6 of 10
http://www.jcheminf.com/content/5/1/35

tionally. This increases the likelihood that a non-expert
user can ascertain the syntax of desired operations with
minimal reference to documentation while allowing more
experienced users the freedom to use coding styles they
are familiar and comfortable with.

Listing 11 Rubabel provides synonymous syntax
find all alpha carbons

mol = Rubabel["NCCC(=O)CC(O)C=C"]

alpha_carbons = mol.select do |alpha_c|

alpha_c.el == :C &&

alpha_c.any? do |carbonyl_c|

carbonyl_c.any? {|at| at.type == ‘O2’ }

end

end

another way to find all alpha carbons

alpha_carbons = mol.select do |alpha_c|

alpha_c.el == :C &&

alpha_c.any? do |carbonyl_c|

carbonyl_c.any? do |at|

at.el == :O &&

at.bonds.all? {|bond| bond.bond_order

== 2 }

end

end

end

another way to find all alpha carbons

alpha_carbons = mol.select do |alpha_c|

alpha_c.any? &:carbonyl_carbon?

end

In addition to the two examples given here, Listings 3
and 8 use blocks as well (lines 2 and 3-5, respectively).
They are powerful tools not available in languages like
C++ and Python.

Custom behavior
We have provided explicit Molecule methods for com-
mon tasks such as Tanimoto coefficient calculation,

substructure highlighting, and graph diameter measure-
ment. In the likely event that users need custom extended
behavior in Rubabel, they can take advantage of what are
known as Ruby open classes. Objects in Ruby are more
accessible to behavior modification than in some other
languages. Writing custom behavior into Rubabel is anal-
ogous to using a plugin. AlthoughOpen Babel has a plugin
mechanism which allows external code to be integrated
into the toolkit, usage is not trivial. In contrast, Ruba-
bel can be modified and accessed with ease using Ruby’s
open classes. A class is open when it allows any exter-
nal code to add or modify functionality in the local scope.
For example, the authors are currently developing a plugin
for Rubabel that defines fragmentation behavior for lipid
molecules. They require the molecule behavior defined by
Rubabel and also need to add descriptions of how lipids
fragment in order to accomplish their task. With Rubabel,
this is as simple as adding a few lines in a new Ruby file, as
in Listing 12.

Listing 12 Defining custom behavior for Rubabel: it is
arbitrarily simple to add custom behavior to Rubabel by
leveraging Ruby’s open classes
require "rubabel"

class Molecule

def new_behavior

#add custom behavior here

end

end

mol = Rubabel::Molecule.new

mol.new_behavior #use custom behavior here

By using Rubabel, custom behavior can be defined and
shared amongst lab groups and colleagues rapidly and
easily.

Rubabel: extensions from Ruby
Rubabel has access to the Ruby community’s many actively
developed extensions (see Figure 1 and Table 2 for exam-
ples). These extensions and the many more like them

Table 2 Ruby extensions accessible to Rubabel

Extension Possible application with Rubabel

Sinatra [20], a web application framework Quick and easy webapp GUI for Open Babel, allowing multi-platform point and click chemoinformatics

Sciruby [16], a scientific library Plotting, statistical tools, access to R programming language for Rubabel results

Rubyvis graphical library [22] Open ended graphical software to make clean representations of numerical data

IRB, the interactive Ruby shell Quick access to Rubabel and Open Babel from a terminal

Rspec, an automated code testing library [21] Automated unit tests for software built with Rubabel (No Python equivalent due to Ruby’s block ability)

Ruby debugger [23] Step into executed code with a live IRB session to ferret out bugs

Rubygems, a distribution tool [10] Easily distribute and integrate applications written with Rubabel with a one-line install

Ruby has an active community of contributors who are constantly developing open source tools and frameworks.

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 7 of 10
http://www.jcheminf.com/content/5/1/35

provide diverse and useful benefits such as quicker pro-
gramming, easy debugging, and easy installation. Some
Ruby add-ons, like Sinatra [20], a concise web application
framework, and Rspec [21], a test-driven development
suite, have no equivalent of which we are aware in other
languages such as Python.

Building a Rubabel web app in Sinatra
As an example of the capabilities of these extensions,
consider Sinatra. Using Sinatra, it is possible to give prac-
titioners online access to Rubabel in very few lines of code.
Applications can easily be developed to serve up both the
native functionality of Rubabel as well as custom function-
ality developed as needed. To demonstrate the brevity of
code required, consider the task of adding explicit hydro-
gen atoms to a molecule and printing the SVG image of
the new molecule. Assuming that the user has a standard
install of Ruby, which includes Rubygems and the prereq-
uisites for Open Babel, the entire environment for Sinatra
and Rubabel can be installed in one line (see Listing 13).

Listing 13 Installing Rubabel and Sinatra
gem install sinatra rubabel

The functionality for the web app requires only five lines
of code (see Listing 13). We place these in the file
mol_h.rb.

Listing 14 A web application that adds a hydrogen atom to
a molecule
require "sinatra"

require "rubabel"

get "/add_h/:mol" do |mol|

Rubabel[mol].add_h!.write("test.svg")

end

Now, to invoke our web server locally, we simply open
a terminal and write: ruby mol_h.rb The web service
is now available. Now we can convert a smiles string to
a molecule, then add an explicit hydrogen and print the
resulting molecule simply by typing http://0.0.0.0:
4567/add_h/C into a browser window. This results in
a web page that displays the SVG of the resulting molecule
(see Figure 3). The address http://0.0.0.0:4567/
accesses the local web server. The argument add_h tells
Rubabel that we want to add a hydrogen onto the last
argument of the url, the SMILES string C.
The simplicity of this example readily extends to virtu-

ally all facets of Rubabel.

The interactive Ruby shell (IRB)
Though space will not permit an exhaustive considera-
tion of all Ruby extensions that can be used in conjunction
with Rubabel, the interactive Ruby shell (IRB) is of special

Figure 3 Customweb apps with Rubabel. The Sinatra toolkit for
Ruby allows easy web access for Rubabel and add-ons.

import. As with languages like Python, Ruby’s interactive
shell allows users a ready sandbox to run quick exper-
iments, test syntax, or debug their scripts. IRB can be
installed (provided the user has Rubygems) by typing gem
install irb. Simply enter the IRB environment (irb
at the terminal) and type require ‘rubabel’ and all
of Rubabel’s functionality is accessible in an interactive
terminal. This is particularly useful given the number of
tasks that Rubabel can accomplish in just one line. Rubabel
in IRB provides an interactive sandbox to experiment in
realtime with instant feedback—a refreshing alternative to
stringing together guess-and-check command line argu-
ments. As mentioned before, this is also a fantastic and
fast way to look up (via <object name>.methods) or
check syntax.

Results and discussion
To provide a quantitative analysis of Rubabel compared to
existing tools, we compare the required number of lines
of code (LOC) from the Chemistry Toolkit Rosetta Wiki
tasks [24]. The CTRwiki provides code snippets for 18
common chemoinformatics tasks for more than 17 toolk-
its in various programming languages. Since there are
several toolkits with only one or two solutions we con-
sider only open source solutions with at least 5 of the CTR
tasks documented. We use the CTR tasks implemented
as a quantitative measure of accessibility to functionality
and not necessarily as an absolute measure of what is or
is not implemented in a toolkit. There are many toolkits
out there, with varying off-the-shelf capabilities and doc-
umentation. Since these toolkits are wrappers with access
to the underlying libraries, it is possible, given enough
time and code, to do anything in them that the underlying

http://0.0.0.0:4567/add_h/C
http://0.0.0.0:4567/add_h/C
http://0.0.0.0:4567/

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 8 of 10
http://www.jcheminf.com/content/5/1/35

Figure 4 Average lines of code per CTR task. On average, Rubabel requires fewer lines of code than any other toolkit.

Figure 5 Number of CTR tasks listed. Rubabel has more tasks listed than any other toolkit.

Figure 6 Lines of code per CTR task. Rubabel has more CTR tasks listed than any other toolkit, and also requires fewer lines of code than any other
toolkit on every task except task 9, where Pybel uses one fewer line of code, and task 10, where rdkit/Python is slightly more concise.

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 9 of 10
http://www.jcheminf.com/content/5/1/35

library does. However, the point of this comparison is
to show off-the-shelf accessibility, scope, and verbosity.
From a user perspective, having a listing of a core set
of basic behaviors is useful not only from a comparative
standpoint, but because of the appeal of off-the-shelf code
to accomplish a standard task. That the CTR tasks are
acceptable and demonstrative is suggested by the num-
ber of platforms that have adopted them, including Open
Babel, which has provided a tutorial showing how to
do each of them. Though a lack of a CTR entry for a
given method does not indicate that the task is not pos-
sible, it means that the recipe for the task is not available
in this convenient location and is thus harder to obtain
than the tasks that are posted there. The CTR tasks also
provide a convenient and established set of functional-
ity to demonstrate a baseline set of features provided in
Rubabel.
Rubabel dominates Indigo C++ in number of lines of

code per task, and is more concise than other scripting
language toolkits (see Figure 4). Rubabel has fewer lines of
code per task on average than Pybel. Rubabel also imple-
ments almost double the number of CTR tasks as Pybel
(see Figure 5), and when broken out by task, we can see
that Rubabel is more concise than Pybel on each task
for which they are both implemented save one (task 9)
(see Figure 6). Moreover, Rubabel is more concise than all
other methods for each task save rdkit/Python on task 10.
Rubabel has some features which users may find useful

that are not available in Pybel. These include an explicit
Bond object and the associated functionality, simpler
atom interrogation, enumerable atoms and bonds, intu-
itively named wrapped output and input options (obviat-
ing the need to dig through Open Babel documentation to
enumerate them), more Molecule object modifications
(e.g. adding hydrogens at a specific pH), and simpler out-
put (Rubabel infers the output format from the filename).
Additionally, there are several extensions written in Ruby
that do not yet have equivalents in Python (see Table 2).
Rubabel is open source software released under the lib-

eral MIT license. The license and source code, as well as
instructions on how to install, are found at https://github.
com/princelab/rubabel. The project is available as a Ruby
gem [10], which makes it easy to install. For those who
already have Ruby, Rubygems, and Open Babel’s prereq-
uisites installed, Rubabel and all requirements (includ-
ing Open Babel) can be installed with one line: gem
install rubabel. Rubabel can also be downloaded
and built from source. The instructions for this are avail-
able on the github site mentioned above.

Conclusions
Chemists are not necessarily computer scientists. The
more concise, clear, and accessible a toolkit is, the less
time they spend learning syntax and the more time they

spend solving chemistry problems. Ruby is designed to
be intuitive, concise, and powerful. Rubabel wraps Open
Babel in a way that is true to these qualities. Rubabel
provides more intuitive object organization than Open
Babel and provides extra functionality designed to stream-
line code writing by limiting both the time necessary to
look up function syntax and the number of lines of code
required. Rubabel also provides access to the many open
source extensions available for Ruby. Rubabel’s concise
and intuitive design makes common chemoinformatics
tasks readily accessible from scripts, interactive shells, or
custom applications in few lines of code and with less time
spent learning APIs. Intentionally intuitive design, concise
code idioms, and simplified common tasks make Rubabel
appealing to Rubyists, non-programmers, and a segment
of the users of other platforms.

Availability and requirements
Project name: Rubabel
Project homepage: https://github.com/princelab/rubabel
Operating System(s): Platform independent
Programming language: Ruby
Other requirements:Open Babel’s Install Requirements,
Rubygems
License:MIT
Any restrictions to use by non-academics: None

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
JP is the founding developer of Rubabel. RS and RW extended Rubabel. DV
provided valuable guidance and editing. All authors read and approved the
final manuscript.

Acknowledgements
RS acknowledges the NSF (DGE-0750759) for financial support.

Received: 6 December 2012 Accepted: 2 April 2013
Published: 24 July 2013

References
1. Hann M, Green R: Chemoinformatics – a new name for an old

problem? Curr Opin Chem Biol 1999, 3(4):379–383. [http://www.
sciencedirect.com/science/article/pii/S136759319980057X]

2. O’Boyle NM, Hutchison GR: Cinfony – combining open source
cheminformatics toolkits behind a common interface. Chem Cent J
2008, 2:24. [http://dx.doi.org/10.1186/1752-153X-2-24]

3. Python. [http://www.python.org]
4. Ousterhout J: Scripting: higher level programming for the 21st

century. [http://www.math.pku.edu.cn/teachers/qiuzy/plan/lits/
scripting.html]

5. O’Boyle N, Morley C, Hutchison G: Pybel: a Python wrapper for the
OpenBabel cheminformatics toolkit. Chem Cent J 2008, 2:5–11.
[http://dx.doi.org/10.1186/1752-153X-2-5]

6. OpenBabel python. [http://openbabel.sourceforge.net/wiki/Python]
7. Daylight toolkit: daylight chemical information systems, Inc.: Aliso

Viejo, CA. [www.daylight.com]
8. PyDaylight: Dalke scientific software LLD: Santa Fe, NM.

[www.dalkescientific.com]
9. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G:

Open Babel: an open chemical toolbox. J Cheminformatics 2011,
3:33–48. [http://dx.doi.org/10.1186/1758-2946-3-33]

https://github.com/princelab/rubabel
https://github.com/princelab/rubabel
http://www.sciencedirect.com/science/article/pii/S136759319980057X
http://www.sciencedirect.com/science/article/pii/S136759319980057X
http://dx.doi.org/10.1186/1752-153X-2-24
http://www.python.org
http://www.math.pku.edu.cn/teachers/qiuzy/plan/lits/scripting.html
http://www.math.pku.edu.cn/teachers/qiuzy/plan/lits/scripting.html
http://dx.doi.org/10.1186/1752-153X-2-5
http://openbabel.sourceforge.net/wiki/Python
www.daylight.com
www.dalkescientific.com
http://dx.doi.org/10.1186/1758-2946-3-33

Smith et al. Journal of Cheminformatics 2013, 5:35 Page 10 of 10
http://www.jcheminf.com/content/5/1/35

10. Rubygems. [http://www.rubygems.org]
11. Pavlov D, Rybalkin M, Karulin B, Kozhevnikov M, Savelyev A, Churinov A:

Indigo: universal cheminformatics API. J Cheminformatics 2011,
3(Supplement 1):4. [http://dx.doi.org/10.1186/1758-2946-3-S1-P4]

12. RDKit. [http://www.rdkit.org]
13. OEChem: OpenEye Scientific Software: Sante Fe, NM. [http://www.

eyesopen.com]
14. Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki S: Computation and

management of chemical properties in CACTVS: An extensible
networked approach toward modularity and compatibility.
J Chem Inf Comput Sci 1994, 34:109—116. [http://pubs.acs.org/doi/abs/
10.1021/ci00017a013]

15. Ruby. [http://www.ruby-lang.org/]
16. SciRuby. [http://www.sciruby.com]
17. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby:

bioinformatics software for the Ruby programming language.
Bioinformatics 2010, 26(20):2617—2619. [http://bioinformatics.
oxfordjournals.org/content/26/20/2617.abstract]

18. SMARTS - A language for describing molecular patterns.
[http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html]

19. SWIG. [http://www.swig.org]
20. Sinatra Ruby web framework. [http://www.sinatrarb.com]
21. RSpec. [http://rspec.info/]
22. Rubyvis, a Ruby graphical plotting library. [http://rubyvis.rubyforge.

org/]
23. Ruby-debug. [http://bashdb.sourceforge.net/ruby-debug.html]
24. Chemistry toolkit Rosetta Wiki. [http://ctr.wikia.com/wiki/]

doi:10.1186/1758-2946-5-35
Cite this article as: Smith et al.: Rubabel: wrapping open Babel with Ruby.
Journal of Cheminformatics 2013 5:35.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://www.rubygems.org
http://dx.doi.org/10.1186/1758-2946-3-S1-P4
http://www.rdkit.org
http://www.eyesopen.com
http://www.eyesopen.com
http://pubs.acs.org/doi/abs/10.1021/ci00017a013
http://pubs.acs.org/doi/abs/10.1021/ci00017a013
http://www.ruby-lang.org/
http://www.sciruby.com
http://bioinformatics.oxfordjournals.org/content/26/20/2617. abstract
http://bioinformatics.oxfordjournals.org/content/26/20/2617. abstract
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.swig.org
http://www.sinatrarb.com
http://rspec.info/
http://rubyvis.rubyforge.org/
http://rubyvis.rubyforge.org/
http://bashdb.sourceforge.net/ruby-debug.html
http://ctr.wikia.com/wiki/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Ruby SWIG bindings
	1

	Rubabel: augmentations to open babel
	Rubabel: Ruby idioms for concise and convenient code
	Object orientation
	2
	3

	String idiom
	4
	5
	6

	Access methods
	7
	8

	Building
	Blocks
	9
	10
	11

	Custom behavior
	12

	Rubabel: extensions from Ruby
	Building a Rubabel web app in Sinatra
	13

	The interactive Ruby shell (IRB)

	Results and discussion
	Conclusions
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

