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The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation
of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a
compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the
basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the
compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for
molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal
with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis
of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of
metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline.
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Introduction

Mass spectrometry (MS) is a key analytical technology
for detecting and identifying small biomolecules such as
metabolites [1-3]. It is orders of magnitude more sen-
sitive than nuclear magnetic resonance (NMR). Several
analytical techniques have been developed, most notably
gas chromatography MS (GC-MS) and liquid chromatog-
raphy MS (LC-MS). Both analytical setups have their
advantages and disadvantages, see Section “Experimental
setups” for details.

In recent years, it has been recognized that one of
the most important aspects of small molecule MS is
the automated processing of the resulting data. In this
review, we will cover the development of computational
methods for small molecule mass spectrometry during
the last decades. Here, the term “small molecule” refers
to all small biomolecules excluding peptides. Obviously,
our review cannot be complete: In particular, we will not
cover the “early years” of computational mass spectrom-
etry of small molecules. First rule-based approaches for
predicting fragmentation patterns, as well as explaining
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experimental mass spectra with the help of a molecu-
lar structure, were developed as part of the DENDRAL
project that started back in 1965 [4-7]; see also Chapter 7
of [8]. Citing Gasteiger et al. [9]: “However, it is sad
to say that, in the end, the DENDRAL project failed in
its major objective of automatic structure elucidation by
mass spectral data, and research was discontinued”

We will not cover methods that deal with process-
ing the raw data, such as de-noising and peak picking,
as this is beyond the scope of our review; see Section
“Software packages” for a list of available software pack-
ages for this task. Furthermore, we do not cover the
problem of aligning two or more LC-MS or GC-MS runs
[10-13]. Finally, we will not cover computational methods
that deal with the chromatography part of the analysis,
such as predicting retention indices [14,15].

Structure confirmation of an unknown organic com-
pound is always performed with a set of independent
methods, in particular NMR. The term “structure elucida-
tion” usually refers to full de novo structure identification
of a compound, including stereochemical assignments. It
is commonly believed that structure elucidation is impos-
sible using MS techniques alone, at least without using
strong background information. We will not cover this
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aspect, but concentrate on the information that MS exper-
iments can give.

“Computational mass spectrometry” deals with the
development of computational methods for the auto-
mated analysis of MS data. Over the last two decades,
much research has been focused on methods for analyz-
ing proteomics MS data, with literally hundreds of articles
being published in scientific journals [16-21]. The pro-
teomics field has benefited tremendously from this devel-
opment; often only the use of these automated methods
enables high-throughput proteomics experiments. Com-
putational methods for the analysis of proteins and pep-
tides, as well as DNA and RNA [22,23], glycans [24-26],
or synthetic polymers [27,28] are also part of computa-
tional mass spectrometry, but outside the scope of this
review. Finally, disclosing methods is important for repro-
ducible science. Thus, we will also not cover “anecdo-
tal” computational MS where an automated method is
mentioned in a paper, but no details of the method are
provided.

Review of reviews

Existing reviews on computational MS for small
molecules, usually focus on a much more narrow area of
the field such as raw data processing [29], metabolomics
databases and laboratory information management sys-
tems [30], or metabolite identification through reference
libraries [31]. Other reviews simply list available tools
for processing the data without discussing the individual
approaches [32].

A broad overview on experimental as well as theoretical
structure elucidation techniques for small molecules using
mass spectrometry is given in [33]. Methods specific
for qualitative and quantitative metabolomics using LC-
MS/MS are covered in [34]. Methods specific for metabo-
lite profiling by GC-MS are covered in [35]. An overview
of isotope pattern simulation is given in [36]. Annotation
and identification of small molecules from fragmenta-
tion spectra using database search as well as de novo
interpretation techniques is covered in [37].

For a general introduction to metabolomics and
metabolomic profiling see [2,3,38]; for recent work in the
field see [39].

Experimental setups

Analysis of small molecules by GC-MS is usually per-
formed using Electron Ionization (EI). Historically seen,
El is the oldest ionization technique for small-molecule
investigations. Because of the selected constant ioniza-
tion energy at 70 eV, resulting fragment-rich mass spectra
are, in general, consistent across instruments, and spe-
cific for each compound. A major disadvantage of mass
spectra obtained under EI conditions is the low abundant
or missing molecular ion peak; to this end, the mass of
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the compound is often unknown. GC-MS requires that an
analyte is volatile and thermally stable. For non-volatile
analytes such as polar compounds, chemical derivatiza-
tion has to be performed.

Recently, LC-MS has been increasingly used for the
analysis of small molecules. Here, compounds are frag-
mented using tandem MS, for example by Collision
Induced Dissociation (CID). This has the advantage that
the mass of all molecular ions is known, which is partic-
ularly beneficial for de novo approaches discussed below.
Unfortunately, tandem mass spectra are not as repro-
ducible as EI spectra, in particular across different instru-
ments or even instrument types [40]. Furthermore, using
different collision energies can make tandem mass spec-
tra hard to compare. Comparing spectra from differ-
ent instrument types, only 64—89% of the spectra pairs
match with more than 60% identity, depending on the
instrument pair [41]. Finally, tandem mass spectra usually
contain much less fragments than EI fragmentation spec-
tra. Chemical derivatization can dramatically increase
the sensitivity and specificity of LC-MS for less polar
compounds [42].

Several methods have been proposed to create more
reproducible and informative tandem MS spectra. For
example, to increase the number of fragments, tandem
MS spectra are often recorded at more than one frag-
mentation energy. Alternatively, “CID voltage ramping”
continuously increases the fragmentation energy during a
single acquisition [43]. Also, some progress has been made
to normalize fragmentation energies across instruments
and instrument types [40,44,45].

Besides the two “standard” experimental setups
described above, many other setups have been developed:
This includes “alternative” ionization techniques such
as Matrix-Assisted Laser Desorption/Ionization [46],
Atmospheric Pressure Chemical Ionization [47], Atmo-
spheric Pressure Photoionization [48], and Desorption
Electrospray Ionization [49]. Also several chromato-
graphic methods such as High Performance LC [50] and
Ultra High Performance LC (UHPLC) [51] have been
developed. In particular, a sensitive capillary UHPLC
shows good results in lipid identification [52]. Covering
the details of these modified setups is far beyond the
scope of this review. From the computational side, we
can usually classify these modified setups with regards
to the two “standard” setups: For example, is the mass
of the molecular ion known (LC-MS/MS) or unknown
(GC-EI-MS)? Is the fragmentation spectrum rich (GC-
EI-MS) or sparse (LC-MS)? What is the mass accuracy
of the measurement (see below)? Given that new MS
technologies and experimental setups are constantly
being developed, we see it as a prerequisite for a “good”
method from computational MS that it is not targeted at
one particular experimental setup. Note, though, that the
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effort required for adapting a method can differ signifi-
cantly: For example, methods for identifying molecular
formulas from isotope patterns (see Section “Molecular
formula identification”) can be applied to any experi-
mental setup where isotope patterns are recorded. In
contrast, rule-based prediction of fragmentation spectra
(see Section “In silico fragmentation spectrum predic-
tion”) requires expert-curated “learning” of fragmentation
rules.

Many methods for the computational analysis of small
molecule MS, that go beyond the straightforward library
search, require that masses in the mass spectra are mea-
sured with an appropriate mass accuracy. It appears that
this mass accuracy is much more important for the
computational analysis than the often-reported resolv-
ing power of MS instruments. Historically, GC-MS is
often performed on instruments with relatively bad mass
accuracy (worse than 100 ppm, parts per million). In
contrast, LC-MS and tandem MS are often performed
on instrumental platforms (such as Orbitrap or orthog-
onal Quadrupole Time-of-Flight MS) that result in a
much better mass accuracy, often below 10 ppm or bet-
ter. This refers to the mass accuracy that we can expect
in everyday use of the instrument, not to the “anecdotal
mass accuracy” of a single measurement [53]. It must be
understood, though, that this is not a fundamental prob-
lem of GC-MS; in fact, GC-MS measurements of high
mass accuracy are increasingly reported in the literature
[54-56].

Reporting standards for metabolomics analysis

For the maturation of metabolomics the lack of stan-
dards for presenting and exchanging data needs to
be filled. MIAMET (Minimum Information About a
METabolomics experiment) [57] suggests reporting stan-
dards regarding experimental design, sample preparation,
metabolic profiling design and measurements. ArMet [58]
is a data model that allows formal description to specify
the full experimental context. The Metabolomics Stan-
dards Initiative (MSI) [59] develops guidelines and stan-
dards for sharing high-quality, structured data following
the work of the proteomics community. The Data Analysis
Working Group (DAWG) [60] as part of the MSI proposed
reporting standards for metabolomics studies that include
a reporting vocabulary and will help reproducing these
studies and drawing conclusions from the resulting data.
The Chemical Analysis Working Group (CAWG) estab-
lished confidence levels for the identification of non-novel
chemical compounds [61], ranging from level 1 for a rig-
orous identification based on independent measurements
of authentic standards, to unidentified signals at level 4.
The NIH Metabolomics Fund recently supported an ini-
tiative to create a repository that enforces the submission
of metadata.
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Data storage and spectral libraries

To allow data-driven development of algorithms for
small molecule identification, mass spectrometric
reference datasets must be made publicly available
via reference databases. Examples of such databases
include MassBank [62,63], METLIN [64,65], Madison
Metabolomics Consortium Database (MMCD) [1], Golm
Metabolome Database (GMD) [66], the Platform for
RIKEN Metabolomics (PRiMe) [67], or MeltDB [68].
Unfortunately, making available experimental data is
much less pronounced in the metabolomics and small-
molecule research community, than it is in proteomics or
genomics. For example, several of the above-mentioned
databases do not allow for the batch download of the
database. Citing [69], “to make full use of research data,
the bioscience community needs to adopt technologies
and reward mechanisms that support interoperability
and promote the growth of an open ‘data commoning’
culture” Possibly, the MetaboLights database that is part
of the ISA (Investigation, Study, Assay) commons frame-
work can fill this gap. Note that the PubChem database
allows free access to more than 35 million molecular
structures, and this includes batch download of the data.

Besides the open (or partly open) libraries mentioned
above, there exist two important commercial libraries:
The National Institute of Standards and Technology
(NIST) mass spectral library (version 11) contains EI spec-
tra of more than 200 000 compounds; the Wiley Registry
(9th edition) contains EI spectra of almost 600 000 unique
compounds. For comparison, the GMD [66] contains EI
fragmentation mass spectra of about 1600 compounds;
and the FiehnLib library contains EI spectra for more than
1 000 metabolites [70].

The size of tandem MS libraries is still small, compared
to EI libraries (see Figure 1). The NIST 11 contains col-
lision cell spectra for about 4 000 compounds. The Wiley
Registry of Tandem Mass Spectral Data [71,72] com-
prises positive and negative mode spectra of more than
1200 compounds. As for EI spectra, both databases are
commercially available.

As even the commercial libraries are small, there have
been several attempts to make tandem mass spectra pub-
licly available. METLIN [64] contains high resolution tan-
dem mass spectra for more than 10000 metabolites for
diagnostics and pharmaceutical biomarker discovery and
allows to build a personalized metabolite database from its
content [73]. MassBank [62,63] is a public repository with
more than 30 000 spectra of about 4 000 compounds col-
lected from different consortium members. The MMCD
[1] is a hub for NMR and MS spectral data contain-
ing about 2 000 mass spectra from the literature col-
lected under defined conditions. Some databases address
specific research interests. The Human Metabolome DB
[74,75] comprises reference MS-MS spectra for more than
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Figure 1 Number of El spectra (top) and tandem mass spectra (bottom) in NIST and Wiley Registry from 2000 until 2011.

2 500 metabolites found in the human body. The Platform
for RIKEN Metabolomics (PriMe) [67,76] collects MS”
spectra for research on plant metabolomics.

Searching spectral libraries

The usual approach for identification of a metabolite is
looking it up in a spectral library. Database search requires
a similarity or distance function for spectrum match-
ing. The most fundamental scorings are the “peak count”
family of measures that basically count the number of
matching peaks. A slightly more complex variant is tak-
ing the dot product of the two spectra, taking into account
peak intensities.

Establishing the confidence is the more difficult part
of compound identification using library search [31].
False negative identifications occur if the spectrum of
the query compound differs from the spectrum in the
library, for example due to contaminations, noise (espe-
cially in low signal spectra), or different collision energies
(CID). A reliable identification of a compound depends
on the uniqueness of its spectrum, but the presence and
intensity of peaks across spectra is highly correlated, as

these depend on the non-random distribution of molec-
ular (sub-)structures. Therefore, structurally related com-
pounds generally have similar mass spectra. Hence, false
positive hits may hint at correct “class identifications’, see
Section “Searching for similar compounds” below. Differ-
ent from proteomics, False Discovery Rates (FDR) cannot
be estimated as no appropriate decoy databases can be
constructed. Usually, confidence in search results must be
manually assessed by the user, based on the used search
algorithm and the quality of spectrum and library [77].
Another method that overcomes this limitation is the cal-
culation of fragmentation trees from fragmentation spec-
tra, see Section “Fragmentation trees” below. For a review
on using spectral libraries for compound identification,
see [31].

Electron ionization fragmentation spectra

To compare EI mass spectra, a huge number of scorings
(or similarity measures) have been developed over the
years. In 1971, the Hertz similarity index was introduced
[78], representing the weighted average ratio of the two
spectra. The Probability Based Matching (PBM) [79,80]
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takes into account that some peaks are more informa-
tive than others. Atwater et al. [81] statistically evaluated
the effects of several parameters on the PBM system, to
provide a quantitative measure of the predicted reliability
of the match. SISCOM [82] encodes spectra by selecting
the most informative peaks within homologous ion series.
Computing the dot product cosine of two mass spectra
(that is, the inverse cosine of the dot product of the nor-
malized spectra) was used in the INCOS data system [83].
Stein and Scott [84] evaluated normalized Euclidean dis-
tances [85], PBM, Hertz similarity index, and dot product
for searching EI databases. Among these, they found the
dot product to perform best. They proposed a composite
search algorithm that optimizes the cosine score by vary-
ing the scaling and mass weighting of the peak intensities.
Koo et al. [86] introduced novel composite similarity mea-
sures that integrate wavelet and Fourier transform coeffi-
cients, but found only a slight improvement over cosine
correlation or the composite similarity measure. Kim
et al. [87] showed how to find optimal weight factors for
fragment masses using a reference library.

Regarding the differentiation between true and bogus
hits in the database, not much progress has been made:
Probabilistic indicators of correct identifications using
“match factors” were introduced in [88]. Jeong et al. [89]
used an empirical Bayes model to improve the accuracy of
identifications and gave a false positive estimate. For this
purpose, a competition score was added to the similarity
score, based on the similarity score to other spectra in the
library.

Tandem mass spectra

We noted above that LC-MS/MS is much less repro-
ducible than fragmentation by GC-MS (see Figure 2).
Reliable library identifications can be achieved when a
spectrum is acquired under the same conditions as the
reference spectrum [90]. For each compound, libraries
must contain tandem mass spectra at different colli-
sion energies and replicates on different instruments, to
allow for an effective identification [91]. For example,
Oberacher and coworkers [71,72,92] presented an inter-
instrument and inter-laboratory tandem mass spectral
reference library obtained using multiple fragmentation
energy settings.

For searching in tandem mass spectral libraries it is pos-
sible to start with a precursor ion mass filtering with a
specific m/z or mDa range. In case the actual compound
is not in the database, it can be beneficial to omit this fil-
tering step. This may reveal valuable information about
structurally similar compounds [92]. Subsequently, simi-
lar approaches as for EI mass spectra can been applied,
such as PBM [79,80] or dot product cosine [84,93]. Again,
intensities can be weighted using peak masses [62,63]. The
scoring in [92] extends the common peak count. Zhou
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Figure 2 Inter-instrument comparability of dixyrazine-specific
tandem mass spectra collected on different instrumental
platforms. Figure provided by Herbert Oberacher, compare to Figure
one in Oberacher etal [71].

et al [94] proposed a support vector machine (SVM)-
based spectral matching algorithm to combine multiple
similarity measures. Hansen and Smedsgaard [95] used
the Jeffrey-Matusitas distance [96] to find a unique corre-
spondence between the peaks in the two spectra.

X-Rank replaces peak intensities by their rank, then esti-
mates the probability that a peak in the query spectrum
matches a peak in the reference spectrum based on these
ranks [97]. Oberacher et al [71,72] tackled the problem
of low reproducibility of metabolite CID fragmentation
using a dynamic intensity cut-off, counting neutral losses,
and optimizing the scoring formula. To improve running
times, the database can be filtered using the most intense
peaks and user-defined constraints [98].

Molecular formula identification

One of the most basic — but nevertheless highly impor-
tant — steps when analyzing an unknown compound, is
to determine its molecular formula, often referred to as
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the “elemental composition” of the compound. Common
approaches first compute candidate molecular formulas
using a set of potential elements. The six elements most
abundant in metabolites are carbon (C), hydrogen (H),
nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)
[99]. For each candidate molecular formula, an isotope
pattern is simulated and compared to the measured one,
to determine the best matching molecular formula. For
this purpose, high mass accuracy is required and is nowa-
days available from a multitude of MS platforms. The
molecular formula of the compound can serve as a basis
for subsequent structure elucidation. Some software pack-
ages for molecular formula identification using isotope
patterns are summarized in Table 1.

Table 1 Software for the three basic steps of molecular
formula identification using isotope patterns

Decomposing monoisotopic peaks

Decomp [100,101] for arbitrary alphabets of elements
requires only little memory
swift in practice

SIRIUS [102,103]* implementing Decomp approach for MS

decomposing real-valued masses

“Seven Golden to filter molecular formulas

Rules” [104]
Simulating isotope patterns

IsoPro [105] multinomial expansion to predict “center masses”
memory- and time-consuming

Mercury [106] pruning by probability thresholds and/or
mass range
reduced memory and time consumption
reduced accuracy of the predictions

Emass [1071* & iterative (stepwise) computation of isotope

SIRIUS [102]* pattern
probability-weighted center masses
probabilities and masses are updated as atoms
are added

IsoDalton [108] models the folding procedure as a Markov
process

BRAIN [1097* Newton-Girard theorem and Vietes formulae to
calculate intensities and masses

Fourier [110]* 2D Fast Fourier Transform that splits up the
calculation in a coarse and a fine structure
running time improvement for large compounds

Scoring candidate compounds

Sigmafit commercial software by Bruker Daltonics

SIRIUS [102]* Bayesian statistics for scoring intensities and
masses of the isotope pattern

MZmine [111] simple scoring based only on intensities

"Recommended tools.
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Different from the above, some authors propose to use
molecular structure databases to determine the candidate
molecular formulas [112]. This “simplifies” the problem
as the search space is severely restricted; but only those
molecular formulas can be determined where a com-
pound is available in the structure database. To this end,
we will ignore this somewhat arbitrary restriction of the
search space.

In the following, we assume that elements are unlabeled
or only partially labeled. If certain elements are (almost)
completely labeled by heavy isotopes such as 2C, and
both the unlabeled and the labeled compound are present,
this allows us to directly “read” the number of atoms from
the spectrum using the mass difference. We will come
back to this particular type of data in Section “Isotope
labeling”

Decomposing monoisotopic peaks

Here, “decomposing a peak” refers to finding all molec-
ular formulas (over the fixed alphabet of elements) that
are sufficiently close to the measured peak mass. Robert-
son and Hamming [113] and Dromey and Foyster [114]
proposed a naive search tree algorithm for this purpose.
One can show that the running time of this algorithm
linearly depends on m*~! where m is the mass of the
peak we want to decompose, and k is the number of ele-
ments [102]. This means that doubling the peak mass we
want to decompose, will increase the running time of the
algorithm 32-fold for the alphabet of elements CHNOPS.
Hence, running time can easily get prohibitive, in particu-
lar if we consider larger alphabets of elements, or have to
perform many decompositions. In 1989, Fiirst et al [115]
proposed a faster decomposition algorithm which, unfor-
tunately, is limited to the four elements CHNO. In 2005,
Bocker and Liptak [100,101] presented an algorithm that
works for arbitrary alphabets of elements, requires only
little memory, and is swift in practice. Initially developed
for decomposing integer masses, this algorithm was later
adapted to real-valued masses [102,103,116].

Decomposing alone is not sufficient to exclude enough
possible molecular formulas in higher mass regions even
with very high mass accuracy [117]. Kind and Fiehn
[104] proposed “Seven Golden Rules” to filter molecu-
lar formulas based on chemical considerations. However,
for larger masses, many molecular formulas pass these
rules.

As the monoisotopic mass of a compound is insuffi-
cient to determine its molecular formula, we can use
the measured isotope pattern of the compound to rank
all remaining molecular formula candidates. Kind and
Fiehn [117] estimated that mass spectrometers capable of
3 ppm accuracy and 2% error for isotopic abundances,
can outperform mass spectrometers with hypothetical
mass accuracy of 0.1 ppm that do not include isotopic
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information. To this end, we now consider the problems
of simulating and matching isotope patterns.

Simulating isotope patterns

Due to limited resolution of most MS instruments the iso-
topic variants are not fully separated in the spectra but
pooled in mass bins of approximately 1 Da length. This is
called the aggregated isotopic distribution [36] and in the
following we will refer to it as “isotope pattern”.

Most elements have several naturally occurring iso-
topes. Combining elements into a molecular formula also
means to combine their isotope distributions into an iso-
tope distribution of the entire compound. Masses of all
isotopes are known with very high precision [118,119].
This is, to a much lesser extend and with certain excep-
tions, also true for the natural abundances of these iso-
topes on earth [120]. (For example, the abundances of
boron isotopes vary strongly.) To this end, we can simu-
late the theoretical isotope pattern of a molecular formula,
and compare the simulated distribution to the measured
pattern of a compound. See Valkenborg et al [36] for an
introduction.

The intensity of a peak in an isotope pattern is the
superposition of all isotope variants’ abundances that
have identical nominal mass (nucleon number) [36]. In
the early 1960’s, mass accuracy of MS instruments was
relatively low. Thus, first approaches for simulating iso-
tope patterns ignored the exact mass of the isotope
peaks, and concentrate solely on isotope peak inten-
sities, that is, the isotope distribution [121]. In 1991,
Kubinyi [122] suggested a very efficient algorithm for this
problem, based on convoluting isotope distributions of
“hyperatoms”.

As instruments with improved mass accuracy became
commercially available, focus shifted towards also pre-
dicting masses of isotope peaks, named “center masses”
by Roussis and Proulx [123]. For this purpose, methods
based on polynomial [124] and multinomial expansion
[105,125] were developed. IsoPro is an implementation
of [105] by M.W. Senko. Unfortunately, these expansion
approaches are very memory- and time-consuming. Prun-
ing by probability thresholds or mass range or both was
introduced to reduce memory and time consumption;
but this comes at the price of reduced accuracy of the
predictions [106,126-128]. The approach of [106] was
implemented in the software package Mercury.

Starting in 2004, methods that use an iterative (step-
wise) computation of isotope pattern were developed
[107,116,123]. These algorithms are similar in spirit to the
early algorithms for computing peak intensities [121,122].
But for the new algorithms, probabilities and masses of
isotope peaks are updated as atoms are added. This results
in probability-weighted center masses. Two implemen-
tations are Emass [107] and SIRIUS [102]. To speed up
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computations, both approaches combine this with a smart
Russian multiplication scheme, similar to Kubinyi [122].

Later approaches model the folding procedure as a
Markov process [108,129,130]. IsoDalton implements the
approach of Snider [108]. All approaches have in common
that a truncation mechanism must be applied due to the
exponential growth of states.

In 2012, Claesen et al [109] applied the Newton-Girard
theorem and Vietes formulae to calculate the intensities
and masses of an isotope pattern. This method is imple-
mented in the software tool BRAIN. They compared their
method against five other software tools: IsoPro, Mercury,
Emass, NeutronCluster [131], and IsoDalton. In this eval-
uation, BRAIN outperformed all other software tools but
Emass in mass accuracy of the isotope peaks. Running
times were comparable for BRAIN, Emass, Mercury, and
NeutronCluster, whereas IsoPro and IsoDalton required
much higher computation times. Later, Bocker [132]
showed that SIRIUS and BRAIN have practically identical
quality of results and running times for simulating isotope
patterns.

The currently fastest algorithm was presented by
Fernandez-de-Cossio Diaz and Fernandez-de-Cossio
[110]. This algorithm improves on earlier work were a
2D Fast Fourier Transform is applied that splits up the
calculation in a coarse and a fine structure [133]. Fourier
[110] shows a significantly better performance than
BRAIN and, hence, Emass and SIRIUS. It must be noted,
though, that this running time improvement is only
relevant for large compounds: The smallest compound
considered in [109,110,132] has mass above 1000 Da,
and significant running time differences for Fourier are
observed only for compounds with mass above 10 kDa.
For compounds of mass above, say, 50 kDa the problem
of simulating isotope patterns becomes somewhat mean-
ingless: The abundances of isotope species are known
with limited precision, and vary depending on where a
sample is taken. These small deviations in the isotopic
distribution of elements cause huge deviations in the
aggregated distribution, if the compound is sufficiently
large [134].

For the efficient and accurate simulation of isotope pat-
terns of small compound, it is recommended to use one of
the approaches behind Fourier [110], BRAIN [109], Emass
[107], or SIRILIS [102].

Scoring candidate compounds by comparing isotope
patterns

Decomposing the monoisotopic peak can result in a large
number of candidate molecular formulas that are within
the measured mass [117]. We can rank these candidates
based on evaluating their simulated isotope patterns. For
each candidate molecular formula, the isotope distribu-
tion is simulated and compared with the measured one.
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The best matching formula is considered to be the correct
molecular formula of the compound. See Figure 3.
Initially, mass spectrometers were limited in mass accu-
racy and resolution. To this end, first attempts of scoring
isotope patterns only considered the intensity of the iso-
topic peaks but not their masses. Kind and Fiehn [117]
calculated a root mean square error for the differences
between measured and theoretical isotopic intensities.
Stoll et al [135] filtered candidates using double-bond
equivalents and number of valences, then rank candi-
dates based on correlating the isotope distributions [136].
Commercial software for the same purpose was also pro-
vided by instrument vendors, such as SigmaFit by Bruker
Daltonics. Tal-Aviv [137] targets GC-MS EI data using
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a supersonic molecular beam, which results in highly
abundant molecular ions.

Bocker et al [102] introduced SIRIUS, first suggested in
[116]. Here, both the intensities and masses of the isotope
pattern are used to score candidate molecular formulas
using Bayesian statistics: The authors estimate the like-
lihood of a particular molecular formula to produce the
observed data. For a dataset of 86 compounds measured
on an oa-TOF MS instrument, the correct formula was
identified in more than 91% of the cases. Ipsen et al [138]
developed a method to determine confidence regions for
isotope patterns, tailored towards TOF MS data. They
employ that the rate of ion arrivals at the detector plate
is governed by the Poisson distribution. A test on three
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Figure 3 Metabolite identification pipeline based on elemental composition calculation, isotope pattern scoring and subsequent

database queries. Figure redrawn from Kind and Fiehn [117].
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compounds showed that the method rejects about 70%
of the candidate formulas (for pooled data) but keeps the
true formula, at the 5% significance level.

Isotope labeling

Labeling compounds by isotope-enriched elements such
as 13C or °N, helps to identify the correct molecular
formula. The shift in the mass spectrum between the unla-
beled compound and the labeled compound indicates the
number of atoms in the compounds. Once the number
of atoms for the labeled elements is known, the num-
ber of possible molecular formula is significantly reduced.
Rodgers et al [139] showed that enrichment with 99% 13C
isotopes reduces the number of possible molecular formu-
las for a 851 Da phospholipid from 394 to one. Hegeman
et al [140] used isotopic labeling for metabolite identifica-
tion. They improved the discriminating power by labeling
with 13C and '°N isotopes. Giavalisco et al [141] addi-
tionally labeled compounds with 34S isotopes. By this,
the number of carbon, nitrogen as well as sulfur atoms
can be determined upfront, and the number of potential
molecular formula that we have to consider, is reduced
considerably. Baran et al [142] applied this approach to
untargeted metabolite profiling and showed its potential
to uniquely identify molecular formulas.

Other approaches for molecular formula identification
Tandem or multiple-stage MS can give additional informa-
tion about the molecular formula of the intact compound:
We can exclude all molecular formulas of the compound
if, for one of the fragment (product ion) peaks, we can-
not find a sub-formula that explains this peak [143-146].
Unfortunately, such approaches are susceptible to noisy
data. To this end, Konishi and coworkers [143,144] sug-
gested to use only product ions below a certain threshold,
e.g., 200 Da, that have a unique decomposition.

Pluskal et al [111] combined matching isotope pat-
terns with filtering based on the molecular formulas
of product ions. For 79% of the 48 compounds con-
sidered, they identified the correct molecular formula.
There exist commercial tools that follow the same line
of thought: For example, SmartFormula3D [146] (com-
mercial, Bruker Daltonics) appears to implement a similar
approach. Pluskal et a/ [111] also evaluated their new, sim-
ple scoring of isotope patterns against SIRIUS [102], and
reported that it performs better.

A generalization of this concept are fragmentation trees
which were initially introduced to compute molecular for-
mulas [147]. For each potential molecular formula of the
intact compound, a fragmentation tree and its score are
computed. Potential molecular formulas of the compound
are then sorted with respect to this score. Rasche et al
[148] combined this with isotope pattern analysis [102],
and for the 79 considered compounds measured on two

Page 9 of 24

instruments, they could identify the correct molecular
formula in all cases. For more details on fragmentation
trees, see Section “Fragmentation trees” below.

All of the above approaches assume that only the
monoisotopic peak is selected for dissociation. Selecting
a non-monoisotopic peak can reveal valuable informa-
tion about the molecular formulas of the product ions.
Singleton et al [149] developed an approach to predict
the expected isotope pattern for tandem mass spectra for
precursor ions that contain only one element with one
heavy isotope. Rockwood et al [150] generalized this and
developed an algorithm that can be applied to arbitrary
precursor ions. It is based on the convolution of isotope
distributions of the product ion and the loss. Again, com-
paring theoretical and experimental isotope patterns shed
light on the correct product ion formula. Ramaley and
Herrera [151] modified the algorithm from [149] to apply
it to arbitrary precursor ions; results are comparable to
[150].

Rogers et al [152] used the information of potential
metabolic pathways to identify the correct molecular
formula. If there is a putative chemical transformation
between two molecular formulas, these formulas get a
better score than other explanations of the peak. This
does not only improve molecular formula identifica-
tion, but can potentially be used to reconstruct bio-
chemical networks. See Section “Network reconstruction”
for details.

Identifying the unknowns

To yield information beyond the compound mass and
molecular formula, the analyte is usually fragmented, and
fragmentation mass spectra are recorded. Using spectral
comparison one can identify huge numbers of metabo-
lites that are cataloged in libraries. However, where the
compound is unknown, comparing the spectrum obtained
to a spectral library will result in imprecise or incorrect
hits, or no hits at all [33,35,99]. The limited capability
for metabolite identification has been named one of the
major difficulties in metabolomics [117]. Manual analysis
of unidentified spectra is cumbersome and requires expert
knowledge. Therefore, automated methods to deal with
mass spectra of unknown unknowns (that is, “unexpected”
compounds that are not present in spectral libraries [31])
are required. Some approaches for analyzing fragmenta-
tion mass spectra of unknown unknowns are summarized
in Table 2.

Searching for similar compounds

In case a database does not contain the sample compound
an obvious approach is to search for similar spectra,
assuming that spectral similarity is based on struc-
tural similarity of the compounds. Back in 1978, Damen
et al [82], already suggested that SISCOM can also be
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Table 2 Approaches for analyzing fragmentation mass spectra of unknown unknowns that is, “unexpected” compounds

that are not present in spectral libraries [31]

Searching for similar
compounds

Mass spectral classifiers
prediction

Rule-based spectrum

In silico fragmentation

Combinatorial
fragmentation

Fragmentation trees

searching for similar
spectrain a library,
assuming that

predicting substructures or
compound classes by
learning spectral classifiers

predicting spectra by
applying fragmentation
rules to known molecular

mapping the fragmentation
spectrum to the compound
structure to explain

computing a fragmenta-
tion tree that explains the
peaks; aligning fragmenta-

spectral similarity is structures the peaks tion trees to find similar
based on structural compounds

similarity

NISTMS FingerlD [169] Mass Frontier, ACD/MS MetFrag [179] SIRIUS [147,221]

Interpreter [153]

Fragmenter, MOLGEN-MS [196]

used to detect structural similarities such as common
substructures.

The NIST MS Interpreter [153] for EI spectra uses
a nearest-neighbor approach to generate substructure
information. A library search provides a list of similar
spectra. Structural features of the unknown compound,
such as aromatic rings or carbonyl groups, are deduced
from common structural features of the hits. Demuth et a/
[154] proposed a similar approach, and evaluated whether
spectral similarity is correlated with structural similarity
of a compound. Based on this evaluation, they proposed a
threshold for spectral similarity that supposedly yields hit
lists with significantly similar structures. For multiple MS
data, Sheldon et al [155] used precursor ion fingerprints
(PIF) and spectral trees for finding similar compounds
and utilized previously characterized ion structures for
the structural elucidation of the unknown compounds.

Mass spectral classifiers

Another natural approach to deal with mass spectra of
compounds that cannot be found in a spectral library,
is to find patterns in the fragmentation spectra of refer-
ence compounds, and to use the detected patterns for the
automated interpretation of the unidentified spectrum.
Initially, this was accompanied by knowledge about the
fragmentation processes; but this applies only for frag-
mentation by EI, whereas fragmentation by CID is less
reproducible and not completely understood [156].

To characterize an unknown compound, we have to
come up with “classifiers” that assign the unknown to
a certain class: such classes can be based on the pres-
ence or absence of certain substructures, or more general
structural properties of the compound. As EI fragmen-
tation is already well understood, many mass spectral
classifiers have been provided to date. Already in 1969,
Venkataraghavan et al [157] presented an automated
approach “to identify the general nature of the compound
and its functional groups.” The Self-Training Interpretive
and Retrieval System (STIRS) [158] mixes a rule-based
approach with some early machine learning techniques
to obtain structural information from related EI spectra.

Further, STIRS can predict the nominal molecular mass
of an unknown compound, even if the molecular ion peak
is missing from the EI spectrum. Scott and coworkers
[159-161] proposed an improved method for estimat-
ing the nominal molecular mass of a compound. Using
pattern recognition the compound is classified, and class-
specific rules are applied to estimate the molecular mass.

Structural descriptors (that is, fragments of a cer-
tain integral mass) have been used to retrieve com-
pound classes for many decades [162]. The Varmuza
feature-based classification approach for EI spectra [163]
uses a set of mass spectral classifiers to recognize
the presence/absence of 70 substructures and struc-
tural properties in the compound. This approach is
integrated to MOLGEN-MS and AMDIS. For example,
Schymanski et al [164] combined mass spectral classi-
fiers with methods for structure generation (see Section
“Molecular isomer generators”) to interpret EI spectra
classifiers from MOLGEN-MS and the NISTO5 software.
Further MS classifiers for substructures are provided in
[165,166]. Hummel et al [167] used structural features to
subdivide the Golm Metabolome Database into several
classes. They proposed a decision tree-based prediction of
the most frequent substructures, based on mass spectral
features and retention index information, for classification
of unknown metabolites into different compound classes.
In 2011, Tsugawa et al [168] used Soft Independent Mod-
eling of Class Analogy (SIMCA) to build multiple class
models. However, back in 1996, Varmuza and Werther
[163] observed that SIMCA (which is based on the Prin-
ciple Component Analysis) performed worst among all
investigated methods.

Whereas all of the above methods are targeted towards
GC-MS and EI fragmentation, few methods target LC-MS
and CID fragmentation. A novel approach by Heinonen
et al [169] predicts molecular properties of the unknown
metabolite from the mass spectrum using a support vector
machine, then uses these predicted properties for match-
ing against molecular structure databases such as KEGG
(Kyoto Encyclopedia of Genes and Genomes) and Pub-
Chem (see Figure 4). To this end, we can replace the small



Scheubert et al. Journal of Cheminformatics 2013, 5:12
http://www.jcheminf.com/content/5/1/12

Page 11 of 24

1451
L 117
0.8:
2 os f
OH e I
_'E 04
= I
0 %, i
/S/ .. 0.2: JI 169.31874
HoN - B N
NH 50 100 150 miz
input output
molecule ) — | MS/MS | — ( spectrum

database
filtering

true:

from Heinonen et al [169].

molecule's
fingerprint

11000101. ..
pred: 11100101...

Figure 4 Predicting chemical properties (molecule fingerprints) from tandem MS data using a support vector machine (SVM) as done by
Heinonen et al [169]. The predicted fingerprints are used to search a molecular structure database for metabolite identification. Figure redrawn

spectra libraries by the much larger structure databases.
Using QqQ MS data and searching the smaller KEGG
database, they could identify the correct molecular struc-
ture in about 65% of the cases, from an average of 25
candidates.

Molecular isomer generators

Molecular isomer generators such as MOLGEN [170-
172], SMOG [173], and Assemble [174] have helped with
the structural elucidation of unknowns for many years
[175,176]. Recently, the open source software OMG was
introduced [177]. Molecular isomer generators enumerate
all molecular structures that are chemically sound, for a
given molecular formula or mass. In addition, the space of
generated structures can be constrained by the presence
or absence of certain substructures, see Section “Mass
spectral classifiers” An overview on generating structural
formulas is given by Kerber et al [172]. Enumerating
all possible isomers allows us to overcome the bound-
aries of database searching: Simply generate all molecular
structures corresponding to the parent mass or molecular
formula, and use the output of the structure generator as
a “private database” Unfortunately, this approach is only
valid for relatively small compounds (say, up to 100 Da):

For molecular formula C8H6N20 with mass 146 Da there
exist 109 240 025 different molecular structures [172].

In silico fragmentation spectrum prediction
In silico fragmentation aims to explain “what you see” in
a fragmentation spectrum of a metabolite. Initially, this
was targeted at a manual interpretation of fragmentation
spectra; but recently, this approach has been increasingly
used for an automated analysis [178,179]. Here, searching
in spectral libraries is replaced by searching in molecu-
lar structure databases. We mentioned above that spectral
libraries are (and will be) several orders of magnitude
smaller than molecular structure databases: For exam-
ple, the CAS Registry of the American Chemical Society
and PubChem currently contain about 25 million com-
pounds each. We can also use molecular structure gen-
erators (see “Molecular isomer generators” ) to create a
“private database” However, whereas structure genera-
tors can enumerate millions of structures in a matter of
seconds, it is already a hard problem to rank the tens
or hundreds of molecular structures found in molecular
structure databases for a particular parent mass [178,179].
In silico fragmentation has been successfully applied to
compounds with consistent fragmentation pattern, such
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as lipids [180], oligosaccharides [181], glycans [182], pep-
tides [183-185] or non-cyclic alkanes and alkenes [186].
However, general fragmentation prediction of arbitrary
small molecule remains an active field of research, due to
the structural diversity of metabolites and the complexity
of their fragmentation patterns.

Basically there are two types of in silico fragmentation
methods. Rule-based fragmenters are based on fragmenta-
tion rules that were extracted from the MS literature over
the years. Combinatorial fragmenters use a bond discon-
nection approach to dissect a compound into hypothetical
fragments.

Rule-based fragmenters

Although much is known about EI fragmentation, it is a
hard ionization technique that can result in very complex
rearrangements and fragmentation events [187] which
are hard to predict. For tandem MS, the fragmentation
behavior of small molecules under varying fragmentation
energies is not completely understood [156], and has been
investigated in many studies to find general fragmentation
rules [188,189]. Mass Frontier (see below) currently con-
tains the largest fragmentation library, manually curated
from several thousand publications [33].

The first rule-based approaches for predicting fragmen-
tation patterns and explaining experimental mass spectra
with the help of a molecular structure were developed as
part of the DENDRAL project. For example, Gray et al
[190] introduced CONGEN that predicts mass spectra of
given molecular structures using general models of frag-
mentation, as well as class-specific fragmentation rules.
Intensities for EI spectra were modeled with equations
found by multiple linear regression analysis of experimen-
tal spectra and molecular descriptors [191].

Gasteiger et al [9] introduced MASSIMO (MAss Spec-
tra SIMulatOr) to automatically derive knowledge about
mass spectral reaction types directly from experimental
mass spectra. Part of MASSIMO is the Fragmentation
and Rearrangement ANalyZer (FRANZ) that requires
a set of structure-spectrum-pairs as input. The MAss
Spectrum SImulation System (MASSIS) [192-194] com-
bines cleavage knowledge (McLafferty rearrangement,
retro-Diels-Alder reaction, neutral losses, oxygen migra-
tion), functional groups, small fragments (end-point and
pseudo end-point fragments) and fragment-intensity
relationships for simulating electron ionization spectra.
Unfortunately, these three software packages were nei-
ther sufficiently validated nor made publicly available. As
a consequence, they were never used or applied by the
broad community and should be considered with caution.

Mass Frontier (HighChem, Ltd. Bratislava, Slovakia;
versions after 5.0 available from Thermo Scientific,
Waltham, USA) contains fragmentation reactions
collected from mass spectrometry literature. Besides
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predicting a spectrum from a molecular structure, it
can also explain a measured fragmentation spectrum.
The ACD/MS Fragmenter (Advanced Chemistry Labs,
Toronto, Canada) can only interpret a given fragmen-
tation spectrum using a known molecular structure
[195]. Initially, these programs were designed for the
prediction and interpretation of fragmentation by EI,
but recently, there has been a tendency to interpret tan-
dem MS data with theses programs, too. Both programs
are commercial, and no algorithmic details have been
published. A third commercial tool is MOLGEN-MS
[196,197] that uses general mass spectral fragmenta-
tion rules but can also accept additional fragmentation
mechanisms.

For the interpretation of tandem mass spectra, Hill
et al [178] proposed a “rule-based identification pipeline”.
First, they retrieved candidate molecular structures from
PubChem using exact mass. Next, Mass Frontier 4 was
used to predict the tandem mass spectra of the candi-
dates, which were matched to the measured spectrum,
counting the number of common peaks. In this way, a
rule-based fragmenter can be used to search in a molecu-
lar structure database. Pelander et al [198] used ACD/MS
Fragmenter for drug metabolite screening by tandem MS.
For the simulation of EI fragmentation spectra, Schyman-
ski et al [195] compared the three commercial programs,
and indicated that at the time of evaluation, mass spec-
tral fragment prediction for structure elucidation was still
far from daily practical usability. The authors also noted
that ACD Fragmenter “should be used with caution to
assess proposed structures [...] as the ranking results
are very close to that of a random number generator”
Later, Kumari et al [199] implemented a pipeline for EI
spectra integrating Mass Frontier that is similar to the
one for tandem MS data [178], but integrates retention
time prediction. They retrieved candidate structures from
PubChem using molecular formulas predicted from the
isotope pattern [104]. They filtered molecular structures
using Kovits retention index prediction [15]. Using Mass
Frontier 6 for spectrum prediction, the correct structure
was reported in 73% within the TOP 5 hits.

It is worth mentioning that rule-based systems did not
have much success in proteomics: There, it is appar-
ent from the very beginning that, in view of the huge
search space, only optimization- and combinatorics-based
methods can be successful.

Combinatorial Fragmenters

The problem with rule-based fragmenters is that even the
best commercial systems cover only a tiny part of the
rules that should be known. Constantly, new rules are dis-
covered that have to be added to the fragmentation rule
databases. However, all of these rules do not necessarily
apply to a newly discovered compound.
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Sweeney [200] observed that many compounds can be
described in a modular format, that is, substructures
which account for most of the fragments observed in
the fragmentation spectrum (see Figure 5). Combinatorial
fragmenters use bond disconnection to explain the peaks
in the observed fragmentation spectrum. Fragments
resulting from structural rearrangements are initially not
covered by this approach. Usually, such rearrangements
have to be individually “woven” into the combinato-
rial optimization; this is often complicated and done
only for a few, particularly important rearrangements.
Note that handling rearrangement reactions is prob-
lematic for both combinatorial and rule-based methods
[200-202].

EPIC (elucidation of product ion connectivity) [201]
was the first software using systematic bond disconnec-
tion and ranking of the resulting substructures. It was
tested only against two hand annotated spectra from
the literature and is not publicly available. The Frag-
ment iDentificator (FiD) [202,203] enumerates all pos-
sible fragment candidates using a Mixed Integer Linear
Programming approach, and ranks the candidates accord-
ing the cost of cleaving a fragment. Due to the com-
putational complexity of the underlying problem [204],
running times can be prohibitive even for medium-size
compounds.

The most recent approach is MetFrag [179], a somewhat
greedy heuristic to match molecular structures to mea-
sured spectra that makes no attempt to create a mechanis-
tically correct prediction of the fragmentation processes.
It is therefore fast enough to screen dozens to thousands
of candidates retrieved from compound databases, and to
subsequently rank them by the agreement between mea-
sured and in silico fragments (see Figure 6). Hill et al
On the same test set that was used by [178], MetFrag
performed better than the commercial Mass Frontier 4.
MetFrag predictions were included in the recent METLIN
database release [65]. MetFrag has also been extended
to analyze EI fragmentation [205]. Recently, Gerlich and
Neumann [206] introduced MetFusion that combines the

NH
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Figure 5 Modular structure of xemilofiban. Figure redrawn from
Sweeney [200].
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MetFrag approach with a similarity fingerprint to re-rank
the molecular structures.

Other experimental measures such as retention indices
or drift time, can be used for candidate filtering [205,207].
Ridder et al [208] presented a closely related approach for
substructure prediction using multistage MS data.

One problem of combinatorial fragmenters is how to
choose the costs for cleaving edges (bonds) in the molec-
ular structure graph. For this, MetFrag uses bond disso-
ciation energies whereas “unit weights” are used in [208].
Kangas et al [180] used machine learning to find bond
cleavage rates. Their I silico identification software (ISIS)
currently works only for lipids and is not modeling rear-
rangements of atoms and bonds. Different from the other
approaches, ISIS simulates the spectrum of a given lipid,
and does not require experimental data to do so.

Consensus structure approaches

Many of the above mentioned techniques are rather
complementary yielding different information on the
unknown compound. Combining the different results will
therefore greatly improve the identification rates. For EI
fragmentation data, [205] used a consensus scoring to
selected candidates. These structural candidates are gen-
erated using molecular formula and substructure infor-
mation retrieved from MOLGEN-MS and MetFrag, and
further characteristics (e.g., retention behavior). Ludwig
et al [209] proposed a greedy heuristic to find the charac-
teristic substructure that is “embodied” in a list of database
search results; see also Section “Fragmentation trees”.

Nonribosomal peptides

Usually the structure of small molecules cannot be
deduced from the genomic sequence. However, for partic-
ular molecules such as nonribosomal peptides (NRPs) a
certain predictability has been established [210]. NRPs are
excellent lead compounds for the development of novel
pharmaceutical agents such as antibiotics, immunosup-
pressors, or antiviral and antitumor agents [211]. They
differ from ribosomal peptides in that they can have a non-
linear structures (for example, cyclic or tree-like) and may
contain non-standard amino acids [211]. This increases
the number of possible building blocks from 20 to sev-
eral hundreds, and certain amino acid masses not even
known in advance. To this end, common approaches for
sequencing ribosomal peptides using tandem mass spec-
trometry are not applicable to NRPs. For cyclic peptides,
fragmentation steps beyond tandem MS are required, as
tandem MS simply results in the linearization of the cyclic
peptide. Nevertheless, NRPs are structurally much more
restricted than the vast variety of metabolites known from
plants or microbes. Computational methods for de novo
sequencing and dereplication of NRPs have been estab-
lished [17,211-214]. Unfortunately, these computational
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methods rely on the “polymeric character” of NRPs and,
hence, cannot be generalized for analyzing other classes of
metabolites.

Fragmentation trees

If we want to assign molecular formulas to the precursor
and product ions, we may use the formula of the pre-
cursor to filter bogus explanations of the product ions,
and vice versa. This fact has been exploited repeatedly,
see for example [111,146] and Section “Molecular for-
mula identification” above. This is only the most simplistic

description of the fragmentation process: It is obvious
that all product ions must be fragments of the precursor;
but what is the dependency between the fragments? In
fact, MS experts have drawn fragmentation diagrams for
decades. For this task, the MS expert usually has to know
the molecular structure of the compound and its tandem
MS fragmentation spectrum.

Fragmentation trees must not be confused with spectral
trees for multiple stage mass spectrometry [155], or the
closely related multistage mass spectral trees of Rojas-
Cherto et al [145] (referred to as “fragmentation trees”
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in [145,215,216]). Spectral trees are a formal repre-
sentation of the MS setup and describe the relation-
ship between the MS” spectra, but do not contain any
additional information. We stress that all computational
approaches described below target tandem MS, unless
explicitly stated otherwise. To compute a fragmentation
tree, we need neither spectral libraries nor molecular
structure databases; this implies that this approach can
target “true unknowns” that are not contained in any
molecular structure database.

Bocker and Rasche [147] introduced fragmentation
trees (see Figure 7) to find the molecular formula of an
unknown, without using databases: Here, the highest-
scoring fragmentation tree for each molecular formula
candidate is used as the score of the molecular for-
mula itself. Only later, fragmentation trees were conceived
as a means of structural elucidation [148]. Algorithmic
aspects of computing fragmentation trees were consid-
ered in [217]. Hufsky et al [56] computed fragmentation
trees from EI fragmentation spectra with high mass accu-
racy, and used this to identify the molecular ion peak
and the molecular formula of compounds. Fragmenta-
tion trees computed from both tandem MS [148] and EI
fragmentation data [218] were found to be of good “struc-
tural quality” by expert evaluation. Finally, Scheubert et
al [219,220] computed fragmentation trees from multiple
MS data.

To further process fragmentation trees, Rasche et al
[221] introduced fragmentation tree alignments to clus-
ter unknown compounds, to predict chemical similarity,
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and to find structurally similar compounds in a spec-
tral library using FT-BLAST (Fragmentation Tree Basic
Local Alignment Search Tool). FT-BLAST also offers the
possibility to identify bogus hits using a decoy database,
allowing the user to report results for a pre-defined
False Discovery Rate. Faster algorithms for the compu-
tationally demanding alignment of fragmentation trees
were presented in [222]. FT-BLAST results were parsed
for “characteristic substructures” in [209]. Rojas-Cherté
et al [215] presented a related approach for the compar-
ison of multistage mass spectral trees, based on trans-
forming the trees into binary fingerprints and =comparing
these fingerprints using the Tanimoto score (Jaccard
index). This was applied for metabolite identification
in [216].

Aligning fragmentation trees is similar in spirit to the
feature tree comparison of Rarey and Dixon [223]. Feature
trees were computed from the molecular structure of a
known compound, and represent hydrophobic fragments
and functional groups of the compound, and the way these
groups are linked together.

Network reconstruction

Network elucidation based on mass spectrometry data
is a wide field. On the one hand, detailed information
like quantitative fluxes of the network is achieved by
metabolic flux analysis. Here, based on isotope labeled
compounds, the flux proceeding from these compounds
can be tracked. On the other hand, measured metabo-
lites can be mapped on a known network. This can
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elucidate distinct metabolic pathways that are differ-
entially “used” dependent on environmental conditions.
Both of these variants require previous known metabolic
network graphs. In this section, we will only cover the pure
de novo reconstruction of networks from metabolite mass
spectrometry data.

The reconstruction of networks solely from metabolic
mass spectrometry data is a very young field of research.
It can be subdivided into two main approaches: either
the network reconstruction is based on metabolite level
correlation of multiple mutant and wild type sam-
ples, or on data from only one sample by using infor-
mation of common reactions or similarity between
metabolites.

A first approach that used metabolite mass spectrom-
etry data of multiple expressed samples was introduced
by Fiehn et al [224]. Their method clusters metabolic
phenotypes for example by principle component anal-
ysis (PCA). In contrast Arkin et al [225] and Kose
et al [226] developed a method that does not group
samples but metabolites with correlating intensity regard-
ing all samples. Metabolites of a group have a similar
concentration behavior in all samples. This leads to the
assumption that the metabolites of a group are probably
somehow connected in a metabolic network. As the con-
centration of metabolites taken from plants with identical
genotype and grown under uniform conditions still show
variability, this approach can also be used if no multiple
mutant genotypes are available [227]. The disadvantage
of this simple approach is, that it results in very dense
networks that do not only cover direct reactions but also
indirect ones. Krumsiek et al. 2011 [228] suggested to
apply Gaussian graphical models to such data. Gaussian
graphical networks have the ability to calculate only direct
correlations while indirect correlations are not taken into
account.

In 2006, Breitling et al [229] reconstructed networks
based on high-resolution mass spectrometry data of only
one dataset. They inferred accurate mass differences
between all measured metabolites. These mass differences
give evidences of biochemical transformations between
the metabolites and allow the reconstruction of a network.
Rogers et al [152] used a similar approach on molecu-
lar formula level to assign better molecular formulas to
metabolites (see Section “Other approaches for molecular
formula identification”).

Watrous et al [230] used additional information from
spectral alignments of tandem MS data to determine a
structural similarity between the metabolites. Two struc-
turally similar metabolites are supposed to be connected
in the network (see Figure 8). They found the com-
pound thanamycin in Pseudomonas sp. SH-C52 that has
an antifungal effect and protects sugar beet plants from
infections by specific soil-borne fungi.
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Tandem MS Spectra

Spectral Similarity
Scoring

*Network Generation

Figure 8 Using spectral alignment of tandem MS data to
generate a molecular network. The thickness of the edges
indicates the similarity between the spectra. Figure redrawn from
Watrous et al [230].

Software packages

Several open source, or at least freely available, software
packages assist with processing and analyzing GC-MS
metabolomics data. The freely available AMDIS [231] is
the most widely used method for extracting individual
component spectra (mass spectral deconvolution) from
GC-MS data. MathDAMP [232] helps with the identi-
fication and visualization of differences between com-
plex metabolite profiles. TagFinder [233,234] supports the
quantitative analysis of GC-MS-based metabolite profil-
ing experiments. The MetaboliteDetector [235] detects
and subsequently identifies metabolites and allows for
the analysis of high-throughput data. TargetSearch [236]
iteratively corrects and updates retention time indices
for searching and identifying metabolites. Metab [237]
is an R package that automates the pipeline for analysis
of metabolomics GC-MS datasets processed by AMDIS.
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PyMS [238] comprises several functions for processing
raw GC-MS data, such as noise smoothing, baseline cor-
rection, peak detection, peak deconvolution, peak inte-
gration, and peak alignment. ADAP-GC 2.0 [239] helps
with the deconvolution of coeluting metabolites, aligns
components across samples and exports their qualitative
and quantitative information. Castillo et al. 2011 [240]
developed a tool to process GCx GC-TOF-MS data.

For LC-MS data, XCMS [13] enables retention time
alignment, peak detection and peak matching. XCMS?
[241] additionally searches LC-MS/MS data against
METLIN and also provides structural information for
unknown metabolites. It also allows for the correction of
mass calibration gaps [242] caused by regular switches
between the analyte and a standard reference compound.
XCMS Omnline [243] is the web-based version of the
software. AStream [244] enables the detection of out-
liers and redundant peaks by intensity correlation and
retention time, as well as isotope detection. MetSign
[245] provides several bioinformatics tools for raw data
deconvolution, metabolite putative assignment, peak list
alignment, normalization, statistical significance tests,
unsupervised pattern recognition, and time course anal-
ysis. CAMERA [246] is designed to post-process XCMS
feature lists and integrates algorithms to extract com-
pound spectra, annotate peaks, and propose compound
masses in complex data. MetExtract [247] detects peaks
corresponding to metabolites by chromatographic char-
acteristics and isotope labeling. IDEOM [248] filters and
detects peaks based on XCMS [13] and mzMatch.R [249],
enables noise filtering based on [249,250] and allows
for database matching and further statistics. Brodsky
et al [251] presented a method for evaluating individ-
ual peaks in a LC-MS spectrum, based on replicate
samples.

For both, GC-MS and LC-MS data, MZmine [252] and
MZmine2 [253] allow for data visualization, peak identifi-
cation and peak list alignment. MET-IDEA [254] proceeds
from complex raw data files to a complete data matrix.
MetAlign [255] is capable of baseline correction, peak
picking, as well as spectral alignment.

To compare the power of these software packages, an
independent validation would be desirable. But up to now,
there exists no such comparison. One reason is the lim-
ited amount of freely available mass spectra, see Section
“Conclusion”. Another reason is that some of the packages
are developed for special experimental setups or instru-
ments, and have to be adapted for other data, what makes
an independent validation difficult.

Conclusion

No computational de novo method is able to elucidate
the structure of a metabolite solely from mass spec-
tral data. They can only reduce the search space or
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give hint to the structure or class of the compound.
Computational mass spectrometry of small molecules is,
at least compared to proteomics, still very much in a
developmental state. This may be surprising, as meth-
ods development started out many years before com-
putational mass spectrometry for proteins and peptides
came into the focus of bioinformatics and cheminformat-
ics research [183-185]. But since then, methods devel-
opment in computational proteomics has proliferated
[16-21] and long surpassed that in metabolomics and
small molecule research. To a great extend, this can be
attributed to the fact that freely sharing data and bench-
mark test sets has become a tradition in proteomics, pro-
viding developers of novel computational methods with
the required input for training and evaluation of their
methods.

In metabolomics, a comparative evaluation of methods
is very limited due to restricted data sharing. Recently,
a first benchmark test for small molecules was provided
as part of the CASMI challenge?. CASMI is a contest
in which GC-MS and LC-MS data is released to the
public, and the computational mass spectrometry com-
munity is invited to identify the compounds. Results
and methods will be published in a special issue of the
Open Access MDPI journal Metabolites. This is a first
step towards reliable evaluation of different computa-
tional methods for the identification of small molecules.
Lately, the importance of computational methods has
gained more attention in small molecule research: Citing
Kind and Fiehn [33], “the ultimate success of structure
elucidation of small molecules lies in better software pro-
grams and the development of sophisticated tools for data
evaluation.”

With the advent of novel computational approaches
[169,206,207], searching spectral libraries may be replaced
by searching molecular structure databases within in
the next five to ten years. Beyond molecular databases,
only few approaches aim at overcoming the limits of the
“known universe of organic chemistry” [256], one example
being fragmentation trees [56,148,221].

Endnote
aCritical Assesment of Small Molecule Identification,
http://casmi-contest.org/.
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